开关电源的软启动过程分析
- 格式:pdf
- 大小:64.92 KB
- 文档页数:3
电机软启动器工作原理
电机软启动器是一种用于电机启动的电气设备,其工作原理如下:
1. 初始状态:软启动器断开了电源电路与电机电路的连接,电机处于停止状态。
2. 启动阶段:当用户需要启动电机时,软启动器接通电源电路,并通过控制电路给电机提供逐渐递增的电压或电流。
这种逐渐递增的启动方式可以有效地减小电机在启动过程中的起动电流冲击,避免电网负荷波动。
3. 加速阶段:软启动器根据设定的加速时间,逐步提高输出电压或电流,使电机逐渐达到额定转速。
在这个过程中,软启动器会根据电机负载情况进行动态调整,以保证启动的平稳性。
4. 运行状态:一旦电机达到额定转速,软启动器将维持额定电压或电流的输出,以保持电机正常运转。
同时,软启动器还会检测电机运行状态,如过载、短路、缺相等异常情况,并根据设定的保护参数进行相应处理,以确保电机和系统的安全运行。
总之,电机软启动器通过逐步提供电压或电流,控制电机的启动过程,减小冲击和损坏的风险,并提供对电机运行状态的监测和保护功能。
这种启动方式适用于需要平稳启动和对电网负荷波动要求较高的场合,如大型电机启动、电网容量较小等。
软启动的工作原理软启动是一种电机启动的方式,它通过逐渐增加电机的电压和频率,使电机缓慢启动,从而减少启动时的冲击和电流峰值,保护电机和相关设备。
软启动器通常由控制器、功率电子器件和传感器等部件组成,其工作原理如下。
一、控制器控制电压和频率的逐渐增加1.1 控制器通过内置的程序算法,根据设定的启动时间和启动曲线,逐步增加电机的电压和频率。
1.2 控制器监测电机的运行状态,根据实时反馈信号,调整电压和频率的增加速度,保证电机平稳启动。
1.3 控制器还可以实现对电机的保护功能,如过载保护、短路保护等,确保电机在启动过程中不会受到损坏。
二、功率电子器件实现电压和频率的调节2.1 软启动器中的功率电子器件通常采用可控硅等器件,通过控制器对其进行触发,实现电压和频率的调节。
2.2 可控硅器件可以在短时间内实现电压的快速切换,从而实现电机的平稳启动。
2.3 功率电子器件还可以实现对电机的动态调速功能,提高电机的运行效率和稳定性。
三、传感器实现电机状态的监测3.1 传感器通常安装在电机上,用于监测电机的转速、温度、电流等参数。
3.2 传感器将监测到的数据传输给控制器,控制器根据这些数据调整电压和频率的增加速度。
3.3 传感器还可以实现对电机的实时监测和故障诊断,及时发现问题并采取措施。
四、软启动器的优点4.1 软启动器可以减少电机启动时的冲击和电流峰值,延长电机和相关设备的使用寿命。
4.2 软启动器可以提高电机的启动效率和稳定性,减少能源消耗和运行成本。
4.3 软启动器还可以实现对电机的智能控制,提高生产效率和产品质量。
五、软启动器的应用领域5.1 软启动器广泛应用于各种类型的电机启动,如交流电机、直流电机等。
5.2 软启动器适用于需要频繁启停和变频调速的场合,如风机、水泵等设备。
5.3 软启动器还可以与PLC等自动化控制系统配合使用,实现对电机的远程监控和控制。
总之,软启动器通过控制器、功率电子器件和传感器等部件的协同作用,实现了对电机启动过程的精确控制和保护,具有启动平稳、效率高、智能化等优点,广泛应用于各种工业领域。
开关电源过欠压、 过流、 过温、 软启动详解!
圆石矗>
夕��
ry =,· ·•输出过压保护电路
当用户在使用电源模块时,可能会由于某种原因,造成模块输出电压升高,为了保护用户电路板上的器件不被损坏,当模块的输出电压高于一定值时,模块必须封锁脉冲,阻止输出电压的继续上升。
Vcc1
Vo Vcc1 R330 51K D317 1N4148
R340 3K C315
Q_ 1u
R341 8.2K R334 20K-
R338 3K
D319 1N4148 Vo: 输出电压正极Vc c1: 辅助电源Co ntr ol: 控制信号231扣c 0 丁—寸
R343 100K
0321 1N4148 control
C316 0.1u 图1直流电压输出过压保护电路原理图
D320产生一个5.1V 电压基准送至运放U301反相输入端,R330、R334、R336用于检测输出电压检测电压值送至运放U 301同相输入端。
图11综合电路3
VIN R40 \文
100K R44 3.3k R43
R42 10K 欠压,过温,CNT保护综合电路举例(4)Vref OC207 J �RT1 i PT028 斗;s o R 35R39 ! 10K t
2.55K I C27 0.01U
二�.:i R41 27K C28 0.1U VDD f _= 10K vc `' Q10鲁 1 �I 1 I C30j_-;-�R181K 唱,:-
帘。
开关电源电路工作原理分析通信设备中经常会使用到开关电源。
现就公司入职培训时,设备所柴富起师兄《通信电源技术》课件中开关电源的电路作简要分析。
一、开关电源组成开关电源电路主要由:输入电磁干扰滤波(EMI)电路、整流电路、软启动电路、DC-DC 变换电路和次级滤波电路构成。
电路图如图1.1所示:图1.1二、开关电源各部分电路的工作原理2.1EMI滤波电路的工作原理该电路中C116是一个高压滤波电容,当有电压过高的交流电通过时,能通过C116形成回路,从而对后级电路没有影响;L102电感的作用是滤掉频率过高的交流电;C117和C118是两个去耦电容,和外壳(大地)连接在一起,起着保护的作用。
经过EMI滤波电路后得到一个频率适中电压稳定的交流电。
如图2.1 图2.1 所示。
2.2整流电路的工作原理整流电路是由四个二极管组合而成的整流桥,整流桥工作原理是:交流电的正、负半周期分别通过整流桥上的两对二极管,无论是哪对二极管导通,输出的都是正半周的交流电,因此得到从整流桥输出的电压波形如图2.2所示。
图2.22.3软启动电路的工作原理软启动电路工作原理是:当开关K101闭合时,R129、N10和R126被短路,N10光耦中的发光二极管不亮,从而控制Soft start电路检测端为高电平,Soft start电路开始工作,为DC-DC提供控制电压;当K101断开时,电流流经光耦中发光二极管使可控硅开启,Soft start电图2.3路检测端为低电平,Soft start电路停止工作。
C113和C114是两个极性电容,起的作用是滤波,通过C113和C114是两个极性电容后电压变为如图2.3所示。
2.4DC-DC变换电路的工作原理该电路左半部分是由四个相同的组合电路构成,每个组合电路中都有一个N沟道增强型MOS管、一个二极管、一个电容和一个电阻,其中二极管起续流保护,电容和电阻串联构成一个防浪涌保护。
每个MOS管的栅极分别接了V1、V2、Q3、Q4 四个控制电压,当栅极控制电压为高电平时MOS管导通,因此要保证电流流过该组合电路就必须保图2.4证V1、Q3同时为高电平或者同时为低电平,V2、Q3也得同时为低电平或者同时为高电平,既是V1、Q3和V2、Q3是不一样的电平,通过调节V1、Q3和V2、Q3间高低电平转换频率,就调节了输出电压的占空比,从而调节其电压的大小,也就是PMW调制。
软启动器工作原理软启动器是一种常见的装置,用于控制电机的启动过程。
软启动器通过逐步增加电机的电压和频率,实现电机平稳启动,避免了电机启动时的冲击和过载,延长了电机的使用寿命。
本文将详细介绍软启动器的工作原理。
一、软启动器的基本原理1.1 电压逐步增加:软启动器通过控制电压的逐步增加,使电机在启动过程中逐渐达到额定转速,减少了启动时的冲击和过载。
1.2 频率逐步增加:除了电压逐步增加外,软启动器还可以控制电机的频率逐步增加,进一步平稳电机的启动过程。
1.3 控制启动时间:软启动器可以根据实际需要控制电机的启动时间,确保电机在启动过程中不会受到过载或损坏。
二、软启动器的工作原理2.1 初始状态:软启动器在电机启动前处于待机状态,等待启动信号。
2.2 启动过程:一旦接收到启动信号,软启动器开始逐步增加电压和频率,控制电机平稳启动。
2.3 运行状态:一旦电机达到额定转速,软启动器会维持电机的正常运行状态,并监测电机的工作情况。
三、软启动器的优点3.1 保护电机:软启动器可以有效保护电机免受启动时的冲击和过载,延长电机的使用寿命。
3.2 节约能源:由于软启动器可以控制电机的启动过程,减少了启动时的能量消耗,节约了能源。
3.3 提高效率:软启动器可以使电机平稳启动,提高了电机的运行效率和稳定性。
四、软启动器的应用领域4.1 工业领域:软启动器广泛应用于各种工业设备的启动控制,如水泵、风机、压缩机等。
4.2 建筑领域:软启动器也常用于建筑领域的电梯、空调等设备的启动控制。
4.3 农业领域:在农业领域,软启动器可以用于控制农业机械设备的启动,减少了设备启动时的损耗。
五、软启动器的发展趋势5.1 智能化:随着科技的发展,软启动器将越来越智能化,可以实现远程监控和控制。
5.2 节能环保:未来的软启动器将更加注重节能环保,减少能源消耗和对环境的影响。
5.3 高效稳定:软启动器将不断提高启动效率和稳定性,满足不同领域对电机启动的需求。
软启动工作原理
软启动是一种电子设备的启动方式,通过该方式可以实现电子设备的稳定、安全和可靠地启动运行。
软启动的工作原理主要包括以下几个步骤:
1. 电源供电:当电子设备接入电源时,软启动电路立即开始工作。
软启动电路通常由电源管理芯片、开关电源和电容器组成。
2. 延时启动:软启动电路会提供一个延时启动功能,即在设备接通电源之后一段时间内延时启动。
这个设计考虑到电子设备在启动过程中可能会出现电流过大或电压波动等情况,延时启动可以避免过大的电流对设备产生不良影响。
3. 控制电压和电流:软启动电路还可以控制设备在启动过程中的电流和电压,并逐渐升高到设备正常工作范围内。
这样可以避免设备启动时突然受到大电流冲击,降低损坏的风险。
4. 监测电流和电压:软启动电路还会监测设备在启动过程中的电流和电压情况。
如果发现电流或电压异常,软启动电路会发出警报信号并停止启动过程,以保护设备的安全。
5. 启动完成:当设备的电流和电压达到正常工作范围,软启动电路会发出启动完成信号,告知设备可以正常运行。
总的来说,软启动通过延时启动、控制电流和电压以及监测电流和电压等方式,使设备在启动过程中逐渐升高电流和电压,
保证设备启动时的稳定性和可靠性。
软启动电路在电子设备中起到了重要的作用,可以提高设备的寿命和性能。
软启动工作原理软启动是指在计算机启动时,通过软件控制硬件进行初始化和自检,以确保系统能够正常运行。
软启动工作原理是计算机系统启动过程中的重要环节,下面将详细介绍软启动的工作原理。
首先,软启动的工作原理涉及到计算机的硬件和软件之间的协同工作。
在计算机启动时,硬件需要进行自检和初始化,以确保硬件设备的正常运行。
而软件则需要加载操作系统和相关驱动程序,为用户提供一个稳定和可用的工作环境。
其次,软启动的工作原理包括以下几个关键步骤,首先,计算机通电后,CPU会执行BIOS程序。
BIOS是基本输入输出系统,其作用是进行硬件自检和初始化,并加载操作系统。
其次,BIOS会检测计算机中的硬件设备,包括硬盘、内存、显卡、网卡等,并进行相应的初始化工作。
接着,BIOS会根据设定的启动顺序,选择合适的启动设备,如硬盘、光盘或U盘。
最后,BIOS会将控制权交给操作系统,由操作系统接管计算机的控制权,完成系统的启动过程。
此外,软启动的工作原理还涉及到操作系统和相关驱动程序的加载和初始化。
在BIOS将控制权交给操作系统后,操作系统会加载并初始化相关的驱动程序,以确保硬件设备能够正常工作。
同时,操作系统还会进行一系列的初始化工作,包括建立内存管理、初始化文件系统、加载系统服务等,最终完成系统的启动过程。
总之,软启动的工作原理是计算机系统启动过程中不可或缺的一部分,它涉及到硬件和软件之间的协同工作,包括BIOS的自检和初始化、操作系统和相关驱动程序的加载和初始化等关键步骤。
只有在软启动过程中各个环节正常运行,计算机系统才能够顺利启动,并为用户提供稳定和可靠的工作环境。
开关电源软启动工作原理开关电源是目前广泛应用于电子领域的一种稳压电源,具有高效率、高可靠性、易于实现微型化等优点,因此已成为大多数电子设备的必需品。
其中软启动技术是开关电源中的一项核心技术,本文将详细介绍开关电源软启动的工作原理。
首先,我们需要了解开关电源的结构和原理。
开关电源一般由输入滤波电路、整流桥、功率因数校正电路、变换器、输出电路、控制电路等几个部分组成。
变换器是开关电源的核心部分,其作用是将输入电压变换为恒定的输出电压或电流。
变换器一般由开关管和输出电感组成,通过对开关管的控制,使得输入电压按照一定的规律经过输出电感产生输出电压。
软启动技术是为了避免在电源启动瞬间产生大电流和高压而采用的一种保护措施。
一般来说,开机瞬间时刻会出现短暂的电压峰值和电流峰值,这样就会对电源和其连接的设备产生不良影响。
因此,软启动技术在开机时逐步加大输出电压,使得开机电流逐渐升高,从而避免了电压和电流尖峰。
软启动技术的实现原理如下:首先,在开机前,输入AC电源经过整流滤波后,经过控制电路或PWM芯片进行控制。
按照设定的逻辑控制,PWM芯片开始逐渐调整输出电压。
在调整输出电压的过程中,开关管被电路控制,使得输出电流和电压逐渐升高,从而避免了电流尖峰和电压尖峰。
在输出达到设定值后,软启动结束,控制电路或PWM 芯片开始正常工作。
软启动技术的优点在于能够避免电源在开机瞬间产生大电流和高压,从而降低了开机时的噪声和电磁干扰,保护了电源和其连接的设备。
同时,软启动技术还可以降低电源的使用寿命,提高了电源的稳定性和可靠性。
总之,开关电源软启动技术是一项非常重要的保护措施,它可以避免电源在启动瞬间产生过大的电流和高压,从而提高了电源的使用寿命和可靠性。
软启动技术是现代电子技术领域中不可缺少的一部分,未来还会不断发展和完善。
开关电源软启动电路计算开关电源的软启动电路在电源系统中起着至关重要的作用,它可以有效地减小启动过程中的电压和电流的突变,保护电路中的关键元件不受过大的冲击。
软启动电路的设计需要根据具体的电源系统参数来进行计算和选择。
软启动电路通常由电容器、电阻器和电压比较器组成。
在启动过程中,电压比较器会检测输出电压的上升速度,当达到设定阈值时,比较器会控制电容器和电阻器的充电速度,从而实现电压的平稳上升。
下面我们就来具体介绍一下开关电源软启动电路的计算方法:首先,需要确定软启动时间的要求。
软启动时间一般设置为几十毫秒到几秒不等,根据具体的应用场景和要求来确定。
其次,计算电容器的数值。
电容器的数值决定了软启动的速度,一般可以通过以下公式计算得出:[C = ] 其中,(C) 为电容器的容值,(I_{startup}) 为启动时电流的最大值,(t_{ramp}) 为软启动时间,(V_{in_min}) 为输入电压的最小值。
然后,选择合适的电阻器数值。
电阻器的数值决定了电容器充放电的速度,通常可以通过以下公式计算得出:[R = ] 其中,(R) 为电阻器的阻值,(V_{in_max}) 为输入电压的最大值。
最后,需要根据电压比较器的工作电压范围和输出电压的变化范围来选择合适的比较器。
比较器的阈值电压需要能够满足软启动的要求,并且工作稳定可靠。
在进行软启动电路设计时,需要考虑系统的整体稳定性和可靠性,避免因软启动不当造成电路失效或元件损坏。
同时,还需要根据具体的应用场景对软启动电路的参数进行调整和优化,以达到最佳的启动效果。
综上所述,开关电源的软启动电路设计涉及到电容器、电阻器和电压比较器的选择与计算,需要根据具体的系统参数和需求进行合理设计。
通过以上方法计算并选择合适的元器件,可以实现电源系统平稳启动,确保系统的稳定性和可靠性。
1。
软启动电路及原理
软启动电路的原理主要是通过控制电源的输出电压,使其在启动过程中逐渐增大,从而控制启动阶段的电流和电压波动,进而减轻设备启动时对设备的冲击。
一般来说,软启动电路由开关电源、电感、电容、电阻和控制电路等组成。
1.初始状态:开关电源输出电压为零,电容器上没有电荷,电感中没有电流流过。
2.启动过程:开关电源开启后,输出电压会缓慢增大。
由于电容器上没有电荷,此时电容处于放电状态,电感中也没有电流流过。
3.电容充电:当电容器上的电压逐渐升高时,电容器开始充电,电感中开始有电流流过。
电容充电速度由电感的电流变化率决定,因此电容的充电速度相对较慢。
4.电流和电压波动控制:由于电容充电速度较慢,电流和电压的变化相对平缓,避免了启动时的电流和电压冲击。
5.正常运行:电容充电至设定值后,电路进入正常运行状态,其输出电压和电流稳定。
1.减少设备启动时的电流冲击:通过逐渐增大电源输出电压,软启动电路可以有效减少设备在启动时由于电容充电过大导致的电流冲击,从而保护设备和电源。
2.减少电压波动:通过控制电源输出电压的增长速率,软启动电路可以减小电源输出电压的瞬间变化,从而减少电压波动对设备的损害。
3.增加设备寿命:软启动电路的电压和电流逐渐增大的过程可以保护设备电子元件免受过大电流和电压的损害,从而延长设备的使用寿命。
总的来说,软启动电路通过控制电源输出电压的增长速率,实现启动过程中电流和电压的平稳变化,从而减小电流冲击和电压波动对设备的冲击,保护设备和电源,延长设备使用寿命。
软启动的起动原理
软启动的起动原理:软启动器采用三相反并联晶闸管作为调压器,将其接入电源和电动机定子之间。
这种电路如三相全控桥式整流电路。
使用软启动器启动电动机时,晶闸管的输出电压逐渐增加,电动机逐渐加速,直到晶闸管全导通,电动机工作在额定电压的机械特性上,实现平滑启动,降低启动电流,避免启动过流跳闸。
待电机达到额定转数时,启动过程结束,软启动器自动用旁路接触器取代已完成任务的晶闸管,为电动机正常运转提供额定电压,以降低晶闸管的热损耗,延长软启动器的使用寿命,提高其工作效率,又使电网避免了谐波污染。
软启动器同时还提供软停车功能,软停车与软启动过程相反,电压逐渐降低,转数逐渐下降到零,避免自由停车引起的转矩冲击。
详解开关电源的几种常用软启动电路来源:电子元件技术网[导读]开关电源的输入电路大都采用整流加电容滤波电路。
在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流。
关键词:电源电路开关电源开关电源的输入电路大都采用整流加电容滤波电路。
在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(如图1所示),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。
在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。
为此几乎所有的开关电源在其输入电路设置防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。
本文介绍了几种常用的软启动电路。
图1 合闸瞬间滤波电容电流波形(1)采用功率热敏电阻电路热敏电阻防冲击电流电路如图2所示。
它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。
采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。
图2 采用热敏电阻电路(2)采用SCR-R电路该电路如图3所示。
在电源瞬时接通时,输入电压经整流桥VD1?VD4和限流电阻R对电容器C充电。
当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。
图3 采用SCR-R电路这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。
开关电源常用软启动电路介绍开关电源的输入电路大都采用整流加电容滤波电路。
在输入电路合闸瞬间,由于电容器上的初始电压为零会形成很大的瞬时冲击电流(如图1所示),特别是大功率开关电源,其输入采用较大容量的滤波电容器,其冲击电流可达100A以上。
在电源接通瞬间如此大的冲击电流幅值,往往会导致输入熔断器烧断,有时甚至将合闸开关的触点烧坏,轻者也会使空气开关合不上闸,上述原因均会造成开关电源无法正常投入。
因此大部分开关电源在其输入电路设置防止冲击电流的软起动电路,以保证开关电源正常而可靠的运行。
下面将介绍了几种常用的软启动电路。
图1 合闸瞬间滤波电容电流波形(1)采用功率热敏电阻电路热敏电阻防冲击电流电路如图2所示。
它利用热敏电阻的Rt的负温度系数特性,在电源接通瞬间,热敏电阻的阻值较大,达到限制冲击电流的作用;当热敏电阻流过较大电流时,电阻发热而使其阻值变小,电路处于正常工作状态。
采用热敏电阻防止冲击电流一般适用于小功率开关电源,由于热敏电阻的热惯性,重新恢复高阻需要时间,故对于电源断电后又需要很快接通的情况,有时起不到限流作用。
图2 采用热敏电阻电路(2)采用SCR-R电路该电路如图3所示。
在电源瞬时接通时,输入电压经整流桥VD1?VD4和限流电阻R对电容器C充电。
当电容器C充电到约80%的额定电压时,逆变器正常工作,经主变压器辅助绕组产生晶闸管的触发信号,使晶闸管导通并短路限流电阻R,开关电源处于正常运行状态。
图3 采用SCR-R电路这种限流电路存在如下问题:当电源瞬时断电后,由于电容器C上的电压不能突变,其上仍有断电前的充电电压,逆变器可能还处于工作状态,保持晶闸管继续导通,此时若马上重新接通输入电源,会同样起不到防止冲击电流的作用。
(3)具有断电检测的SCR-R电路该电路如图4所示。
它是图3的改进型电路,VD5、VD6、VT1、RB、CB组成瞬时断电检测电路,时间常数RBCB的选取应稍大于半个周期,当输入发生瞬间断电时,检测电路得到的检测信号,关闭逆变器功率开关管VT2的驱动信号,使逆变器停止工作,同时切断晶闸管SCR的门极触发信号,确保电源重新接通时防止冲击电流。
开关电源软启动原理
开关电源软启动原理是通过控制输入电压的变化率来实现电源的平稳启动。
软启动的目的是避免电源开机瞬间电流冲击过大,对电源和被供电设备造成损害。
软启动主要通过以下三种方式实现:
1.延时启动:在电源开启后,通过延时电路控制开关管的导通
时间,使电源输出电压和电流逐渐上升,起到平稳启动的作用。
2.电压控制启动:通过检测电源输出电压的变化率,并与设定
的启动速度进行比较,控制开关管的导通时间,使输出电压逐渐上升。
3.电流控制启动:通过检测电源输出电流的变化率,并与设定
的启动速度进行比较,控制开关管的导通时间,使输出电流逐渐上升。
软启动原理的关键在于控制开关管的导通时间,可以使用计时器、锁相环电路或者微控制器等方式实现。
在软启动期间,电源输出电压和电流逐渐上升,直至达到额定值后,电源进入正常工作状态。
软启动不仅可以减小电源和被供电设备的损伤风险,还有利于提高系统的可靠性和稳定性。
因此,软启动在很多应用场景中被广泛采用。
开关电源的软启动过程分析
开关管作为开关电源里面最重要的器件之一,在电源调试中也是受关注的重中之重。
开关管的关断和导通动作,实际上是一个比较复杂的过程,但我们先可以把它进行简单化分析。
例如,当电源开关管导通或截止的时候,我们就把它看成是一个理想的开关,其工作时只有两种状态,通或断。
过去,要测试电源的特征,我们只是停留在用万用表测量静态电流和电压,并用计算器进行复杂的计算。
今天,示波器成为了很多工程师的首选电源测量平台。
有些高性价比的示波器甚至配备了电源分析软件,简化了设置,并使得动态测量更为容易。
简单地说,电源开关管导通和关断都是需要时间的。
一般都简单地把开关管导通时间ton分为导通延时时间td和导通上升时间tr,而把开关管关闭时间toff分为关闭延时时间tstg(或称关闭贮存时间)和关闭下降时间tf,如图1所示。