由条件得:
点M( 0,1 )在抛物线上 因此:a(0+1)(0-1)=1
x o
得: a=-1
故所求的抛物线解析式为 y=- (x+1)(x-1)
即:y=-x2+1
求函数解析式的办法
练习: (1)已知二次函数满足f(1)=1,
f(-1)=5 ,图象过原点,求f(x);
(2)已知二次函数f(x),其图象过点是 (-1,2)和(1,-4),且通过原点,求f(x).
3.函数 f (x) x的图| x像| 是( ) x
(4) 根据下列函数的图象写出函数解析式
y 1
O1x
y
y
1
1
O
x
-1
-1
O
-1
2
x
问题探究
3. 某质点在30s内运动速度vcm/s是
时间t的函数,它的 v
30
图像以下图.用解
析式表达出这个 函数, 并求出9s时 10
质点的速度.
t O 10 20 30
函数的三种表达法的缺点:
1、解析法的缺点:有些问题有时很难用体现式来表 达。 2、图象法的缺点:图像及相对应的点的坐标往往不 精确。
3、列表法的缺点:有时应用有一定的局限性。
二、新课
【例1 】某种笔记本的单价是5元,买x x 1,2,3,4,5
个笔记本需要y元。试用函数的三种表示法表示函数 解:这个函数的定义域是数集{1,2,3,4,5}
【例3 】画出函数 y | x |的图象.
解:y
x
x
x0 x0
有些函数在它的定义域 中,对于自变量的不同取值 范围,对应关系不同,这种 函数通常称为分段函数。
图象以下:
y