塑料件结构设计及材料选取.方案
- 格式:ppt
- 大小:709.00 KB
- 文档页数:39
塑料件的设计规范1.材料选择:(a)根据产品的使用环境和功能要求选择合适的塑料材料,如聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)等。
(b)考虑材料的物理性能,如强度、耐磨性、耐腐蚀性等。
(c)考虑材料的成本和可获得性。
2.尺寸和公差控制:(a)设计时要确保塑料件的尺寸和公差能够满足产品的装配要求。
(b)考虑到塑料件的热膨胀系数,可以在设计时进行适当的调整。
3.结构设计:(a)设计时要考虑到塑料件的结构强度,以防止在使用过程中发生断裂或变形等问题。
(b)尽量避免在塑料件上设计过多的孔和凹槽,以减少成本和生产时间。
4.制造工艺:(a)设计时要考虑到塑料件的制造工艺,以确保能够实现高效的生产。
(b)考虑到塑料件注塑成型的要求,如壁厚、缩水率等。
5.表面处理:(a)考虑到塑料件的使用环境和外观要求,在设计时可以考虑表面处理方法,如涂装、喷涂等。
(b)考虑到塑料件的耐候性,可以选择添加防紫外线(UV)剂。
6.排气和冷却:(a)设计时要确保塑料件的排气和冷却能够满足注塑成型的要求,以避免缺陷的产生。
(b)考虑到塑料件的形状和厚度变化,可以适当设计出气道和冷却系统。
7.注塑模具设计:(a)考虑到塑料件的形状、尺寸和结构,设计合适的注塑模具,以确保能够生产出符合要求的塑料件。
(b)考虑到模具的制造成本和使用寿命,可以合理选择模具材料和加工工艺。
总而言之,塑料件的设计规范是为了确保产品质量和生产效率,在材料选择、尺寸和公差控制、结构设计、制造工艺、表面处理、排气和冷却、注塑模具设计等方面提供了一些指导和标准。
通过遵守这些规范,设计师可以设计出高质量的塑料件,从而满足客户的需求。
塑料制品的常见结构设计塑料制品的设计塑料制品的设计不仅要满足使用要求,而且要符合塑料成型的工艺特点,同时尽可能的使模具简单化。
如此既是成型工艺稳固,保证塑料制品的质量,又能够降低生产成本。
塑料制品要考虑一下因素。
1、塑料性能:塑料的物理学性能和工艺性能。
2、成型方法:要看具体的成型工艺要确定设计法案。
3、模具结构和制造工艺:要利于模具结构简化和方便制造。
一、塑料制品结构设计的一样原那么1、力求使制品结构简单,幸免侧向凹凸结构,使模具结构简单,易于制造;设计塑料制品时,应满足塑料制品功能的要求的前提下,力求使制品结构简单,专门是要尽量幸免侧向凹凸结构。
因为侧向凹凸结构需要模具增加侧向抽心或斜顶机构,使得模具变复杂,并增加成本。
假如侧向凸凹结构不可幸免,那么应该使侧向凸凹结构简单化,那个地点有两种方法能够幸免模具采纳侧向抽心或斜顶机构:强行脱模和对插。
•注:关于强行脱模:1〕 当侧向凹凸较浅且承诺有圆角时,可强行脱模; 2〕可强行脱模的塑料有PE 、PP 、POM 和PVC 等;斜顶上图的W 不宜小于1/3H 。
制品设计时除了尽量幸免侧向抽心外,还力求时模具的其它结构也简单耐用,要紧包括一下几方面。
(1) 模具成型零件上不得有尖利和薄弱结构。
模具上的尖利或薄弱结构会阻碍模具强度及使用寿命。
制品设计时应尽量幸免这种现象显现。
制品模具〔2〕尽可能使成型零件简单易加工。
型芯复杂,难以加工型芯则较容易加工〔3〕尽量使分型面变得简单。
简单的分型面使模具加工容易,生产时不易产生飞边,容易切除水口。
分型线为阶梯形状,模具加工困难改为直线或曲面,使得模具加工较为容易2、壁厚平均,幸免显现过厚或过薄的胶位壁厚平均为塑料制件设计的第一原那么,应尽量幸免显现过厚或过薄的胶位。
这一点即使在转角部位也专门重要。
因为壁厚不均会使制件冷却后收缩不均,造成凹陷,产生内应力、变形及破裂等。
另外,成型制件的冷却时刻取决于壁厚角厚的部分,壁厚不均会使成型周期延长,降低生产效率。
塑料件结构设计概述塑料件结构设计是指在使用塑料材料制造零部件时所涉及的设计过程。
塑料件的结构设计在产品开发的早期阶段起到至关重要的作用,它直接影响着产品的性能、质量和成本。
在进行塑料件结构设计时,需要考虑材料的特性、制造工艺、产品的使用环境和功能要求等多个因素。
首先,塑料件的结构设计需要考虑材料的特性。
不同的塑料材料具有不同的物理、化学和力学性能,因此在选取塑料材料时需要综合考虑其强度、韧性、刚性、耐热性、耐腐蚀性等特性。
同时,塑料材料的热胀冷缩特性也需要考虑,以避免在使用过程中出现尺寸变化导致的问题。
其次,制造工艺是影响塑料件结构设计的重要因素之一、塑料制品通过注塑成型、挤压成型、吹塑成型等工艺制造,不同的工艺需要不同的结构设计来保证产品的成型质量。
例如,在注塑成型中,需要考虑壁厚的均匀性、产品的冷却时间、模具的设计等因素,以避免产生缺陷,确保产品的精度和质量。
此外,产品的使用环境也是塑料件结构设计需要考虑的重要因素之一、不同的使用环境对塑料件的耐磨性、耐腐蚀性、抗老化性等提出了不同的要求。
例如,在汽车零部件的设计中,需要考虑塑料件对汽油、润滑油、酸碱溶液等的耐腐蚀性和耐高温性能。
最后,塑料件的结构设计还需要考虑产品的功能要求。
不同的产品对塑料件的形状、尺寸、连接方式等都有不同的要求。
在设计过程中,需要根据产品的功能要求确定合理的结构布局和形状设计,以满足产品的使用需求。
综上所述,塑料件结构设计需要考虑材料特性、制造工艺、使用环境和功能要求等多个因素。
在设计过程中,需要综合考虑这些因素,并通过合理的结构布局和形状设计来满足产品的性能、质量和成本要求。
通过科学合理的塑料件结构设计,可以提高产品的可靠性和竞争力。
塑料产品结构设计资料目录一、零件壁厚 (1)二、脱模斜度 (4)三、圆角设计 (5)四、加强筋的设计 (7)五、支柱的设计 (8)六、螺丝柱的设计 (9)七、孔的设计 (10)八、止口的设计 (11)九、卡扣的设计 (13)十、反止口的设计 (18)零件设计必须满足来自于零件制造端的要求,对通过注射加工工艺而获得的塑胶件也是如此。
在满足产品功能、质量以及外观等要求下,塑胶件设计必须使得注射模具加工简单、成本低,同时零件注射时间短、效率高、零件缺陷少、质量高,这就是面向注射加工的设计。
现将详细介绍塑胶件设计指南,使得塑胶件设计是面向注射加工的设计。
一、零件壁厚在塑胶件的设计中,零件壁厚是首先考虑的参数,零件壁厚决定了零件的力学性能、零件的外观、零件的可注射性以及零件的成本等。
可以说,零件壁厚的选择和设计决定了零件设计的成功与失败。
1、零件壁厚必须适中由于塑胶材料的特性和注射工艺的特殊性,塑胶件的壁厚必须在一个合适的范围内,不能太薄,也不能太厚。
壁厚太小,零件注射时流动阻力大,塑胶熔料很难充满整个型腔,不得不通过性能更高的注射设备来获得更高的充填速度和注射压力。
壁厚太大,零件冷却时间增加,零件成型周期增加,零件生产效率低;同时过大的壁厚很容易造成零件产生缩水、气孔、翘曲等质量问题。
零件壁厚可根据材料的不同及产品外形尺寸的大小来选择,其范围一般为0.6~6.0mm,常用的厚度一般在1.5~3.0mm之间。
表1是常用塑料件料厚推荐值,小型产品是指最大外形尺寸L<80.0mm,中型产品是指最大外形尺寸为80.0mm<L<200.0mm,大型产品是指最大外形尺寸L>200.0mm。
表1 常用塑料件料厚推荐值(单位mm)2、尽量减少零件壁厚决定塑胶件壁厚的关键因素包括:1)零件的结构强度是否足够。
一般来说,壁厚越大,零件强度越好。
但零件壁厚超过一定范围时,由于缩水和气孔等质量问题的产生,增加零件壁厚反而会降低零件强度。
家用空调塑料件材料选用与结构设计摘要:本文阐述了家用空调塑料件材料选用与结构设计的重要性,对二、家用分体式空调塑料件材料的选用进行说明,做出家用分体式空调塑料件材料的结构设计的分析,希望对我国家用空调塑料件的发展有所帮助。
关键词:家用空调;塑料件材料;结构设计一、家用空调塑料件材料选用与结构设计的重要性塑料制件主要是靠成型模具获得的,而他的质量是靠模具的正确结构和模具成型零件的正确形状、精确尺寸及相适应的表面粗糙度来保证的。
由于塑料成型工艺的飞速发展,模具的结构也日益趋于多功能化和复杂化,这对模具的设计工作提出了更高的要求。
虽然塑料制件的质量与许多因素有关,但合格的塑料制件首先取决于模具的设计与制造的质量,其次取决于合理的成型工艺,世界上经济发达国家把模具作为机械制造的重要装备,投入大量的财力物力进行开发和研制。
近年来,我们国家也十分重视模具工业的发展和模具人才的培养。
塑料成型加工技术发展很快,塑料模具的各种结构也在不断地创新,我们在学习成型工艺与模具设计的同时,还应注意了解塑料模具的新技术、新工艺和新材料的发展动态,学习和掌握新知识,为振兴我国的塑料成型加工技术作出贡献。
国民经济的发展使人民生活水平得到改善,同时家用分体式空调的使用也越来越普遍。
考虑到家用分体式空调包含诸多塑料部件,因此从运行的高效性与安全性而言,必须重视对此类塑料件材料的选用与结构设计的研究。
家用分体式空调由室内机、室外机两部分组成,两机间安装着由电线及管路相连的空气调节器。
目前,家用分体式空调室内机包括挂壁式、吊顶式、立柜式、嵌入式四种类型。
近年来,随着我国人民生活水平的改善,家用分体式空调凭借着诸多优势已成为普及率极高的空调类型,比如外形美观、式样多、安装使用灵活、安装/检修方便。
众所周知,家用分体式空调包含诸多塑料部件,因此必须重视对此类塑料件材料的选用及结构设计的研究,即对塑料部件进行设计以前,必须确定所选材料的类型,然后再结合此材料的综合性能及技术参数进行结构设计。
塑胶零件设计常识,一般塑胶件设计过程中都会有以下几项:1,塑胶件壁厚的厚度设计!(说出你的理由)2,塑胶件加强筋的设计3,塑胶螺丝柱(自攻)的设计4,塑胶件止口,美观线的设计!5,塑胶件材料选择的原则1.壁厚太厚容易浪费材料,增加成本,更重要的是延长冷却和固化时间,容易产生凹陷,缩孔,夹心等质量上的缺陷。
,所以应该均匀,壁与壁连接处的薄厚不应该相差太大,并且应尽量用圆弧连接,否则容易开列。
一般是1~5MM,小件为1.5~2.5,大件为3~10`MM 。
2.加强筋高度通常塑件为壁厚的3倍左右,并有2~5度的脱模斜度,与塑件壁的连接出及端部,应用圆弧连接。
防止应力集中。
,加强筋的厚度应为塑件壁厚的1/2,如果太大,容易产生瘪凹。
如果要设置多个加强筋,则分布应错开,防止破裂。
我先来一个失败的实例,如图,这是一个控制器的面板,最终的成品是8个叠成在一个机箱中(图中的结构部分从略)。
因为这是我的第一个产品设计,啥经验也没有,反复校核后开模,首样出来也没有发现问题,但是整机一装配,麻烦就来了--控制器与控制器之间居然有3mm左右的间隙存在!难看得要命,简直就是废品。
你们可以想象我当时寒风瑟瑟的样子了。
原因其实在简单不过,我的拔模斜度设大了,为2度,这样底部和上部因斜度相差就是0.7mm,双边1.4mm,而模具厂缩水考虑不足,尺寸比图面尺寸又单边少0.2mm,双边是0.4mm,这样塑胶件本身就造成了1.8mm的间隙,加上机箱本身设计间距1mm,2.8mm 的大空隙就这么出来了!教训:设定拔模斜度之前不仅仅要考虑注塑工艺要求,也一定要考虑到由此而产生的其它不良“后遗症”。
选择材料的考虑因素任何一件工业产品在设计的早期过程中,一定牵涉考虑选择成形物料。
因为在产品生产时、装配时、和完成的时间,物料有着相互影响的关系。
除此之外,品质检定水平、市场销售情况和价格的厘定等也是需要考虑之列。
所以这是无法使用概括全面的考虑因素而定出一种系统性处理方法来决定所选择的材料和生产过程是为最理想。
塑胶结构设计规范1、材料及厚度1。
1、材料的选取a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等.还有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等).目前常用奇美PA-757、PA-777D等 .b. PC+ABS:流动性好,强度不错,价格适中。
适用于作高刚性、高冲击韧性的制件,如框架、壳体等。
常用材料代号:拜尔T85、T65.c. PC:高强度,价格贵,流动性不好。
适用于对强度要求较高的外壳、按键、传动机架、镜片等。
常用材料代号如:帝人L1250Y、PC2405、PC2605。
d。
POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。
常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90—44。
e。
PA坚韧、吸水、但当水份完全挥发后会变得脆弱。
常用于齿轮、滑轮等。
受冲击力较大的关键齿轮,需添加填充物。
材料代号如:CM3003G-30。
f。
PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光,室外十年仍有89%,紫外线达78。
5%。
机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。
常用材料代号如:三菱VH001.1.2 壳体的厚度a. 壁厚要均匀,厚薄差别尽量控制在基本壁厚的25%以内,整个部件的最小壁厚不得小于0。
4mm,且该处背面不是A级外观面,并要求面积不得大于100mm².b。
在厚度方向上的壳体的厚度尽量在1.2~1。
4mm,侧面厚度在1.5~1。
7mm;外镜片支承面厚度0。
8mm,内镜片支承面厚度最小0.6mm。
c。
电池盖壁厚取0.8~1.0mm.d。
塑胶制品的最小壁厚及常见壁厚推荐值见下表。
塑胶结构设计规范1、材料及厚度1.1、材料的选取a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等。
还有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等)。
目前常用奇美PA-757、PA-777D等。
b. PC+ABS:流动性好,强度不错,价格适中。
适用于作高刚性、高冲击韧性的制件,如框架、壳体等。
常用材料代号:拜尔T85、T65。
c. PC:高强度,价格贵,流动性不好。
适用于对强度要求较高的外壳、按键、传动机架、镜片等。
常用材料代号如:帝人L1250Y、PC2405、PC2605。
d. POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。
常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。
e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。
常用于齿轮、滑轮等。
受冲击力较大的关键齿轮,需添加填充物。
材料代号如:CM3003G-30。
f. PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光,室外十年仍有89%,紫外线达78.5% 。
机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。
常用材料代号如:三菱VH001。
1.2 壳体的厚度a. 壁厚要均匀,厚薄差别尽量控制在基本壁厚的25%以内,整个部件的最小壁厚不得小于0.4mm,且该处背面不是A级外观面,并要求面积不得大于100mm²。
b. 在厚度方向上的壳体的厚度尽量在1.2~1.4mm,侧面厚度在1.5~1.7mm;外镜片支承面厚度0.8mm,内镜片支承面厚度最小0.6mm。
c. 电池盖壁厚取0.8~1.0mm。
d. 塑胶制品的最小壁厚及常见壁厚推荐值见下表。
摘要随着公司的不断发展和产品的增加,为了造型的需要产品结构件中塑料零件用的越来越多。
那么在具体设计塑料零件的结构时需要考虑哪些方面的问题?怎样合理地设计塑料零件的结构?如何选择塑料零件的材料?壁厚选择多少合适?等等。
本文对这些具体问题进行了详细的总结。
希望对大家在今后的设计中有所帮助并希望大家一起来补充完善。
关键词塑料零件、壁厚、脱模斜度、加强筋、材料选择1、零件的形状应尽量简单、合理、便于成型1.1 在保证使用要求前提下,力求简单、便于脱模,尽量避免或减少抽芯机构,如采用下图例中(b)的结构,不仅可大大简化模具结构,便于成型,且能提高生产效率。
1.2 利用转换区的方法来防止突然的递变。
1.3 利用肋及浮凸物和铸空法使设计更合理。
1.4转角处用圆弧过渡。
1.5 尽量让浮凸物与外壁或肋相连。
1.6如果肋本身即与外壁间隔相当远,则最好加上角板。
2、零件的壁厚确定应合理塑料零件的壁厚取决于塑件的使用要求,太薄会造成制品的强度和刚度不足,受力后容易产生翘曲变形,成型时流动阻力大,大型复杂的零件就难以充满型腔。
反之,壁厚过大,不但浪费材料,而且加长成型周期,降低生产率,还容易产生气泡、缩孔、翘曲等疵病。
因此制件设计时确定零件壁厚应注意以下几点:2.1在满足使用要求的前提下,尽量减小壁厚;2.2零件的各部位壁厚尽量均匀,以减小内应力和变形。
不均匀的壁厚会造成严重的翘曲及尺寸控制的问题;2.3承受紧固力部位必须保证压缩强度;2.4避免过厚部位产生缩孔和凹陷;2.5成型顶出时能承受冲击力的冲击。
下面是一些不合理壁厚的改进设计实例:塑件壁厚的设计比较总之,一般的原则就是能够利用最少的壁厚,完成最终产品所须具备的功能。
下表为一般热塑性塑件和热固性塑件的厚度表。
热固性塑件的壁厚推荐值塑件材料塑件外形高低尺寸小于50 50~100 大于100粉状填料的酚醛塑料0.7~2 2.0~3 5.0~6.5纤维状填料的酚醛塑料 1.5~2 2.5~3.5 6.0~8.0氨基塑料 1.0 1.3~2 3.0~4聚酯玻纤填料的塑料 1.0~2 2.4~3.2 >4.8聚酯无机物填料的塑料 1.0~2 3.2~4.8 >4.8热塑性塑件的最小壁厚及常用壁厚推荐值塑件材料最小壁厚小型塑件推荐壁厚中型塑件推荐壁厚大型塑件推荐壁厚尼龙0.145 0.76 1.5 2.4~3.2聚乙烯0.6 1.25 1.6 2.4~3.2聚苯乙烯0.75 1.25 1.6 3.2~5.4改性聚苯乙烯0.75 1.25 1.6 3.2~5.4有机玻璃(372#)0.8 1.50 2.2 4~6.5硬聚氯乙稀 1.2 1.60 1.8 3.2~5.8聚丙烯0.85 1.45 1.75 2.4~3.2氯化聚醚0.9 1.35 1.8 2.5~3.4聚碳酸酯0.95 1.80 2.3 3~4.5聚苯醚 1.2 1.75 2.5 3.5~6.4乙基纤维素0.9 1.25 1.6 2.4~3.2丙烯酸类0.7 0.9 2.4 3.0~6.0聚甲醛0.8 1.40 1.6 3.2~5.4聚砜0.95 1.80 2.3 3~4.53、必须设置必要的脱模斜度为确保制件成型时能顺利脱模,设计时必须在脱模方向设置脱模斜度,其大小与塑料性能、零件件的收缩率和几何形状有关,对于工程塑料的结构件来说,一般应在保证顺利脱模的前提下,尽量减小脱模斜度。
塑料产品设计规范一、塑料及塑料模的基本概念1.1 塑料的分类及性能塑料的品种很多,可以按其组成、性质和用途等对它们进行分类。
1.1.1 依据其热性能分类按照热性能塑料可以分为热塑性塑料和热固性塑料两类。
塑料受热熔融,冷却后凝固,再次加热又可软化熔融,重新制成产品,这一过程可以反复进行多次,而材料的化学结构基本上不起变化,称之为热塑性塑料。
常用的热塑性塑料有:聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等。
在一定温度下能变成粘稠状态,但是经过一定时间加热塑制成形后,不会因再度加热而软化熔融。
这是因为在成形过程中聚合物分子之间发生了化学反应,形成了交联网状结构,使之成为不熔的固态,所以只能塑制一次,称为热固性塑料。
常用的热固性塑料有:酚醛树脂、环氧树脂、有机硅塑料等。
1.1.2 依据其用途分类按用途不同塑料可以分为通用塑料、工程塑料和特种塑料。
一般把价格低、产量大、用途广而受力不大的,常用于制造日用品的塑料称为通用塑料。
例如:聚乙烯、聚丙烯、聚氯乙烯、酚醛、聚苯乙烯等等。
把机械强度高、刚性大的,常用于取代钢铁或有色金属材料制造机械零件或工程结构受力件的塑料称为工程塑料。
例如:聚砜、聚酰胺、聚碳酸酯、聚醚酮等等。
另外,将一些具有特殊功能的塑料,称为特种塑料。
例如:导电的聚乙炔、耐高温的聚芳砜等。
随着聚合物合成技术的发展,塑料可以通过采取各种措施来改进性能和增加强度,从而制成新颖的塑料品种。
1.2 塑料成形方法及塑料的种类1.2.1 塑料的成形方法1.注射成形:注射成形技术是据压铸原理发展起来的,是目前塑料加工中最普遍采用的方法之一。
注射成形是间歇操作,成形周期短,生产效率高,产品种类繁多,生产灵活。
其制品已占塑料制品总产量的30%以上。
注射成形的工艺原理是将颗粒状塑料原料置于塑料注射成形机内并加热熔化,通过压力作用注射到模具内定型,经过一段时间冷却后取出制品。
2.吹塑成形:吹塑成形是目前塑料成形生产的主要方法,它包括挤出吹塑,如吹塑薄膜;中空吹塑,如吹塑中空的塑料容器等。
塑胶产品结构设计注意事项目录第一章塑胶结构设计规范1、材料及厚度1.1、材料选择1.2、壳体厚度1.3、零件厚度设计实例2、脱模斜度2.1、脱模斜度要点3、加强筋3.1、加强筋与壁厚的关系3.2、加强筋设计实例4、柱和孔的问题4.1、柱子的问题4.2、孔的问题4.3、“减胶”的问题5、螺丝柱的设计6、止口的设计6.1、止口的作用6.2、壳体止口的设计需要注意的事项6.3、面壳与底壳断差的要求7、卡扣的设计7.1、卡扣设计的关键点7.2、常见卡扣设计7.3、第一章塑胶结构设计规范1、材料及厚度1.1、材料的选取a. ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等。
还有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等)。
目前常用奇美PA-757、PA-777D等。
b. PC+ABS:流动性好,强度不错,价格适中。
适用于作高刚性、高冲击韧性的制件,如框架、壳体等。
常用材料代号:拜尔T85、T65。
c. PC:高强度,价格贵,流动性不好。
适用于对强度要求较高的外壳、按键、传动机架、镜片等。
常用材料代号如:帝人L1250Y、PC2405、PC2605。
d. POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。
常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。
e. PA坚韧、吸水、但当水份完全挥发后会变得脆弱。
常用于齿轮、滑轮等。
受冲击力较大的关键齿轮,需添加填充物。
材料代号如:CM3003G-30。
f. PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光,室外十年仍有89%,紫外线达78.5% 。
机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。
注塑件结构设计要点吕文果塑料是四大工程材料(钢铁、木材、水泥和塑料之一,它是以高分子量的合成树脂为主要成份,在一定条件下可塑制成一定形状且在常温下保持形状不变的材料。
塑料总体分为热固性和热塑性两种,区分两种塑料的规则一般是在一定温度加热一段时间或加入硬化剂后有无发生化学反应而硬化,发生化学反应而硬化的叫热固性塑料,反之则叫热塑性塑料。
它广泛应用于工业、农业、国防等行业。
但是塑料与其它材料相比又具有自己的一些特有的性能,这些性能决定它的一些特有的使用场合、加工方法、生产工艺等。
一般来说塑料的成型方法有以下几种:注射成型、挤压成型、压铸成型、发泡、吹塑、真空吸塑、中空成型、机加工等。
由于塑料的种类及性能、使用场合、成型工艺等条件的影响,对塑料件的结构设计也就自然会产生一些特殊的要求及方法。
由于热固性塑料与热塑性塑料最终的形态不同,结构设计过程中的好多要求也就不一样,涉及的范围相当之大。
下面我们就针对注射成型的热塑性塑料件的结构设计从胶模斜度、塑件的壁厚、加强筋、支承柱、孔、公差等方面作一些初略的讨论。
一、壁厚合理确定塑件的壁厚是非常重要的,其它的形体和尺寸如加强筋和圆角等都是以壁厚为参照的。
塑料产品的壁厚主要决定于塑料的使用要求,即产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以、选用的塑胶材料、重量、电气性能、尺寸稳定性以及装配等各项要求而定。
如果壁厚不均匀,会使塑料熔体的充模速度和冷却收缩不均匀,由此会引起凹陷、真空泡、翘曲、甚至开裂。
壁厚均匀是塑料件设计的一大原则。
一般的热塑性塑料壁厚设计在1~6mm范围。
最常用的为2~3mm。
大型件也有超过6mm的。
表1是一些热塑性塑料壁厚的推荐值。
在取较小壁厚时,要考虑制品在使用和装配时的强度和刚度。
从经济角度来看,过厚的产品不但增加物料成本,还延长生产周期。
尽量使塑件各处的壁厚均匀,否则会引起收缩不均匀使塑件产生变形和气泡、凹陷的工艺问题。