润滑脂滴点与耐高温的关系
- 格式:doc
- 大小:20.50 KB
- 文档页数:1
润滑脂的高温性能温度对于润滑脂的流动性具有很大影响,温度升高,润滑脂变软,使得润滑脂附着性能降低而易于流失。
另外,在较高温度条件下还易使润滑脂的蒸发损失增大,氧化变质与凝缩分油现象严重。
润滑脂失效的主要原因,大多是由于凝胶的萎缩和基础油的蒸发损关所致,即润滑脂关效过程的快慢与其使用温度有关。
高温性能好的润滑脂可以在较高的使用温度下保持其附着性能,其变质失效过程也较缓慢。
润滑脂的高温性能可用滴点、蒸发度和轴承漏失量等指标进行评定。
润滑脂的滴点是指其在规定条件下达到一定流动性时的最低温度,以℃表示。
滴点没有绝对的物理意义,它的数值因设备与加热速率不同而异。
润滑脂的滴点主要取决于稠化剂的种类与含量,润滑脂的滴点可大致反映其使用温度的上限。
显然,润滑脂达到滴点时其已丧失对金属表面的粘附能力。
一般地说,润滑脂应在滴点以下20℃一30℃或更低的温度条件下使用。
润滑脂的滴点可按GB/T4929一85《润滑脂滴点测定法》进行测定。
方法概要:将润滑脂装入滴点计的脂杯中,在规定的标准条件下,记录润滑脂在试验过程中达到规定流动性时的温度。
该标准与ⅠSO/DP2176等效。
GB/T3498一83是润滑脂宽温度范围滴点测定法。
润滑脂的蒸发度是指在规定条件下蒸发后,润滑脂的损失量所占的质量百分数。
润滑脂的蒸发度主要取决于所采用的基础油的种类、馏分组成和分子量。
高温、宽温度条件下使用的润滑脂,其蒸发度的测定尤为重要,蒸发度可以定性地表示润滑脂上限使用温度。
润滑脂基础油蒸发损失,就会使润滑脂中的皂基稠化剂含量相对增大,导致脂的稠度发生变化,使用中会造成内摩擦增大,影响润滑脂的使用寿命。
因而,蒸发度指标可以从一定程度上表明润滑脂的高温使用性能。
SH/T0337一92是皿式法测定润滑脂蒸发度的方法。
GB/T7325一87是测定润滑脂和润滑油蒸发损失的方法,方法概要:把放在蒸发器里的润滑脂试样,置于规定温度的恒温浴中,热空气通过试样表面22h,根据试样失重计算蒸发损失。
润滑脂的高温性能及其科学应用作者:周苏平来源:《食品安全导刊》2014年第10期随着工业化水平的提升和各行业的发展,越来越多机械设备的润滑部位处于高温环境,选择具有杰出高温性能的润滑脂对满足设备高温润滑要求无疑具有重要意义。
但是,同一款润滑脂产品依据不同原理、采用不同方法测定出的润滑脂高温极限值会有很大区别,如果不清楚这些高温值测定背后的原理,只凭借产品所宣称的耐高温值进行采购或制定润滑方案可能会事与愿违,并对机械设备的运行产生不良后果。
滴点——评定高温性能的老方法过去,宣称为高温润滑脂的依据通常是其“滴点”。
“滴点”代表的是在测试中润滑脂内的增稠剂失效,即增稠剂失去凝聚作用,不能保持内部油时的温度。
“滴点”主要是被用来在生产质量控制试验中确定正确的增稠剂形成参数,而非表现润滑脂性能的指示参数。
滴点温度并不代表润滑脂的实际耐高温性能情况,而人们也无法用滴点温度数值减去某一数值的方法得到润滑脂的实际耐高温值。
轴承测试——现代评定方法确定润滑脂高温性能的较好方法是标准轴承测试。
这种测试通过提高操作强度以加速润滑脂的老化过程,从而测试润滑脂的高温性能。
限制润滑脂高温性能的因素包括因增稠剂和基础油的氧化而引起的老化,和由于润滑脂析油和蒸发而引起的基础油损失。
总的来说,轴承测试这种动态润滑脂测定方法更能体现润滑脂在日常机械运作中的真实情况,因而基于这种方法测定的最高极限温度比基于滴点所得的数值更为真实可靠。
有多种不同类型的轴承测试方法都可以用来评估润滑脂的极限高温,这些不同的测试方法都会用到一个基本的装置,那就是轴承被安装在5套平行摆放的相同的设备上进行测试。
根据每套设备上润滑脂失效的时间,利用威布尔(Weibull)统计法就可以确定50%的轴承停止正常运作的时间点,即所谓被测试润滑脂在给定温度下的“L50”寿命,由此得出润滑脂的高温极限。
高温润滑脂轴承测试的具体方法主要包括:ASTM D3336测试:该方法一般让5个6204滚珠轴承以10000转/分钟的速度按照持续运行20小时后停止4小时的循环连续运作,直至润滑脂出现温度剧增或轴承出现扭矩过大的情况,即可判定润滑脂失效。
润滑油使用温度和闪点的关系
润滑油的使用温度和闪点之间存在着密切的关系,这两个参数都对润滑油的性能和安全性起着重要的作用。
首先,让我们来看一下润滑油的使用温度。
润滑油的使用温度是指在实际工作条件下,润滑油所能承受的最高温度。
润滑油在高温下会发生氧化、挥发和降解,从而影响其润滑性能和使用寿命。
因此,润滑油的使用温度必须能够适应所处工作环境的高温要求,否则会导致润滑油失效,进而影响机械设备的正常运行。
而润滑油的闪点则是指在润滑油受热时,润滑油表面产生可燃气体与空气混合后,混合气体与外部火焰接触后能发生闪燃的最低温度。
闪点是评价润滑油火灾危险性的重要指标,闪点越低,润滑油的火灾危险性越大。
因此,润滑油的闪点需要在一定范围内,以确保在工作过程中不会因为受热而发生火灾。
润滑油的使用温度和闪点之间的关系在于,润滑油的使用温度需要在其闪点以上,以确保在工作过程中不会因高温而引发火灾。
如果润滑油的使用温度超过了其闪点,那么在高温下润滑油容易发生闪燃或爆炸,从而造成严重的安全事故。
因此,润滑油的使用温度和闪点是密切相关的,润滑油在实际
应用中需要根据工作环境的温度要求选择合适的润滑油种类和品牌,以确保润滑油在高温下能够正常工作并保持安全性。
同时,对于高
温工作环境下的润滑油,闪点的测试和监测也是非常重要的,以确
保润滑油在高温条件下不会因为火灾而引发安全事故。
润滑脂理化指标的分析及其对性能的影响日期:2005-12-15 10:55:16润滑脂理化指标的分析及其对性能的影响一、外观润滑脂外观是通过目测和感观检验来控制其质量的一个检查项目。
外观检验的主要内容包括颜色、光亮、透明度、粘附性,均一性和纤维状况等。
虽然这是一个极简单的并带有人为经验性的直观检查项目,但却可以初步鉴定出润滑脂的种类牌号,推断产品质量。
因此,在规格标准中,几乎对多数润滑脂都规定了外观这项质量指标。
润滑脂的外观检查方法,一般是直接用肉眼观察,但最好用刮刀把它涂抹在玻璃板上,在层厚约1~3mm下对光检查,仔细地进行观察。
此外,还可以用手捻压来检查判断。
外观的主要检查内容包括:(1)观察颜色和结构是否正常,是否均匀一致,有无明显析油倾向;(2)观察有无皂块,有无粗大颗粒,硬粒杂质以及外来杂质;(3)观察纤维状况,粘附性和软硬程度等。
皂基润滑脂的颜色因选用的稠化剂和基础油的性质以及生产工艺条件的不同而异,一般呈淡黄色至暗褐色。
大部分皂基润滑脂是半透明或不透明状,呈现一定光泽的均匀油膏,而且具有不同强度的纤维感觉。
检查润滑脂的外观可以初步区别各种不同类型的润滑脂。
例如,一般钠基脂具有长纤状;钡基脂具有粗大的纤维;锂基脂呈光滑均匀,色泽稍深的油膏状,并有细小的纤维;普通钙基脂纤维很短,呈半透明软膏状;而用中粘度油制的铝基脂,呈光滑透明的凝胶状;复合钙基脂色泽深黄,纤维较长,直观较硬;钙钠基脂则大多呈现团粒状结构。
基础油的粘度越大,制得的成品润滑脂色泽就越深,而且润滑脂粘稠性和韧性越强,手感粘着性越大。
稠化剂含量越高,成品润滑脂越稠厚,稠度牌号也越高。
有经验的工作人员对润滑脂的稠厚程度一般可以从外观和手的捻压感觉判断它的锥入度牌号。
通常,天然脂肪制得的润滑脂颜色较浅,合成脂肪酸制得的润滑脂的颜色较深而暗,并稍有特殊臭味。
烃基脂类产品的外观一般为淡黄色至黄褐色半透明或不透明的油膏,一般都不具光泽,有很强的粘稠性、拉丝性和附着能力。
高温润滑油脂的要求
高温润滑脂应满足以下要求:
1.耐高温性:应满足至少200℃下长期工作不会流失,目前许多润滑脂以滴点表示高温进行宣传,宣称耐温300度之类的,事实上,滴点只是润滑脂不会滴油的温度,并不代表润滑脂使用温度,也不是说明耐高温润滑脂的唯一指标。
如膨润土类油脂没有滴点,但实际使用一般不超过200度,实际使用中,更重要的是高温稳定性,如:油脂挥发程度、高温剪切安定性(即轴承在高温运转时润滑脂变稀的程度)等综合性能。
2.抗氧化能力:良好的氧化安定性,润滑脂在高温环境下与空气接触,不致很快被氧化生成氧化物。
避免结焦积碳
3.水蒸气环境影响:抗水及水汽,特别是高温下,润滑剂遇水不乳化、不溶解、不吸收水分、润滑剂组分不发生水解;
4.抗剪切能力,润滑脂在机械工作中,要受到剪切作用。
受长期剪切后,皂纤维会脱开(分离)或取向而产生流动,造成润滑脂的稠度下降。
理想的耐高温润滑脂,受剪切后的稠度变化应该小,从而获得较长的使用寿命。
在高温高速环境下使用的润滑脂应当具有以下特性:
1.在高温下不流失,即在180℃左右甚至更高的温度下保持一定的稠度,不软化流失。
2.油脂泄漏较少。
当润滑脂在轴承中承受高频反复剪切和很大的离心力作用时,润滑油能及时回流到滚道不被甩出。
3.具有一定的静音效果,由于高温润滑脂的纤维一般硬度较大,所以在轴承噪声测试中的静音性能还不如锂基润滑脂。
4.这类润滑脂要有一定的高温使用寿命,在高温下具有较好的抗氧化能力,从而延长轴承和相关设备的使用寿命。
润滑脂滴点的检测标准
润滑脂滴点是指润滑脂在加热条件下,从锥形容器中滴落的温度。
滴点的高低是衡量润滑脂耐高温性能的一个重要指标。
根据不同的润滑脂类型和应用要求,润滑脂滴点的检测标准可以有多种。
常见的润滑脂滴点测试标准有以下几个:
1. ASTM D2265-方法是将试样装入锥形容器中,通过持续加热容器,直到试样从锥形管中滴下。
滴点温度是试样从锥形管中滴落的温度。
2. GB/T3498-标准的测试方法与ASTM D2265相似,也是使用锥形容器加热试样,直到试样从锥形管中滴下。
滴点温度是试样滴下的温度。
3. DIN 51801-使用相同的测试方法热测试滴点。
滴点温度是试样从锥形管中滴下的温度。
4. ISO 2176-这个标准也使用锥形容器来进行测试,并且通过加热试样直到试样从锥形管中滴下。
滴点温度是试样滴下的温度。
这些标准适用于各种类型的润滑脂,包括矿物油基润滑脂、合成油基润滑脂和高温润滑脂等。
根据不同的应用要求,可以选择适合的测试标准来评估润滑脂的滴点温度。
1、润滑脂的主要性能指标①滴点:指在规定的条件下加热,达到一定流动性时的温度。
它大体上可以决定润滑指的使用温度(滴点比使用温弃高15~30度)②锥入度:指在规定的温度和负荷下试验锥体在5s内自由垂直刺入油脂中的深度(单位为1/10mm)。
它是润滑指稠度和软硬程度的衡量指标。
③胶体安定性(析油性):指在外力作用下润滑指能在其稠化剂的骨架中保存油的能力,用分油量来判定。
当润滑脂的析油量超过5%-20%时,此润滑脂基本上不能使用。
④氧化安定性:指在储存和使用中抵抗氧化的能力。
⑤机械安定性:指在机械工作条件下抵抗稠度变化的能力。
机械安定性差,易造成润滑脂的稠度下降。
⑥蒸发损失:指在规定条件下,其损失量所占总量的百分数。
它是影响润滑脂使用寿命的一项重要因素。
⑦抗水性:指在水中不溶解、不从周围介质中吸收水分和不被水洗掉等的能力。
⑧相似粘度:指其非牛顿流体流动时的剪应力与剪速之比值。
转速高时其粘度低,反之则粘度较大。
2、润滑在机械设备的正常运转和维护保养中起着重要的作用。
1.控制摩擦对摩擦副进行润滑后,由于润滑剂介于对偶表面之间,使摩擦状态改变,相应摩擦因数及摩擦力也随之改变。
试验证明:摩擦因数和摩擦力的大小,是随着半干摩擦、边界摩擦、半流体摩擦、流体摩擦的顺序递减的,即使在同种润滑状态下,因润滑剂种类及特性不同不相同。
2.减少磨损摩擦副的粘着磨损、磨粒磨损、表面疲劳磨损以及腐蚀磨损等,都与润滑条件有关。
在润滑剂中加入抗氧化和抗腐蚀添加剂,有利于抑制腐蚀磨损;而加入油性和极压抗磨添加剂,可以有效地减轻粘着磨损和表面疲劳磨损;流体润滑剂对摩擦副具有清洗作用,也可相轻磨粒磨损。
3.降温冷却降低摩擦副的温度是润滑的一个重要作用。
众所周知,摩擦副运动时必须克服摩擦力而作功,消耗在克服摩擦力上的功全部转化为热量,其结果将引起摩擦副温度上升。
摩擦热的大小与润滑状态有关,干摩擦热量最大,流体摩擦热量最小,而边界摩擦的热量则介于两者之间。
温度对润滑脂功效的影响温度对于润滑脂的流动性具有很大影响,温度升高,润滑脂变软,使得润滑脂附着性能降低而易于流失。
另外,在较高温度条件下还易使润滑脂的蒸发损失增大,氧化变质与凝缩分油现象严重。
润滑脂失效的主要原因,大多是由于凝胶的萎缩和基础油的蒸发损关所致,即润滑脂关效过程的快慢与其使用温度有关。
高温性能好的润滑脂可以在较高的使用温度下保持其附着性能,其变质失效过程也较缓慢。
润滑脂的高温性能可用滴点、蒸发度和轴承漏失量等指标进行评定。
1.润滑脂的滴点润滑脂的滴点是指其在规定条件下达到一定流动性时的最低温度,以℃表示。
滴点没有绝对的物理意义,它的数值因设备与加热速率不同而异。
润滑脂的滴点主要取决于稠化剂的种类与含量,润滑脂的滴点可大致反映其使用温度的上限。
显然,润滑脂达到滴点时其已丧失对金属表面的粘附能力。
一般地说,润滑脂应在滴点以下-20℃一-30℃或更低的温度条件下使用。
润滑脂的滴点可按GB/T4929一85《润滑脂滴点测定法》进行测定。
方法概要:将润滑脂装入滴点计的脂杯中,在规定的标准条件下,记录润滑脂在试验过程中达到规定流动性时的温度。
该标准与ⅠSO/DP2176等效。
GB/T3498一83是润滑脂宽温度范围滴点测定法。
2.润滑脂的蒸发度润滑脂的蒸发度是指在规定条件下蒸发后,润滑脂的损失量所占的质量百分数。
润滑脂的蒸发度主要取决于所采用的基础油的种类、馏分组成和分子量。
高温、宽温度条件下使用的润滑脂,其蒸发度的测定尤为重要,蒸发度可以定性地表示润滑脂上限使用温度。
润滑脂基础油蒸发损失,就会使润滑脂中的皂基稠化剂含量相对增大,导致脂的稠度发生变化,使用中会造成内摩擦增大,影响润滑脂的使用寿命。
因而,蒸发度指标可以从一定程度上表明润滑脂的高温使用性能。
SH/T0337一92是皿式法测定润滑脂蒸发度的方法,GB/T7325一87是测定润滑脂和润滑油蒸发损失的方法,方法概要; 把放在蒸发器里的润滑脂试样,置于规定温度的恒温浴中,热空气通过试样表面22h,根据试样失重计算蒸发损失。
____年注册安全工程师考试真题及答案(安全生产技术)一、单项选择题(共60题,每题1分。
每题的备选项中,只有1个符合题意)1、齿轮的安全防护装置下列说法错误的是:()A、半封闭型的防护装置B、齿轮防护罩的材料可利用有金属骨架的铁丝网制作C 齿轮防护罩应能方便地打开和关闭D在齿轮防护罩开启的情况下机器不能启动2、机械本质安全的策略顺序是:(A、C-A-D-B)A、减少获消除接触机器危险部位的次数B、提供个人保护装置C消除产生危险的原因D使人们难以接近机器的危险部位1、下列事故中不属于机械常见事故的是(D、工人检修机床时被工具绊倒)A工人违规戴手套操作时旋转部件绞伤手指B零部件装卡不牢导致飞出击伤他人C机床漏电导致工人触电2、下列检查中,不属于检查滚动轴承损伤的范围是(D、油压降低)A磨损B化学腐蚀C滚珠砸碎3、冲压设备的安全装置中不属于机械式防护装置的是(A按钮连锁式保护装置)B摆杆护手C拉手安全D推手保护4、下列危险有害因素中,不属于铸造作业危险的是(D氢气爆炸)A机械伤害B高处坠落C噪声与振动5、下列危险有害因素中不属于锻造过程危险有害因素的是(D急性中毒)A尘毒危害B烫伤C机械伤害6、将体力劳动强度分为(4)级7、故障诊断基本步骤的正确实施顺序是(A信号检测-信号处理-状态识别-诊断决策)8、产品的维修性设计师设计人员从维修的角度考虑。
在进行维修性设计不需要重点考虑的是(A、产品整体运输的快速性)B可达性C零部件的标准化及互换性D维修人员的安全性9、员工未经过热环境习惯的条件下,感觉舒适的空气温度是(C、21+-3)℃0、下列各种危险危害中,不属于雷击危险危害的是(A、引起变压器严重过负载)B烧毁电力线路C引起火灾和爆炸D使人遭受致命电击1、辐射电磁波的频率一般在(C、100)KHz以上。
2、下列电缆线路起火的原因中属于外部原因是(C、破土动工时破坏电缆并使其短路)A电缆终端头密封不良B电缆终端头段子连接松动,打火放电D 点蓝颜中国在,发热量剧增,引燃表面积尘3、下列几种仪表中,可用于测量绝缘电阻的仪表应该是(C、兆欧表)。
润滑油润滑脂相关知识摘录一,润滑油,脂是加到两相对运动表面间能减小摩擦,降底磨损的油和脂等。
润滑的作用:1,降低摩擦。
2,减少磨损。
3,冷却。
4,防腐。
二,润滑油的性能检测和评定。
1,粘度:是液体油品流动时的内摩擦力。
粘度是各种润滑油分类分级和评定产品质量的主要指标。
润滑油的牌号大部分以某一温度下的运动粘度范围的中心值来划分的,是选用润滑油的主要依据。
SUS:塞氏通用粘度即在规定的条件下,由一检定过的通用锐孔流出60mL试样所需的时间,以s为单位用SUS表示。
SFS:塞氏重油粘度即在规定的条件下,由一检定过重油锐孔流出60mL 试样所需的时间,以为s单位用SFS表示。
粘度一般有动力粘度,运动粘度,条件粘度。
塞氏粘度属于条件粘度的一种。
2,粘温性能指润滑油粘度随温度变化而变化的程度。
通常润滑油粘度随温度变化而变化的程度小者称之粘温性能好,反之则粘温性差。
粘温性的好坏一般用粘度指数,粘温系数和粘度比等。
粘度指数是国际上广泛采用的用来表示润滑油粘温性能的参数,是一个经验比较值。
它用粘温性能好(粘度指数定为100)和差的(粘度指数定为0)的两种润滑油为标准油,以40度和100度的粘度为基础进行比较得出。
指数越高,粘温性能越好。
一般粘度随温度的升高而减小,随压力的升高而增大。
3,密度,一般润滑油的密度随温度的升高而降低。
4,颜色,油品的颜色反映精制程度和稳定性。
5,闪点,润滑油在规定的条件下,加热到所逸出的蒸气与空气形成的混合气与火焰接触发生瞬间闪火时的最低温度。
闪点分为开口闪点和闭口闪点,通常闭口闪点底于开口闪点。
一般蒸发性大的多测闭口闪点。
闪点是一个安全指标。
是有火灾出现的最低温度。
6,燃点,润滑油在规定的条件下,加热到他的蒸气能被火焰点着并燃烧不少于5秒时的最低温度称为燃点。
7,凝点,润滑油试样在规定的条件下冷却到停止流动时的最高温度称为凝点。
8,倾点,在规定条件下被冷却的润滑油试样能够流动的最低温度称为倾点。
润滑脂滴点与耐高温的关系
滴点高是不一定耐高温的,很多刚刚接触润滑脂的用户在选择高温黄油的时候只看重滴点而忽视其它,这种做法是绝对不可取的。
滴点虽然是衡量润滑脂高温性能的一项非常重要的指标,但绝非唯一指标。
举个例子,很多润滑脂的商家就是利用了用户这种“滴点高就耐高温”的观点,在产品简介里常常把“滴点”醒目的标在外面,写着“滴点380℃”很吸引人,貌似传说中的“高温脂”,但是其真正能够达到的温度也许连150℃都不够。
通常情况下,滴点高的润滑脂相对的使用温度较高,但润滑脂的实际使用温度一般都在滴点以下30℃到50℃不等。
高温脂是否耐高温,关键还是看其基础油的选择,好的基础油对润滑脂的高低温性能起着决定性的作用。
除此之外,与润滑脂的稠化方式、添加剂种类含量等各方面情况都有关系。
高温脂的选择绝对不能只看滴点,如何选择一款优秀的适合于您用润滑脂主要还是由您的设备情况而定,而且千万不要以为“温度越高的润滑脂使用起来越保险”或走入“高滴点就耐高温”的误区。