测控技术与仪器专业介绍
- 格式:doc
- 大小:33.00 KB
- 文档页数:6
测控技术与仪器专业本科生培养方案本科生培养方案:测控技术与仪器专业一、专业概述:测控技术与仪器专业是一门以电子技术、信息技术和自动化技术为基础,以测量与检测技术、控制技术、仪器仪表技术和系统集成技术为主体,培养具备工程实践能力和创新能力的工程技术人才的专业。
本专业的学生将学会设计、开发和应用多种测量、检测与控制系统,熟练掌握电子技术、通信技术、计算机技术等相关技术,具备在工业自动化、仪器仪表、环境监测等领域从事仪器设备和系统设计、研制、安装和调试等工作的能力。
二、培养目标:本专业旨在培养具备以下能力和素质的应用型工程技术人才:1.具备扎实的电子技术、自动化技术和计算机技术基础知识;2.具备工程实践能力和创新能力,能够独立进行科学实验和工程设计;3.具备测量和检测系统的设计、开发和应用能力;4.具备控制系统的设计、开发和调试能力;5.具备仪器仪表的选型、设计、研发和调试能力;6.具备系统集成和工程管理的能力;7.具备良好的科学素养、创新意识和实际应用能力。
三、专业课程设置:1.大学物理2.大学化学3.高等数学4.线性代数5.概率论与数理统计6.电路分析7.信号与系统8.控制系统原理9.电子系统设计10.模拟电子技术11.数字电子技术12.微机原理与接口技术13.自动检测技术14.传感器技术与应用15.数字信号处理16.仪器仪表与测量技术17.医学检测技术18.智能仪器与虚拟仪器19.自动控制系统设计20.多媒体技术与应用21.算法与数据结构22.嵌入式系统与应用23.自动化仪表与信号处理24.网络测控技术25.系统仿真与建模26.科学仪器设计与制造27.仪器设备与系统集成28.工程实践与创新设计四、实践教学环节:1.实验课程:学生将通过一系列实验课程,使用仪器设备和检测系统进行测量、检测和控制实验,加强对所学知识的理解和应用能力。
2.实训课程:通过团队合作完成一系列测控系统的设计和实现,培养学生的工程实践能力和创新能力。
测控技术与仪器一、专业简介1.专业初识测控技术与仪器专业是研究信息获取、信息处理、信息传输和利用的专业,是现代检测技术、电子技术、自动化技术、光学、精密机械和计算机技术等多学科相互渗透而形成的一门高技术密集型综合学科。
它以测量工程、智能信息处理技术、计算机技术和自动控制工程为基础。
2.学业导航本专业学生主要学习精密仪器的光学、机械与电子学基础理论,测量与控制理论和有关测控仪器的设计方法,受到现代测控技术和仪器应用的训练,具有本专业测控技术及仪器系统的应用及设计开发能力。
主干学科:光学工程、仪器科学与技术。
主要课程:精密机械与仪器设计、精密机械制造工程、模拟电子技术基础、数字电子技术基础、微型计算机原理与应用、控制工程基础、信号分析与处理、精密测控与系统、工程光学等。
3.发展前景测控技术及仪器专业中的传感器技术将是21世纪各国在高新技术发展方面争夺的一个重要领域。
二、人才塑造1.考生潜质对电视遥控器和数字收音机等电子技术感兴趣。
了解遥控板的原理,对模拟电子技术感兴趣,对手表等精密仪器感兴趣。
对计算机的工作原理感兴趣等等。
2.学成之后本专业培养具备精密仪器设计制造以及测量与控制方面基础知识与应用能力,能在国民经济各部门从事测量与控制领域内有关技术、仪器与系统的设计制造、科技开发、应用研究、运行管理等方面的专门人才。
3.职场纵横本专业毕业生可从事计算机应用、电子信息、智能仪器、虚拟仪器、测量与控制等多领域的产品设计制造、科技开发、应用研究、企业管理等多方面的工作,也可从事计量、测试、控制工程、智能仪器仪表、计算机软件和硬件等高新技术领域的设计、制造、开发和应用等工作。
测控技术与仪器专业就业前景分析测控技术与仪器是一门融合了电子、光学、精密机械、计算机、自动控制等多学科知识的交叉性专业。
随着科技的不断进步和工业的快速发展,该专业的就业前景十分广阔。
首先,从行业需求的角度来看,测控技术与仪器专业在众多领域都有着广泛的应用。
在工业生产领域,如机械制造、汽车、电子等行业,需要大量的测控技术人才来保障生产过程的自动化、智能化以及产品质量的精确检测。
以汽车制造为例,从零部件的加工到整车的装配,都离不开精密的测量与控制技术,以确保每个环节的精度和质量达到标准。
在航空航天领域,测控技术更是发挥着至关重要的作用。
航天器的发射、运行轨道的监测以及各种仪器设备的性能检测,都依赖于先进的测控技术。
例如,卫星的姿态控制、通信信号的监测等,都需要专业的测控人员进行设计、开发和维护。
能源领域也是测控技术与仪器专业的用武之地。
无论是传统的石油、煤炭等能源的开采和加工,还是新兴的太阳能、风能等清洁能源的开发利用,都需要对能源的生产过程进行精确的测量和控制,以提高能源的利用效率和生产安全性。
在医疗领域,各种医疗设备的研发、生产和维护都离不开测控技术。
从常见的血压计、血糖仪到复杂的医疗影像设备,都需要测控技术来保证其准确性和可靠性。
其次,从就业岗位的类型来看,测控技术与仪器专业的毕业生可以从事多种工作。
研发工程师是一个重要的岗位方向。
他们负责设计和开发新的测控系统和仪器设备,需要具备扎实的专业知识和创新能力。
比如,在一家仪器制造企业,研发工程师可能会参与新一代智能传感器的研发,通过运用先进的材料和工艺,提高传感器的精度和稳定性。
测试工程师也是常见的岗位之一。
他们主要负责对产品进行性能测试和质量检测,确保产品符合相关标准和要求。
在电子企业中,测试工程师会使用专业的测试设备对芯片的性能进行检测,分析测试数据,找出可能存在的问题,并提出改进方案。
技术支持工程师则负责为客户提供技术支持和解决方案。
当客户在使用产品过程中遇到问题时,技术支持工程师需要迅速响应,帮助客户解决问题。
测控技术与仪器专业介绍及描述测控技术与仪器专业是信息科学技术的源头,是电子、光学、精密机械、计算机、信息与控制技术多学科互相渗透而形成的一门高新技术密集型综合学科。
它的专业面广,小到制造车间的检测,大到卫星火箭发射的监控。
能够培养从事与计算机、通信、家电、工农业生产、科学实验等相关的光电技术与设备、测控技术与仪器等新产品的研究开发、设计制造、管理营销等的高级工程技术人才。
主干课程有传感技术、精密机械设计基础、电路原理等。
测控技术与仪器专业以光、机、电、计算机一体化为特色,培养具有现代科学创新意识、知识面宽、基础理论扎实、计算机和外语能力强,可从事计算机应用、电子信息、智能仪器、虚拟仪器、测量与控制等多领域的产品设计制造、科技开发、应用研究、企业管理等多方面的高级工程技术及经营管理人才。
同时因为他们专业知识面宽广,具有很强的适应能力和广泛的发展空间,也可从事计量、测试、控制工程、智能仪器仪表、计算机软件和硬件等高新技术领域的设计、制造、开发和应用等工作,转行比较容易。
计算机应用、电子信息、智能仪器、虚拟仪器、测量与控制等多领域精密机械与仪器设计、精密机械制造工程、模拟电子技术基础、数字电子技术基础,微型计算机原理与应用、控制工程基础、信号分析与处理、精密测控与系统等。
西华大学:前段时间忙考试没来,测控专业是个很有前途的专业,。
我现在在读研究生,大学里学的就是测控,感觉很好啊,虽然不是很专综合和信息和电气的很多课程,而且还有学了关于光的很多课程。
对于刚上大学的来说,首先要搞好英语,那是相当的重要!无论是找工作还是继续深造。
然后就是专业课,微机原理单片机之类的尽自己最大的努力学好!dsp如果有兴趣可以学好点因为比较难!以后还要靠锗吃饭呢,软件方面当然,会化印制板pcb。
湖南科技大学:这个专业说得好听点,通常被人们称为通才,什么都懂,神舟6号吗 ?全是搞测控的。
实际上,一个本科专业,我们好象又什么都不懂。
测控技术与仪器介绍一、引言测控技术与仪器是现代科学技术领域中不可或缺的重要组成部分。
它们在工业生产、科学实验、环境监测等各个领域中起着至关重要的作用。
本文将就测控技术与仪器的概念、分类、应用以及发展趋势进行介绍。
二、测控技术概述测控技术是指利用各种仪器设备和相关技术手段对被测对象进行监测、测量和控制的一种技术。
它通过采集被测对象的信息,利用仪器仪表进行处理和分析,最终实现对被测对象的控制。
测控技术广泛应用于工业自动化、航空航天、能源、环境保护等领域。
三、测控仪器分类根据测量的性质和用途,测控仪器可以分为多种类型。
常见的测控仪器包括温度计、压力计、流量计、电子天平等。
1. 温度计:温度计是用来测量物体温度的仪器。
常见的温度计有水银温度计、电子温度计、红外线测温仪等。
它们通过不同的原理来实现温度的测量。
2. 压力计:压力计是用来测量气体或液体压力的仪器。
常见的压力计有压力传感器、压力表等。
它们通过测量压力对应的力或位移来实现压力的测量。
3. 流量计:流量计是用来测量流体流量的仪器。
常见的流量计有涡轮流量计、电磁流量计、超声波流量计等。
它们通过测量流体通过的时间或速度来实现流量的测量。
4. 电子天平:电子天平是用来测量物体质量的仪器。
它通过传感器感知物体的重力,再利用电子技术进行数字化处理,最终显示出物体的质量。
四、测控技术应用测控技术在各个领域都有广泛的应用。
1. 工业生产:测控技术在工业生产中起到关键作用。
例如,在自动化生产线上,通过传感器对产品的尺寸、重量等参数进行测量和控制,可以实现高效、精确的生产。
2. 科学研究:测控技术在科学研究领域中也有重要应用。
例如,在物理实验中,科学家们使用各种仪器设备进行精确的测量,从而获取实验数据并验证理论。
3. 环境监测:测控技术在环境监测中起到至关重要的作用。
例如,通过气象仪器可以实时监测气温、湿度、风速等气象要素,从而提供准确的气象数据。
四、测控技术发展趋势随着科学技术的不断发展,测控技术也在不断创新与进步。
测控技术与仪器是研究信息的获取和处理,以及对相关要素进行控制的理论与技术;是电子、光学、精密机械、计算机、信息与控制技术多学科互相渗透而形成的一门高新技术密集型综合学科。
过程步骤测控技术与仪器是将自动化系统上的信号加以采集、整理、处理、而后进行显示或者发出控制信号的过程。
英文名称:Measuring andControl Technology and Instrumentations。
采集在信号采集环节,主要是采集对象发出的各种信号,再将这种信号转换成电信号,以便于后续的处理。
对象发出的信号大多数是通过传感器来采集的,包括物理信号(如温度、流量、压力等)和化学信号(如湿度、气味等)两大类,当然还包括不能归为这两类的一些信号,如可靠性、价格等。
而开关量信号(带有数字信号的特征)则主要是靠带有单片机电路的仪器,如无纸记录仪,进行采集。
此外,图像信号自然是由摄像装置来进行采集。
整理在信号的整理阶段,主要是对采集到的电信号进行平整、滤波、模数转换等,转换成便于处理的数字信号。
上述三种信号类型在整理阶段的内容有所不同,比如对传感器传来的信号主要是进行信号放大、平整、滤波和模数转换的过程;而对于开关量信号通过无纸记录仪的采集之后一般都能够转换成所需要的数字信号以待输出到下一个处理环节;对于图像信号,经采集之后主要是用于显示,若还需对图像进行处理,再显示,或者发出控制信号,那么也必须将图像信号转换成数字信号,进行处理,这就是一个复杂的问题。
处理在信号的处理阶段,主要是对数字信号进行处理以便显示,或者发出控制信号。
我们通过显示出来的信号来判断自动化系统上对象的运转是否正常,如果信号显示不正常,就需要对信号进行计算与处理,得到控制信号发送给对象,使对象调整运转的状态以复归正常。
显示控制在显示与控制环节,显示主要是指将数字信号通过便于我们观察的形式显示出来以便我们进行判断,控制主要是指将控制信号传送给并作用于对象的过程。
上面的四个环节就构成了整个测控的过程,如果包括控制的过程,则刚好形成了一个闭环,即信号从对象开始,经过采集、整理、处理,最后又将控制信号作用于对象的闭环。
编辑本段技术发展自从迅猛发展的计算机技术及微电子技术渗透到测控和仪器仪表技术领域,便使该领域的面貌不断更新。
相继出现的智能仪器、总线仪器和虚拟仪器等微机化仪器,都无一例外地利用计算机的软件和硬件优势,从而既增加了测量功能,又提高了技术性能。
由于信号被采集变换成数字形式后,更多的分析和处理工作都由计算机来完成,故很自然使人们不再去关注仪器与计算机之间的界限。
近年来,新型微处理器的速度不断提高,采用流水线、RISC结构和cachE等先进技术,又极大提高了计算机的数值处理能力和速度。
在数据采集方面,数据采集卡、仪器放大器、数字信号处理芯片等技术的不断升级和更新,也有效地加快了数据采集的速率和效率。
与计算机技术紧密结合,已是当今仪器与测控技术发展的主潮流。
对微机化仪器作一具体分析后,不难见,配以相应软件和硬件的计算机将能够完成许多仪器、仪表的功能,实质上相当于一台多功能的通用测量仪器。
这样的现代仪器设备的功能已不再由按钮和开关的数量来限定,而是取决于其中存储器内装有软件的多少。
从这个意义上可认为,计算机与现代仪器设备日渐趋同,两者间已表现出全局意义上的相通性。
据此,有人提出了“计算机就是仪器”/软件就是仪器”的概念。
计算机就是测控系统的中坚总线式仪器、虚拟仪器等微机化仪器技术的应用,使组建集中和分布式测控系统变得更为容易。
但集中测控越来越满足不了复杂、远程(异地)和范围较大的测控任务的需求,对此,组建网络化的测控系统就显得非常必要,而计算机软、硬件技术的不断升级与进步、给组建测控网络提供了越来越优异的技术条件。
Unix、WindowsNT、Windows2000、Netware等网络化计算机操作系统,为组建网络化测试系统带来了方便。
标准的计算机网络协议,如OSI的开放系统互连参考模型RM、Internet 上使用的TCP/IP协议,在开放性、稳定性、可靠性方面均有很大优势,采用它们很容易实现测控网络的体系结构。
在开发软件方面,比如NI公司的Labview 和LabWindows/CVI,HP公司的VEE,微软公司的的VB、VC等,都有开发网络应用项目的工具包。
软件是虚拟仪器开发的关键,如Labview和LabWindows/CVI 的功能都十分强大,不仅使虚拟仪器的开发变得简单方便,而且为把虚拟仪器做到网络上,提供了可靠,便利的技术支持。
LabWindows/CVI中封装了TCP类库,可以开发基于TCP/Ip的网络应用。
Labview的TCP/IP和UDP网络VI能够与远程应用程序建立通信,其具有的Internet工具箱还为应用系统增加了E-mail、FTP和Web能力;利用远程自动化VI,还可对控制其他设备的分散的VI进行控制。
Labview5.1中还特别增加有网络功能,提高了开发网络应用程序的能力。
将计算机、高档外设和通信线路等硬件资源以及大型数据库、程序、数据、文件等软件资源纳入网络,可实现资源的共享。
其次,通过组建网络化测控系统增加系统冗余度的方法能提高系统的可靠性,便于系统的扩展和变动。
由计算机和工作站作为结点的网络也就相当于现代仪器的网络。
计算机已成为现代测控系统的中坚。
网络技术已越来越成为测控技术满足实际需求的关键支撑当今时代,以Internet为代表的计算机网络的迅速发展及相关技术的日益完善,突破了传统通信方式的时空限制和地域障碍,使更大范围内的通信变得十分容易,Internet拥有的硬件和软件资源正在越来越多的领域中得到应用,比如电子商务、网上教学、远程医疗、远程数据采集与控制、高档测量仪器设备资源的远程实时调用,远程设备故障诊断,等等。
与此同时,高性能、高可靠性、低成本的网关、路由器、中继器及网络接口芯片等网络互联设备的不断进步,又方便了Internet、不同类型测控网络、企业网络间的互联。
利用现有Internet资源而不需建立专门的拓扑网络,使组建测控网络、企业内部网络以及它们与Internet 的互联都十分方便,这就为测控网络的普遍建立和广泛应用铺平了道路。
把TCP/IP协议作为一种嵌入式的应用,嵌入现场智能仪器(主要是传感器)的ROM中,使信号的收、发都以TCP/IP方式进行,如此,测控系统在数据采集、信息发布、系统集成等方面都以企业内部网络(Intranet)为依托,将测控网和企业内部网及Internet互联,便于实现测控网和信息网的统一。
在这样构成的测控网络中,传统仪器设备充当着网络中独立节点的角色,信息可跨越网络传输至所及的任何领域,实时、动态(包括远程)的在线测控成为现实,将这样的测量技术与过去的测控、测试技术相比不难发现,今天,测控能节约大量现场布线、扩大测控系统所及地域范围。
使系统扩充和维护都极大便利的原因,就是因为在这种现代测量任务的执行和完成过程中,网络发挥了不可替代的关键作用,即网络实实在在地介入了现代测量与测控的全过程。
测控技术与仪器基于Web的信息网络Intranet,是目前企业内部信息网的主流。
应用Internet 的具有开放性的互联通信标准,使Intranet成为基丁TCP/IP协议的开放系统,能方便地与外界连接,尤其是与Internet连接。
借助Internet的相关技术,Intranet给企业的经营和管理能带来极大便利,已被广泛应用于各个行业。
Internet也已开始对传统的测控系统产生越来越大的影响。
目前,测控系统的设计思想明显受到计算机网络技术的影响,基于网络化、模块化、开放性等原则,测控网络由传统的集中模式转变为分布模式,成为具有开放性、可互操作性、分散性、网络化。
智能化的测控系统。
网络的节点上不仅有计算机、工作站,还有智能测控仪器仪表,测控网络将有与信息网络相似的体系结构和通信模型。
比如目前测控系统中迅猛发展的现场总线,它的通信模型和OSI模型对应,将现场的智能仪表和装置作为节点,通过网络将节点连同控制室内的仪器仪表和控制装置联成有机的测控系统。
测控网络的功能将远远大于系统中各独立个体功能的总和。
结果是测控系统的功能显著增强,应用领域及范围明显扩大。
测控技术与仪器Jini软件技术问世。
Jini软件技术旨在使各种电器设备、测量仪器及采用JAVA 芯片的各种装置能连接上网,Jini软件连同以Java语言编写的简单程序,可使联网的任何仪器设备实现其自身功能的同时,还能为其他仪器设备加以利用。
网络技术的出现,正在并将极大地改变人们生活的各个方面。
具体到计量测试、测控技术及仪器仪表领域,微机化仪器的联网,高档测量仪器设备以及测量信息的地区性、全国性乃至全球性资源共享,各等级计量标准跨地域实施直接的数字化溯源比对,远程数据采集与测控,远程设备故障诊断,电、水、燃气、热能等的自动抄表,等等,都是网络技术进步并全面介入其中发挥关键作用的必然结果。
编辑本段目前发展(1)以自然基准溯源和传递,同时在不同量程实现国际比对。
如果自己没有能力比对就要依靠其它国家。
(2)高精度。
目前半导体工艺的典型线宽为0.25μm,并正向0.18μm过渡,2009年的预测线宽是0.07μm。
如果定位要求占线宽的1/3,那么就要求10nm量级的精度,而且晶片尺寸还在增大,达到300mm。
这就意味着测量定位系统的精度要优于3×10的-8次方,相应的激光稳频精度应该是10的-9次方数量级。
(3)高速度。
目前加工机械的速度已经提高到1m/sec以上,上世纪80年代以前开发研制的仪器已不适应市场的需求。
例如惠普公司的干涉仪市场大部分被英国Renishaw所占领,其原因是后者的速度达到了1m/sec。
(4)高灵敏,高分辨,小型化。
如将光谱仪集成到一块电路板上。
(5)标准化。
通讯接口过去常用GPIB,RS232,目前有可能成为替代物的高性能标准是USB、IEEE1394和VXI。
现在,技术领先者设法控制技术标准,参与标准制订是仪器开发的基础研究工作之一。
编辑本段未来趋势1.发展方向与学科前沿(1)配合数控设备的技术创新(如主轴速度,精度创成) 数控设备的主要误差来源可分为几何误差(共有21项)和热误差。
对于重复出现的系统误差,可采用软件修正;对于随机误差较大的情况,要采用实时修正方法。
对于热误差,一般要通过温度测量进行修正。
中国机床行业市场萎缩同时又大量进口国外设备的原因之一就是因为这方面的技术没有得到推广应用。
为此,需要高速多通道激光干涉仪:其测量速度达60m/min以上,采样速度达5000次/sec以上,以适应热误差和几何误差测量的需要。
空气折射率实时测量应达到2×10的-7次方水平,其测量结果和长度测量结果可同步输入计算机。