圆的有关性质复习课教案
- 格式:doc
- 大小:821.00 KB
- 文档页数:5
圆的复习课教师姓名年级九年级科目数学学生姓名上课时间课题第2章圆的复习课教学目标1.理解、掌握圆的有关性质、直线和圆的位置关系、圆和圆的位置关系、正多边形和圆的位置关系.2.探索、总结、归纳与圆有关的各种问题,进行知识梳理,构建圆的知识体系.3.渗透数形结合和分类的数学思想,并逐步学会用数学的眼光认识世界,学会有条理的表达、推理.教学重点和难点重点;与圆有关的知识点梳理.难点;会用圆的有关知识解决问题.1.圆有关的概念:圆的定义:到定点的距离等于定长的点的集合。
定义用来判断几点共圆,也可画出辅助圆解决问题.(1)圆心角:顶点在圆心的角叫做圆心角.(2)圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角.(3)弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.等弧是完全重合的弧,包括弧长和弧度(所对圆心角度数),只能在同圆或等圆中.(4)弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.2.圆的有关的性质:(1)圆心角、弦和弧三者之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量分别相等.(2)垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧.(3)圆心角定理:圆心角的度数等于它所对弧的度数.(4)圆心角与圆周角的关系: 同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半.(5)圆周角定理:直径所对的圆周角是直角,反过来,90°的圆周角所对的弦是直径. (6)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线;②圆心到直线的距离等于半径;③直线与圆只有唯一的公共点.方法:(无切点)作垂直,证半径;(有切点)连半径,证垂直.(7)切线的性质定理:圆的切线垂直于过切点的半径.(8)切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点与圆心的连线平分两切线的夹角;圆中常作的辅助线:已知切线,常过切点作半径;已知直径,常作直径所对的圆周角. 求解有关弦的问题,作弦心距,借助垂径定理和勾股定理解决;弧的中点常和圆心连结.B IAC圆中作辅助线的解题思路:利用垂径定理勾股定理、相似三角形,同弧所对的圆周角相等,以及圆周角与圆心角之间的关系.若题目中只配有一幅图,有时不代表就只有一解.要注意题目中的条件:比如动点,直线等等字眼.油的截面问题是有图一解,无图两解. 3.三角形的内心和外心(1)确定圆的条件:不在同一直线上的三个点确定一个圆. (2) ①外心:三边中垂线的交点.② 性质:(1)OA=OB=OC.(2)外心不一定在三角形的内部. ③ 应用:∠BOC=2∠A.(3) ①三角形的内心:三角形三条角平分线的交点.②性质(a )到三边的距离相等;(b )IA 、IB 、IC 分别平分∠BAC 、∠ABC 、∠ACB ; (c )内心在三角形内部.③应用∠BIC=900+21∠A(三角形内角和角平分线得);S ⊿ABC =21C ⊿ABC r 内切.任意多边形的内切圆的半径与面积和周长公式之间的关系:S=21CR .(4)直角三角形中,∠C=90°, R 外接=21c, r 内切=21(a+b-c)=c b a ab++.(5)等边三角形中边长为a R 外接=33a ,r 内切=63a, h=23a, s=243a .4.点与圆的位置关系:点在圆外,点在圆上,点在圆内,设圆的半径为r ,点到圆心的距离为d ,则点在圆外⇔d >r .点在圆上⇔d=r .点在圆内⇔d <r .5.直线和圆的位置关系有三种:相交、相切、相离. 设圆的半径为r ,圆心到直线的距离为d ,则直线与圆相交⇔d <r ,直线与圆相切⇔d=r ,直线与圆相离⇔d >r. 6.圆与圆的位置关系:设两圆的圆心距为d ,两圆的半径分别为R 和r ,则⑴ 两圆外离⇔d >R+r ; ⑵ 两圆外切⇔d=R +r ;⑶ 两圆相交⇔R -r <d <R+r (R >r ); ⑷ 两圆内切⇔d=R -r (R >r );⑸ 两圆内含⇔d <R —r (R >r )(R 与r 大小不定加绝对值). 判断两圆位置关系:圆心距、两圆半径和、两圆半径差(绝对值)直线与圆是相离、相切、相交,圆与圆相离包含外离和内含,相切包括内切和外切n ︒r S180r n l π=弧长2扇形R π360n S =lR21=7.圆有关的计算:(1)(2)360l rn •=圆锥侧面展开图(扇形)1、h 2+r 2=l 22、S 侧 =πrl3、l 即为R, 圆锥母线长是展开图扇形半径(大半径),r 是底面圆小半径,看清楚求的是扇形面积还是弧长,面积是360作分母,弧长是180作分母。
中小学《圆的复习》教学设计公开课教案教学设计课件案例测试练习卷题一、教学目标:1. 知识与技能:(1)掌握圆的基本概念,包括圆的定义、圆心、半径等;(2)了解圆的性质,如圆的对称性、周长和面积的计算公式;(3)学会运用圆的知识解决实际问题。
2. 过程与方法:(1)通过观察、操作、探究等活动,培养学生的空间想象能力和抽象思维能力;(2)学会用圆规和直尺画圆,提高学生的动手操作能力;(3)运用数形结合的思想,理解圆的相关概念和性质。
3. 情感态度与价值观:激发学生对圆的学习兴趣,培养学生的探究精神和合作意识,使学生感受到数学与生活的紧密联系。
二、教学重点与难点:1. 教学重点:(1)圆的基本概念和性质;(2)圆的周长和面积的计算公式;(3)运用圆的知识解决实际问题。
2. 教学难点:(1)圆的周长和面积公式的推导过程;(2)用圆规和直尺画圆的方法。
三、教学方法与手段:1. 教学方法:(1)采用问题驱动法,引导学生主动探究圆的相关知识;(2)运用合作学习法,培养学生的主体性和参与意识;(3)采用数形结合法,帮助学生直观地理解圆的概念和性质。
2. 教学手段:(1)利用多媒体课件,展示圆的相关图片和动画,增强学生的直观感受;(2)利用教具,如圆规、直尺等,进行实际操作演示;(3)设计练习题,巩固所学知识。
四、教学过程:1. 导入新课:(1)展示生活中常见的圆形物品,引导学生关注圆的特征;(2)提问:你们对圆有哪些了解?圆有哪些性质?2. 探究与展示:(1)学生分组讨论,总结圆的性质;(2)每组选代表进行展示,分享探究成果;(3)教师点评并总结圆的性质。
3. 知识拓展:(1)讲解圆的周长和面积计算公式;(2)引导学生运用圆的知识解决实际问题。
4. 实践操作:(1)利用圆规和直尺,让学生尝试画圆;(2)学生相互评价,交流画圆心得。
5. 课堂小结:回顾本节课所学内容,总结圆的概念、性质和应用。
五、作业布置:1. 请用圆规和直尺画一个圆,并测量其周长和面积;2. 结合生活实际,找出一个圆形物品,观察其特征,并描述圆的性质;3. 预习下一节课内容,了解圆的方程。
圆的基本性质复习课教案seek; pursue; go/search/hanker after; crave; court; woo; go/run after第三章圆的性质1班级__________ 姓名___________复习内容:圆、圆的对称性、圆周角、确定圆的条件.复习要求:1.进一步理解圆及有关概念,了解弧、弦、圆心角的关系,探索并了解点与圆的位置关系;2.探索圆的性质,了解圆心角与圆周角的关系、直径所对的圆周角的特征.复习重点:圆的有关性质的应用复习过程:一.梳理有关知识点:基本概念:弧、弦、圆心角、圆周角确定圆的条件:对称性:基本性质垂径定理:圆圆心角、弧、弦的关系定理:圆周角定理:同弧或等弧所对的圆心角是它所对的圆周角的推论:1同弧或等弧所的圆周角290°的圆周角所对弦是 ,二.基础练习训练:1. 小红的衣服被一个铁钉划了一个呈直角三角形的一个洞,其中三角形两边长分别为1cm和2cm,若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小应等于 .2.⊙O的半径为6㎝,OA、OB、OC的长分别为5㎝、6㎝、7㎝,则点A、B、C 与⊙O的位置关系是:点A在⊙O_____,点B在⊙O_______.OACB3. 如图,△ABC 的三个顶点都在⊙O 上,∠ACB=40°,则∠AOB=____,∠OAB=_____.4. 如图,方格纸上一圆经过2,5、-2,2、2,-3、6,2四点,则该圆圆心的坐标为A .2,-1B .2,2C .2,1D .3,1 三、典型例:例1:如图,要把破残的圆片复制完整, 已知弧上的三点A 、B 、C, 1用尺规作图法,找出弧ABC 所在圆的圆心O 保留作图痕迹,不写作法; 2设△ABC 是等腰三角形,底边BC = 10cm,腰AB = 6 cm,求圆片的半径R 结果保留根号;3若在2题中的R 的值满足n 〈R 〈mm 、n 为正整数,试估算m 和n 的值.例2 、1如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm,则弦AB 的长是_______ ; 弦AB 所对的圆心角的度数为___________. 2如图,在⊙O 中,弦AB =60,弓高CD =9,求圆的半径.3已知点P 是半径为5的⊙Ο内一定点,且PO=4,则过点P 的OA D BCOA D BCABC所有弦中,弦长可取到的整数值共有的条数是 . 例3 、如图所示,AB 是⊙O 的弦,半径OC 、OD 分别交AB 于点E 、F,•且AE=BF,请你找出弧AC 与弧BD 的数量关系,并给予证明.例4:如图,在⊙O 中,直径AB=10,弦AC=6,∠ACB 的平分线交⊙O 于点D.求BC 和AD 的长.例5 、如图,ABC △是⊙O 的内接三角形,AC BC =,D 为⊙O 弧AB 上一点,延长DA 至点E ,使CE CD =.1求证:AE BD =;2若AC BC ⊥,求证:2AD BD CD +=.O ACEAOD B四、达标检:1.如图,BD 为⊙O 的直径,∠A=30°,则∠CBD 的度数为A .30°B .60°C .80°D .120°2.如图,AB 是⊙O 的直径,BC,CD,DA 是⊙O 的弦,且BC=CD=DA,则∠BCD 等于 A .100° B .110° C .120° D .130°3.如图,⊙O 的直径CD 过弦EF 的中点G,∠EOD=40°,则∠DCF 等于 A .80° B .50° C .40° D .20°4、如图,点A 、B 、C 是⊙O 上的三点,∠BAC=40°,则∠OBC 的度数是________5.如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 等于____________º.OAC BAB O COBACO BA CE D6.在半径为2的⊙O 中,弦AB 的长为22,则弦AB 所对的圆心角∠AOB 的度数是__________7.如图,已知AB 是⊙O 的直径,点C,D 在⊙O 上,且AB=6,BC=3. 1求∠BAC 的度数;2如果OE ⊥AC,垂足为E,求OE 的长;3求∠ADC 的度数.课后作业: 一、选择题:1、半径为6的圆中,圆心角α为60°,则角α所对弦长等于• A .42 B .10 C .8 D .62、若一个直角三角形的两边分别为6和8,则这个直角三角形外接圆直径是B.10或4或83.在同圆中,圆心角∠AOB=2∠COD,则两条弧AB 与CD 关系是 A .AB =2CD B .AB >CD C .AB <2CD D .不能确定 4.如图,⊙O 中,如果AB =2AC ,那么 .A .AB=2ACB .AB=AC C .AB<2ACD .AB>2AC 5.如图,AB 和DE 是⊙O 的直径,弦AC ∥DE,若弦BE=3,则弦CE=________.二、填空1.⊙O 的直径为10,弦AB =8,P 是弦AB 上一动点,那么OP 长的取值范围是____.第四题第五题2.如图,△ABC 为⊙O 的内接三角形,O 为圆心,OD ⊥AB,垂足为D,OE ⊥AC,•垂足为E,•若DE=3,则BC=________.3.如图,矩形ABCD 与圆心在AB 上的⊙O 交于点G,B,F,E,GB=8cm,AG=1cm,DE=2cm,则EF=_______cm .4.如图,在⊙O 中,∠ACB=∠D=60°,AC=3,则△ABC 的周长为________. 5.在半径为1的⊙O 中,弦AB 、AC 分别是2、3,则∠BAC 的度数为_______________.6. 如图,已知△ABC 的一个外角∠CAM =120°,AD 是∠CAM 的平分线,且AD 的反向延长线与△ABC 的外接圆交于点F ,连接FB 、FC ,且FC 与AB 交于E , 1判断△FBC 的形状,并说明理由;2请探索线段AB 、AC 与AF 之间满足条件的关系式并说明理由.7.已知:⊿ABC 中,AB=AC,以AB 为直径的⊙O 交BC 于D,交AC 于E,1如图1,当∠A 为锐角时,连接BE,试判断∠BAC 与∠CBE 的关系,并证明你的结论;2如图1中的边AB 不动,边AC 绕点A 按逆时针旋转,当∠BAC 为钝角时,如图2CA 的延长线与⊙O 相交于E,请问:∠BAC 与∠CBE 的关系是否与1中你所得出的关系相同 若相同加以证明;若不同,请说明理由.FBCDMA E(2)(1)C。
圆的基本性质复习课教案(市公开课)第一章:圆的定义与性质1.1 圆的定义:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆。
1.2 圆心:圆的中心点称为圆心。
1.3 半径:从圆心到圆上任意一点的线段称为半径。
1.4 直径:通过圆心,并且两端都在圆上的线段称为直径。
1.5 圆的性质:(1)圆是对称图形,圆心是对称中心。
(2)圆上任意一点到圆心的距离相等,即半径相等。
(3)直径是半径的两倍。
第二章:圆的周长与面积2.1 圆的周长:圆的周长称为圆周率,用符号π表示。
2.2 圆的面积:圆的面积等于圆周率乘以半径的平方。
2.3 圆周率π的值:π约等于3.14159。
第三章:圆的方程3.1 圆的标准方程:圆的方程为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为半径。
3.2 圆的一般方程:圆的方程也可以表示为x²+y²+Dx+Ey+F=0,其中D、E、F为常数。
第四章:圆的弧与弦4.1 弧:圆上两点间的部分称为弧。
4.2 弦:圆上任意两点间的线段称为弦。
4.3 直径所对的圆周角是直角。
4.4 圆心角与所对弧的关系:圆心角等于所对弧的两倍。
第五章:圆的相交与切线5.1 圆与圆的相交:两个圆的边界相交称为圆与圆的相交。
5.2 圆与圆的切线:与圆相切的直线称为圆的切线。
5.3 切线的性质:切线与半径垂直,切点处的切线斜率等于半径的斜率的负倒数。
第六章:圆的相切与内切6.1 圆的相切:两个圆仅有一个公共点时,称为相切。
6.2 内切:一个圆内含于另一个圆时,称为内切。
6.3 相切关系的应用:相切圆的半径之和等于两圆心距离。
第七章:圆的方程应用7.1 圆的方程求解:通过给定的条件,求解圆的方程中的未知数。
7.2 圆的方程应用实例:求解圆与直线、圆与圆的交点坐标。
第八章:圆的弧长与角度8.1 弧长:圆周上的一段弧的长度称为弧长。
8.2 圆心角与弧长的关系:圆心角的大小等于所对弧的长度与半径的比值。
西师大版六年级上册数学教案:圆的复习
一、教材及教学目标
教材
本次教学使用的是西师大版六年级上册数学教材。
教学目标
通过本次课的学习,学生应该能够:
1.理解圆的形状和性质;
2.掌握圆中心、半径等概念;
3.学会计算圆周长和面积。
二、教学准备
1.教材及教案;
2.物理模型或教具。
三、教学流程
第一步:引入
1.老师出示一张纸,让学生画出一个圆形图案;
2.老师询问学生,这是一个什么图形?为什么?如何判断?
第二步:讲解
1.圆的定义:所有到圆心距离相等的点构成的图形是圆,圆称为圆心O、半径为R;
2.圆的性质:圆周任何一点到圆心的距离相等,相邻两条弧的圆心角相等;
3.计算圆周长公式:C=2πR;
4.计算圆面积公式:S=πR²。
第三步:实践操作
1.请同学用圆规和尺子,画一个圆形模型;
2.请同学测量一下模型的直径和半径;
3.带领学生按照公式计算模型的周长和面积。
四、巩固练习
1.让学生画一个圆形图案;
2.让学生计算出该圆的周长和面积。
五、拓展延伸
1.请学生自行查找资料或书籍,研究圆与圆之间的关系;
2.请学生自行设计圆形图案,并按照公式计算周长和面积。
六、小结
通过本次教学,我们初步学习了圆的定义、性质以及计算学习了圆周长和面积的公式。
下一步,我们将深入学习与圆有关的知识。
圆的基本性质复习课教案(市公开课)一、教学目标:1. 知识与技能:(1)回顾圆的定义、圆心、半径等基本概念;(2)掌握圆的性质,如:圆是对称的、圆的周长与直径的关系、圆的面积计算等;(3)学会运用圆的性质解决实际问题。
2. 过程与方法:(1)通过观察、思考、讨论,培养学生的空间想象能力和逻辑思维能力;(2)运用实例演示和练习,提高学生运用圆的性质解决问题的能力。
3. 情感态度与价值观:激发学生对数学的兴趣,培养学生的团队协作精神,使学生感受到数学在生活中的应用。
二、教学重点与难点:1. 教学重点:(1)圆的基本性质;(2)运用圆的性质解决实际问题。
2. 教学难点:(1)圆的周长与直径的关系;(2)圆的面积计算及应用。
三、教学准备:1. 教具:黑板、粉笔、圆规、直尺、圆形模型等;2. 学具:每位学生准备一份圆的基本性质复习资料。
四、教学过程:1. 导入新课:(1)教师简要回顾圆的定义及基本概念;(2)提问:同学们,你们知道圆有哪些性质吗?2. 自主学习:(1)学生根据复习资料,自主回顾圆的基本性质;(2)教师巡视课堂,解答学生疑问。
3. 课堂讲解:(1)教师讲解圆的性质,如:圆是对称的、圆的周长与直径的关系、圆的面积计算等;(2)结合实例演示,让学生直观理解圆的性质;(3)引导学生思考:如何运用圆的性质解决实际问题?4. 课堂练习:(1)教师出示练习题,学生独立完成;(2)教师选取部分学生的作业进行讲评,分析解题思路和方法。
5. 小组讨论:(1)教师提出讨论话题:如何运用圆的性质解决实际问题?;(2)学生分组讨论,提出解决方案;(3)各小组派代表分享讨论成果。
6. 总结提升:(1)教师引导学生总结圆的基本性质及应用;(2)强调圆的性质在实际生活中的重要性。
五、课后作业:1. 复习圆的基本性质,整理成思维导图;(1)一个圆形花坛的半径为10米,求花坛的面积;(2)一条圆形铁路轨道的直径为20米,求轨道的周长。
《与圆有关的概念和性质》复习课学案【学习目标】1.通过对与圆有关的概念和性质(垂径定理,弧、弦、圆心角的关系,圆周角定理及其推论)的结构化整理,进一步理解圆、弧、弦、圆心角、圆周角的概念以及相互关系,掌握圆的基本性质;2.结合具体的问题情境,分析和解决与圆的概念和性质有关的问题,掌握常用辅助线作法:作半径、从圆心作一条与弦垂直的线段;理解此类问题可以通过圆的性质转化为一个三角形(特殊三角形)或者二个三角形(全等三角形或相似三角形)的问题来解决,进一步体会转化思想.【学情分析】本班学生在4月天河区前测中数学平均分约75分(满分120). 学生对于与圆有关的概念和性质有基本了解,相关知识的掌握较为零散,未能搭建知识之间的联系,形成知识网络;能解决单个知识点的简单题目,而综合题解题能力较为薄弱.【学习过程】一、以题点知1.如图1,☉O的半径为13,BC是☉O的一条弦,BC=24,则圆心O到BC的距离为.2.若点A、B、C在☉O上,BC是☉O中最长的弦,则∠BAC= °.3.如图2,已知点B、C在☉O上,点A在优弧BC上,∠BOC=132°. (1)∠BAC= °;(2)若点D是圆上除A、B、C外某一点,则∠BDC= °;(3)若点D为弧BC中点,则∠BOD= °.设计意图:通过单个知识的题目,复习和回顾与圆有关的概念和性质,为下面梳理与圆有关的概念和性质进行铺垫.二、经典再现COB图1COBA图2设计意图:通过对与圆有关的概念和性质(垂径定理,弧、弦、圆心角的关系,圆周角定理及其推论)的结构化整理,进一步理解圆、弧、弦、圆心角、圆周角的概念以及相互关系,掌握圆的基本性质.理解圆的有关概念和性质,提供了证明线段相等、弧相等、垂直关系的方法,为与圆有关问题的计算和证明提供了重要依据.三、典例分析已知:☉O 是△ABC 的外接圆,AD 为☉O 的直径,AD ⊥BC ,垂足为E .连接BO 并延长交AC 于点F .(1)如图3,求证:∠BFC =3∠CAD ;(2)如图4,过点D 作DG ∥BF 交☉O 于点G ,点H 为DG 的中点,连接OH .求证:BE =OH .设计意图:此题考查了圆心角、圆周角之间的关系,垂径定理,三角形内角、外角关系,全等三角形的判定和性质.圆内角或圆外角可以通过三角形的性质转化为圆周角、圆心角解决.FE DAO BC图3 HG FE DAOBC图4与圆有关的问题可以通过圆的性质转化为一个三角形(特殊三角形)或者二个三角形(全等三角形或相似三角形)的问题来解决,进一步体会转化思想.掌握常用辅助线:作半径、从圆心作一条与弦垂直的线段,四、技能训练1.点P是☉O内一点,过点P的最长弦的长为10cm,最短弦的长为6cm,则OP的长为().A.3cm B .4cm C.5cm D.6cm2.如图5,点A,B,C,D,E在☉O上,AB=CD,∠AOB=42°,则∠CED=().A.48°B.24°C.22°D.21°3.如图6,四边形ABCD是☉O的内接四边形,BE是☉O的直径,连接AE,若∠BCD=2∠BAD,则∠DAE=().A.30° B.35° C.45° D.60°图5图6图7图84.如图7,A,B,C是半径为1的☉O上三个点,若AB=√2,∠CAB=30°,则∠ABC= .5.如图8,由边长为1的小正方形组成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C和点D,则tan∠ADC= .6.如图9,☉O的半径为4,△ABC是☉O的内接三角形,连接OB、OC.若∠BAC与∠BOC 互补,求弦BC的长.图9五、课堂小结六、作业 A 组1.如图10,点A ,B ,C 在⊙O 上,∠A =50°,则∠BOC 的度数为( ).A.40°B.50°C.80°D.100°2.如图11,已知⊙O 是∠ ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD=( ).A.116°B.32°C.58°D.64°3.如图12,AB 是圆O 的弦,OC ⊥AB ,交圆O 于点C ,连接OA ,OB ,BC ,若∠ABC =20°,则∠AOB 的度数是( )A.40°B.50°C.70°D.80°图11 图12图13图144.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图13所示,若水面宽AB =48cm ,则水的最大深度为( ).A.8cmB.10cmC.16cmD.20cm5.如图14,点A ,B ,C 在⊙O 上,若∠AOB =110°,则∠ACB = .6.⊙O 的半径为13cm ,AB ,CD 是⊙O 的两条弦,AB ∥CD ,AB =24cm ,CD =10cm ,求AB 和CD 之间的距离.B DOACBOACCOBA 图10B 组7.如图15,⊙O 的直径AB =10,弦AC =8,连接BC .(1)尺规作图:作弦CD ,使CD =BC (点D 不与B 重合), 连接AD ;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD 的周长.8.如图16-1,∠BAC 的平分线交△ABC 的外接圆于点D ,∠ABC 的平分线交AD 于点E . (1)求证:DE =DB ;(2)若AD 与BC 交于点P ,求证:DE 2=DP ·DA ;(3)如图16-2,若∠BAC =90°,BD =5√2,AB =6,求△ABC 外接圆的半径和弦AD 的长.图15ED BCA图16-1 EDOBCA 图16-2。
圆整理复习教案李玉晶一、教学目标1. 知识与技能:使学生掌握圆的基本概念、性质和运用,能够灵活运用圆的相关知识解决实际问题。
2. 过程与方法:通过复习和整理,提高学生对圆的知识的掌握程度,培养学生整理知识的能力。
3. 情感态度价值观:激发学生对圆的知识的兴趣,培养学生的探索精神和合作意识。
二、教学重难点1. 教学重点:圆的基本概念、性质和运用。
2. 教学难点:圆的面积公式和弧度的概念。
三、教学方法采用讲解法、问答法、讨论法、练习法等,引导学生主动参与,积极思考,提高学生对圆的知识的掌握程度。
四、教学过程1. 导入:通过提问,检查学生对圆的基本概念和性质的掌握情况。
2. 讲解:讲解圆的基本概念、性质和运用,重点讲解圆的面积公式和弧度的概念。
3. 练习:针对讲解的内容,设计相关的练习题,让学生当场练习,巩固所学知识。
4. 讨论:组织学生分组讨论,共同整理和复习圆的知识,形成知识结构。
5. 总结:对讲解和练习的内容进行总结,强调重点和难点,提醒学生注意。
五、课后作业1. 请学生整理圆的基本概念、性质和运用,形成知识结构。
2. 设计相关的练习题,让学生进行课后练习,巩固所学知识。
3. 鼓励学生查阅资料,深入了解圆的知识,提高学生的自主学习能力。
六、教学评价1. 评价方式:采用课堂提问、练习、讨论、作业等方式进行评价。
2. 评价内容:评价学生对圆的基本概念、性质和运用的掌握程度,以及学生的整理知识的能力。
七、教学反思在教学过程中,要及时观察学生的反应,根据学生的实际情况,适时调整教学方法和节奏,确保学生对圆的知识的掌握。
要关注学生的个体差异,给予不同程度的学生不同的指导和帮助,提高学生的学习效果。
八、教学拓展1. 圆与生活的联系:引导学生思考圆在生活中的应用,如自行车轮子、地球等,让学生体会圆的知识的实际意义。
2. 圆与其他几何图形的联系:引导学生探索圆与三角形、四边形等其他几何图形的关系,提高学生的知识综合运用能力。
复习:圆的基本性质
灵宝实验中学许怀权
导入: 同学们,我们中国人对圆情有独衷,因为它寓意着团圆、完美、和谐,而数学中,圆以简洁的曲线之中,却蕴含神奇多彩的数学知识。
今天我们再次走进圆的世界,共同复习圆的基本性质。
一.复习目标:
1.复习圆的有关概念,掌握圆的基本性质。
2.理解圆的对称性,掌握圆的四个定理。
3.会运用圆的基性质定理进行推理和计算。
千里之行,始于足下。
明确了目标,就让我们从知识梳理开始今天的复习之旅!二.知识梳理
1.以小组为单位共同复习圆的一组概念。
(组里互查,教师出示四个图形检查)
2.两个特性:同学观察两个图形回答一下问题:
(1)圆是______ 图形,经过_____________是它的对称轴.圆有_______对称轴.
(2)圆是_________ 图形,并且绕圆心旋转任何一个角度都能与自身重合,即____________
(3)跟踪练习,概念解读:
1.下列说法正确的是______________ :
(1)直径是弦,弦也是直径;
(2)半圆是弧,但弧不一定是半圆;
(3)两条等弧的长度相等,但长度相等的弧不一定是等弧;
(4)顶点在圆心上的角为圆心角,顶点在圆周上的角为圆周角;
(5)圆的对称轴是它的直径。
3.四个定理:
(1) 垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
推论:平分弦(弦不是直径)的直径垂直于这条弦,并且平分弦所对的两条弧。
提问:○1.联想垂径定理基本图形是什么
○2.根据图说说几何语言怎么叙述?
∵CD 是直径 ①经过圆心
CD ⊥AB ②垂直于弦
∴AP=BP ③平分弦(不是直径)
④平分优弧
⑤平分劣弧
○
3你能从这几个条件中任选两个推出其它的结论吗? 找几个同学说说,由此总结: (知二,得三)
○
4.垂径定理的几个基本图形:
○
5.定理辨析:下列说法正确吗?为什么? (1)过弦的中点的直线平分弦所对的两条弧;
(2)弦的垂线平分它所对的两条弧;
(3)过弦的中点的直径平分弦所对的两条弧;
(4)垂直于弦的直径平分弦所对的两条弧
○
6.典例精析 例1.某公园中央地上有一个大理石球,小明想测量球的半径,于是找了两块20cm 厚的砖塞在两侧他量的两砖之间的距离刚好是 80cm ,聪明的你算出大石头的半径是( )
A.40cm
B.30cm
C.20 cm
D.50cm
先独立完成然后找学生讲解,最后老师进行解题方法总结。
解题策略:求圆中的弦、弦心距、和半径时,通过连半径,作垂直,
构造垂径定理基本图形,用方程思想解题。
学以致用 备战中招(一)
1.(2015.盐城)如图,AB 是⊙O 的直径,CD 为弦, DC ⊥AB 于E,则下列结论不一定正确( ) A.∠COE=∠DOE B.CE=DE
⌒ ⌒
C.OE=BE
D.BD=BC
2.如图,已知在⊙O 中,弦AB 的长为8厘米,圆心O 到AB 的距离为3厘米,⊙O 的半径____厘米。
O B A C D O B C
A O
B
C A
D
E D C
O A B E
O D B C A
(2). 圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
○1.由圆心角相等你可以得到什么结论?
学生归纳:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
○2.你能有中选取一个结论推出其它的结论吗?
同学讨论,归纳:在同圆或等圆中,如果两个圆心角、两条弦、两条弧、弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.(简称知“一”得“三”)。
○3.圆心角定理哪里用?应用中要注意什么?
(1)定理用来证弧相等,角相等、线段相等
(2) 定理和推论成立的前提是在同圆或等圆中。
3.圆周角定理:在同圆或等圆中,同弧或等弧所对的_圆周角相等,都等于圆心角的一半。
看图完成:○1. 如果∠AOB=106°,则∠C1= ____,∠C2 =____
.○2在同圆或等圆中,同弧或等弧所对的圆心角和圆周角之间有什么关系?
○3.圆周角定理变形:
学以致用备战中招(二)⌒
1.如图所示,弦AB的长等于⊙O的半径,点C在AmB上,则∠C=------ 。
2. 2.如图,已知AB为⊙O的直径,∠CAB=30°,则∠D=_________.
解题策略:求圆周角的方法:常常是找出或构造出同弧所对的圆心角
(或圆周角),遇到有直径常会转化成直角三角形来解决。
4.圆内接四边形性质定理:圆内接四边形的对角互补;一个外角等于它的内对角。
提问:
1.一个圆都有___ 个内接四边形.
2.所有的四边形都有外接圆吗?
3.只有________的四边形才有外接圆
学以致用备战中招(三)
1.已知⊙O中弦AB长等于圆的半径,那么弦AB所对的圆周角为( )
A.60°
B.150°
C.30°
D.30°或150°
2.如图,四边形ABCD内接于⊙O,若它的一个外角∠DCE=70°,则∠BOD=( )
A.35° B.70°
C.110° D.140°
解题策略:圆内接四边形的性质是证明角相等的重要方法,
在应用是要注意和圆周角定理结合起来。
三.总结反思拓展升华
本节课复习了哪些知识?
四.考点透析中考展望
开启中招成功之门的钥匙有三:1.良好的心态,2.勤奋的精神,3.科学的方法,而其中最快捷,最有效的方法就是对历年来的中招考点进行深入透彻的分析:本节知识一直是中考的必考内容,主要考察垂径定理,圆心角,圆周角的直接运用,常与直角三角形,等腰三角形的知识进行综合命题,题型主要是填空题和选择题。
预计在2016年的中考命题中,对垂经定理、圆心角、圆周角之间的关系仍会有所涉及。
四.真题演练助你成功
1.(2015.海南)如图,在半径为5cm的圆中,圆心O到弦AB的距离为3cm,则弦AB的长为_________
2.(2011.乐山)如图,CD是⊙O的弦,直径AB⊥CD,若∠BOC=40°,则∠ABD=______
3.(201
4.天津)已知⊙O的直径为10,点A,B,C在
⊙O上,∠CAB的平分线交⊙O与点D.
(1)如图,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;
(2)如图,若∠CAB= 60°,求BD的长。
结束语:没有做不到,只有想不到,没有比脚更高的山,只有比脚更长的路,相信自己,用信心点燃我们的希望,用青春化做无穷的力量,九年磨砺,立志凌绝顶,百日竞渡,破浪展雄风!希望同学们在今年的六月园自己的中招梦想!
教后点评:复习课不能简单是知识的重复讲解,而是通过复习把教材中各部分知识进行归纳整理,已达到巩固提高,融汇贯通的目的.本节课从整体上看体现了素质教育的教学思想,营造了和谐、互动、探究、创新的良好的学习情境和氛围,设计条理清晰,层次分明,主要有以下几方面的亮点:1、教师课堂上的教态亲切、快活、庄重,富有感染力,语言准确清楚,精炼,生动形象,有启发性。
2.重视复习内容组织和设计, 明确目标,精心设计,把复习内容精炼成三个知识点,注重复习巩固,找准新旧链接教师组织学生进行知识梳理,回忆旧知,从学生已有的经验和已有的知识背景出发,找准新知的最佳切入点,为知识的迁移做好铺垫,从知识的运用中提升兴趣。
3、在问题解决的过程中,突出过程和方法的引导,引导学生提炼解决问题中蕴含的数学方法,发现知识的内在联系,以达到事半功倍的效果。
O
A B
C。