机载激光雷达系统集成标定及应用
- 格式:ppt
- 大小:66.77 MB
- 文档页数:60
本技术涉及多线激光雷达标定系统及标定方法,其特征在于:包括水平调平台、转接架、反光标靶、全站仪、电脑、激光测距仪和GPS天线;水平调平台设置在支撑架上,配置数显水平仪以监测和判断水平调平台调平;转接架具有垂直方向和水平方向连接激光雷达的连接结构并设有惯性测量单元IMU;反光标靶设置在转接架的相对位置、以形成约束激光束的区域;全站仪设置在转接架与反光标靶之间,形成高程测量结构;电脑设置在支撑架上,其I/O端口分别连接数显水平仪信号输出端、激光测距仪信号输出端、全站仪信号输出端和GPS天线信号输出端,形成自动监测结构,以监测激光反射率变化和读取记录惯性测量单元IMU姿态角。
具有标定效率高、标定精度高以及场地要求低、可执行性方便的特点。
技术要求1.多线激光雷达标定系统,其特征在于:包括水平调平台(1)、转接架(2)、反光标靶(3)、全站仪(4)、电脑(5)、激光测距仪和GPS天线(6);水平调平台(1)设置在支撑架(7)上,配置数显水平仪以监测和判断水平调平台调平;转接架(2)具有垂直方向和水平方向连接激光雷达的连接结构并设有惯性测量单元IMU;反光标靶(3)设置在转接架(2)的相对位置、以形成约束激光束的区域;全站仪(4)设置在转接架(2)与反光标靶(3)之间,形成高程测量结构;电脑(5)设置在支撑架(7)上,其I/O端口分别连接数显水平仪信号输出端、激光测距仪信号输出端、全站仪(4)信号输出端和GPS天线(6)信号输出端,形成自动监测结构,以监测激光反射率变化和读取记录惯性测量单元IMU姿态角。
2.根据权利要求1所述的多线激光雷达标定系统,其特征在于:转接架2呈状,其上面、侧面和底面各设有安装孔用于与水平调平台(1)连接,形成垂直方向和水平方向的激光雷达连接结构;转接架(2)固定在水平调平台(1)上;水平调平台(1)用于将激光雷达调平和激光束的对齐和调整。
3.根据权利要求1所述的多线激光雷达标定系统,其特征在于:水平调平台(1)由双轴倾斜台(1-2)和手动旋转台(1-1)组成;通过双轴倾斜台(1-2)可以调整台面的水平和倾斜情况;手动旋转台(1-1)用于调整激光头的朝向;转接架(2)中设有惯导板(2-1)。
激光雷达的标定方法激光雷达(Lidar)的标定是指通过确定激光雷达传感器的内外参数,将激光雷达返回的点云数据与实际场景进行对齐的过程。
标定是激光雷达应用的关键步骤之一,正确的标定可以提高激光雷达的精度和稳定性。
下面将介绍几种常见的激光雷达标定方法。
一、外标定外标定指的是确定激光雷达的位置和方向参数。
常用的外标定方法有靶标法和特征匹配法。
1.靶标法:这是一种基于测量标定板的方法。
首先在场景中放置一个标定板,然后使用激光雷达采集到标定板上的点云数据。
通过分析点云数据,可以计算出激光雷达与标定板之间的相对位置和方向关系。
这种方法需要在标定板上放置多个标定点,通过多个标定点的测量结果来提高标定的精度。
2.特征匹配法:这是一种基于特征点的方法。
在场景中放置一些具有明显特征的物体,比如建筑物的角点或窗户等。
然后使用激光雷达采集到这些物体上的点云数据。
通过提取物体上的特征点并与实际场景进行匹配,可以计算出激光雷达的位置和方向参数。
这种方法对场景中的特征要求较高,需要有足够明显的特征点才能进行标定。
二、内标定内标定指的是确定激光雷达传感器的内部参数,主要包括激光雷达的内外参数和畸变参数。
常用的内标定方法有角度标定法和距离标定法。
1.角度标定法:这是一种通过计算角度值来确定内部参数的方法。
首先将激光雷达放在一个已知的位置上,然后在不同的角度下采集点云数据。
通过分析点云数据中的角度信息,可以得到激光雷达的内部参数,比如水平和垂直角度分辨率等。
2.距离标定法:这是一种通过计算距离值来确定内部参数的方法。
首先将激光雷达放在一个已知的距离上,然后在不同的距离下采集点云数据。
通过分析点云数据中的距离信息,可以得到激光雷达的内部参数,比如最大探测距离和距离分辨率等。
三、联合标定联合标定是指将内标定和外标定结合起来进行的标定方法。
通过同时确定激光雷达的内部参数和外部参数,可以提高标定的精度和鲁棒性。
联合标定常用的方法有多视图几何标定法和捆绑调整法。
机载激光雷达系统的应用与数据后
处理技术
机载激光雷达系统(LIDAR)是一种可以通过激光束发射到地面或悬崖表面的距离测量装置,用于采集三维立体地形数据,并能够在精确的垂直和水平方向上测量距离。
它具有快速、准确的优势,常被用于航空遥感,如飞行路线规划、地形精细化、地形分析、细粒度地理信息系统(GIS)数据建模等。
机载激光雷达系统的数据后处理技术是一种特定的技术,它可以将采集的原始数据进行组织和处理,以便在地图中显示出有用的信息。
一般来说,机载激光雷达系统的数据后处理技术包括去噪、点云拟合、投影、点云滤波等步骤。
其中,去噪是将激光雷达扫描时产生的噪声滤除,以确保数据的准确性;而点云拟合则是根据不同的地形状态,使用拟合算法对点云进行处理,以得到正确的数据;投影则是将采集到的数据投影到坐标系上,以便绘制出地图;最后,点云滤波是去除数据中的异常点,以获得更加准确的数据。
机载激光雷达系统的应用主要是用于航空遥感,如飞行路线规划、地形精细化、地形分析、细粒度地理信息系
统(GIS)数据建模等。
在飞行路线规划中,激光雷达系统可以帮助确定安全的飞行路线;在地形精细化方面,它可以提供准确的地形数据,以便精细化地图;在地形分析方面,它可以帮助研究人员分析地形结构,以更好地了解地表情况;在GIS数据建模方面,它可以帮助研究人员建立准确的地理信息模型,以便进行更好的地理信息分析。
探讨机载激光雷达系统在测绘领域的应用广泛应用于测绘领域的机载激光雷达系统不仅操作较为复杂且具有极强的综合性,该系统的运行需要多种系统同时运行辅助进行,如激光扫描系统、航拍系统、卫星定位系统等。
笔者结合多年的实际工作经验并结合相关资料,对机载激光雷达系统的现状、技术及应用等作了简要分析,以期为相关从业或研究人员提供借鉴与参考。
标签:机载激光雷达系统;应用现状;技术一、机载激光雷达系统的应用现状据有关文献记载,机载激光雷达系统最早出现于二十多年前,在美国的航天领域中被用于测量物体间的距离。
随着科技水平的进一步提高,机载激光雷达系统的应用范围也逐渐由简单的测量扩大到更多的领域中。
近年来,机载激光雷达系统在世界各国各领域范围内的市场份额逐渐增大。
与美国、德国等具代表性的国家相比,我国引入机载激光雷达系统的时间较晚,但发展速度却十分迅速,现阶段,机载激光雷达系统已被广泛应用于我国地质勘测、城市建设等方面。
除此之外,我国相关研究人员正致力于研究如何将与之相关的激光扫描系统等应用于交通领域。
二、机载激光雷达测量技术概述(一)主要特点及性能测量技术是机载激光雷达系统最先开发的技术之一,也是迄今为止最高效的技术性能之一。
其不仅能够高度覆盖测量范围,高效率进行测量,而且其测量数据十分精确。
准确来说,机载激光雷達技术的测量误差能够严格控制在十五厘米以内。
此外,其测量过程中所得出的点云数据还能够准确反映所勘测地区的地形、地貌等,为测量人员的实际测量降低难度,进一步提高了测量数据的精确性。
除此之外,机载激光雷达在应用于测量时使用的测量方法是主动测量,对所要测量的区域进行实地勘测。
使用机载激光雷达进行测量的最大优点是其工作的开展不受周围环境及天气状况的影响,无论是白天或是黑夜,或是浓雾、阴雨等天气,均能够正常开展工作。
与此同时,机载激光雷达的测量技术具有较强的穿透力,应用于植被茂盛的地区时,也能够直接穿过植被测量被植被所覆盖的区域,且不会出现其测量结果因植被的影响而不准确的情况。
无人机载激光雷达在地形测绘中的应用摘要:无人机搭载激光雷达模块、高精度惯导、测绘相机、云台等模块,能够形成一体化的地形测绘方案,轻松实现全天候、高效率实时三维数据获取以及复杂场景下的高精度后处理重建。
以下对无人机载三维激光雷达在地形测绘中的应用进行了探讨。
关键词:无人机;激光雷达;地形测绘引言无人机搭载相机进行地形测绘已经在各行各业进行了广泛的应用,随着激光雷达的高度集成化,设备在重量大大减轻,为无人机搭载激光雷达创造了条件,激光雷达具有相机无法比拟的优势,其精度高、穿透性强、能够全天候作业,逐渐成为研究的新宠。
1无人机激光雷达系统概述无人机激光雷达系统使用小型无人机作为飞行平台。
它主要由无人驾驶飞机、GNSS导航系统、惯导系统、飞行控制系统、激光雷达、测绘相机和地面控制系统组成。
无人机载激光雷达技术是一种主动式测绘地表空间信息的技术手段,通过主动发射激光脉冲,获取探测目标反射回来的信号并处理得到地表目标的空间信息。
因此,无人机载激光雷达技术不受天气、光照等条件的制约,能在恶劣复杂的环境中获取了高精度的地面空间信息。
其能够实时生成真彩点云,通常单架次飞行可快速获取2平方公里的点云数据。
和传统的人工测量的技术手段相比,极大地减少了工作量,缩短了外业测量的时间,提高了测量工作的效率。
同时可以对很多较为危险的区域进行测量,减小了外业作业人员的安全风险。
2无人机载激光雷达在地形测绘中的应用2.1测区概况某矿区地形测绘中,矿区本身属于山间盆地地形,最大海拔高度1051.86m,海拔最低点为800m,整个矿区地势复杂,植被茂盛且以林木和灌木为主,道路交通条件较为便利,从保证测绘工作质量和提高测绘效率的角度,使用无人机载激光雷达进行测绘工作。
2.2像控点的布设和测量像控点设置原则: 像控点的精度和数量直接影响到航测数据后处理的精度,所以像控点的布设和选择应当尽量规范、严格、精确。
像控点选在影像清晰的明显地物点、地物拐角点、接近正交的线状地物交点或固定的点状地物上,局部高程变化小且点位周围相对比较平坦地区。
机载激光雷达测深技术及应用海底地形是海洋基础测绘要获取的重要地理空间信息之一,在国民经济建设、海洋权益维护、国防建设和科学研究中具有重要的作用。
人们通过对声、光、电、磁长期的研究后发现,声波在海水中具有光、电、磁无法比拟的优越性。
迄今为止,人们所熟知的水中的各种能量辐射形式中,以声波的传播性能为最好。
正是由于声波在海水中衰减小、传播距离长,因而最适合于水深测量。
因此,基于声波的回声测深技术是应用最广最为成熟的水深测量技术,其中最为典型的测深设备是单波束测深仪和多波束测深系统。
尤其是多波束测深系统以其高效率全覆盖的优势在水深测量中得到了越来越普遍的应用。
一般而言,多波束测深系统的波束在海底的覆盖宽度是水深的 3 ~7 倍,个别系统最大可达10 倍。
然而,即使是多波束测深系统具有如此之宽的覆盖测幅,在浅水区的全覆盖测量效率也是非常低的。
自从人们发现光波在海水中的最佳透光窗口后,机载激光测深技术得到了迅速的发展。
美国、俄罗斯、澳大利亚、加拿大、瑞典、中国等都先后对机载激光测深技术进行了研究。
其中最为成熟的机载激光测深系统是加拿大的 SHOALS 系列产品(现已升级为CZMIL) 和瑞典的 HAWKEYE 系列产品。
机载激光测深技术是集激光、全球定位与导航、自动控制、航空、计算机等前沿技术,以直升机和固定翼飞机为平台,从空中向海面发射激光束来测量水深的海洋高新技术,属于主动测深系统,在浅于 50m 的沿岸水域,具有无可比拟的优越性。
特别是能够高效快速测量浅海、岛礁、暗礁及船只无法安全到达的水域。
其主要优点如下:( 1) 覆盖宽度不受水深的影响,而仅仅与飞机航高和激光测深系统的宽高比有关,这一显著特点是多波束测深系统所不具备的;( 2) 飞机速度远远快于船速,因此,机载激光测深系统具有很好的机动性和非常高的测深效率;( 3) 机载激光测深系统目前已具有水部和陆部同时测量的功能,即在岸线附近,测量水深的同时,还可以测量岸线附近的地形。