聚类算法——层次方法详解
- 格式:ppt
- 大小:572.50 KB
- 文档页数:29
层次聚类算法层次聚类算法(Hierarchical Clustering Algorithm)是一类数据挖掘的重要方法,它的主要思想是,将最初的n个样本点当成n个单独的聚类,然后依据某一距离度量方式分别计算每两个聚类的距离,从而确定最近距离的两个聚类合并为一个,通过不断合并就可以使得初始点构成的n个聚类缩减成一个。
层次聚类算法可以用来分析数据、挖掘隐藏的知识,它主要包含以下几个步骤:一、算法准备1.计算原始数据集中每个样本之间的距离,通常有曼哈顿距离、欧氏距离等方式可以实现计算,这是层次聚类算法的核心步骤;2.设定阈值,用以控制聚类的数量,实现算法的有效性。
二、算法开始1.将每个样本作为一个单独的簇;2.计算每两个簇之间的距离(根据第一步计算出来的距离);3.将最相近的两个簇合并,更新聚类的数量和距离;4.若聚类的数量不等于预设的数量,则重复步骤2、3,否则结束迭代,给出聚类结果。
三、层次聚类的应用1.人脸识别:用层次聚类算法帮助计算机系统将相近的人脸归为一类;2.文本聚类:在虚拟空间中用层次聚类算法对文本进行聚类,例如聚类微博、聚类博客文章等;3.推荐系统:层次聚类可以在推荐系统中用来分析用户的兴趣点,从而提供更契合用户意愿的服务。
四、层次聚类的优点1.易于控制聚类的数量:用户可以通过设定阈值来控制想要的聚类数量;2.易于可视化:结果可以通过树状图等方式直观可视化;3.准确性较高:可以准确实现用户所关心的目标。
五、层次聚类的缺点1.数据资源要求高:层次聚类算法每次迭代中都需要计算所有数据样本之间的距离,对数据资源要求非常高;2.聚类结果影响大:层次聚类的结果受初始选择的聚类数量的影响很大,可能会出现收敛于局部最优点,不能达到全局最优点;3.高维数据聚类效果不佳:高维数据的距离计算比较复杂,容易导致聚类效果不理想。
总结:层次聚类算法是一类数据挖掘的重要方法,它的核心是将最初的n个样本点当成n 个单独的聚类,依据某一距离度量方式计算每两个聚类之间的距离,然后将最相近的两个聚类合并,不断迭代,最终输出聚类结果,主要应用于人脸识别、文本聚类和推荐系统等。
层次聚类法
1层次聚类法
层次聚类法(Hierarchical Clustering)是一种无监督学习方法,它可用来寻找数据集中的隐藏结构,将数据聚类,使相关的对象被置于同一个和更大的组中。
此外,层次聚类可以将离散的类别转换为一个树状层次,以便于数据分析,其中离散类别可以从特定的顶级类别有层次地折叠。
2工作原理
层次聚类的工作原理是将数据分为几个不同的组,这些组根据每个特征的变化情况被聚类,直到所有的数据都被包含在一个组中。
在这个过程中,所有的数据都逐步归于一个组中。
层次聚类方法通过计算两个数据点间距离来比较数据,并将距离近的数据聚到一起,这样就实现了数据聚类。
3常用算法
层次聚类常用的两个算法是单连接法(Single Linkage)和完全连接法(Complete Linkage),它们都基于距离矩阵(distance matrix)来做聚类,它们使用不同的方法来计算数据点之间的相似性。
单连接法(Single Linkage)的方法是计算数据点之间的最小距离,并将两个数据点组成单元;而完全连接法(Complete Linkage)
的方法是计算数据之间最大距离,并将最大的距离作为两个数据点的距离。
4应用
层次聚类可以应用于大量机器学习和数据挖掘领域,如自然语言处理,图像处理,文本分析,商业分析等。
它可以用于客户聚类,无监督学习任务,探索性数据分析,特征选择和其他数据挖掘任务中。
层次聚类方法是机器学习和统计学习中经常使用的技术,它可以自动以及有效地进行数据分析。
层次聚类算法总结层次聚类算法的总结一、引言层次聚类算法是一种常用的数据聚类方法,它通过逐步合并或分割数据来构建聚类层次结构。
本文将对层次聚类算法进行总结,包括算法原理、应用领域以及算法的优缺点。
二、算法原理层次聚类算法主要包括凝聚型层次聚类和分裂型层次聚类两种类型。
其中,凝聚型层次聚类是自底向上的合并过程,而分裂型层次聚类是自顶向下的分割过程。
1. 凝聚型层次聚类凝聚型层次聚类从每个数据点作为一个独立的类开始,然后逐步合并最相似的类,直到达到预设的聚类数目或者合并所有数据点为止。
常用的合并策略有单链接、完全链接和平均链接等。
- 单链接:将两个最相似的类合并,其中最相似的类定义为两个类中最近的两个数据点之间的距离。
- 完全链接:将两个最相似的类合并,其中最相似的类定义为两个类中最远的两个数据点之间的距离。
- 平均链接:将两个最相似的类合并,其中最相似的类定义为两个类中所有数据点之间距离的平均值。
2. 分裂型层次聚类分裂型层次聚类从所有数据点作为一个类开始,然后逐步将类分裂成更小的子类,直到达到预设的聚类数目或者每个类只包含一个数据点为止。
常用的分裂策略有K-means算法、二分K-means算法等。
三、应用领域层次聚类算法在许多领域都有广泛的应用,下面列举几个常见的应用领域。
1. 生物学层次聚类算法可以用于基因表达谱数据的聚类分析,帮助研究人员发现不同基因的表达模式,从而揭示基因之间的相互关系。
2. 图像处理层次聚类算法可以用于图像分割,将相似的像素点聚类到同一个区域,实现图像的分割和识别。
3. 社交网络层次聚类算法可以用于社交网络中的用户聚类,将具有相似兴趣和行为模式的用户聚集在一起,为推荐系统和个性化推送提供基础。
四、优缺点分析层次聚类算法具有以下优点:1. 不需要预先指定聚类数目,能够自动构建聚类层次结构。
2. 可以处理任意形状和大小的聚类。
3. 聚类结果具有层次结构,方便后续的分析和解释。
层次聚类算法范文一、层次聚类算法的原理:层次聚类算法有两种主要的实现方式:凝聚聚类(自底向上)和分裂聚类(自顶向下)。
凝聚聚类从每个样本开始,逐渐将相似度高的样本合并为一个聚类,最终形成一个包含所有样本的聚类。
分裂聚类则从一个包含所有样本的聚类开始,逐渐将不相似的样本拆分成多个聚类,直至每个样本都是一个单独的聚类。
二、层次聚类算法的步骤:1.初始化:将每个样本作为一个独立的聚类。
2.计算相似度:根据定义的距离度量方法计算每两个聚类之间的相似度或距离。
3.合并相似度最高的聚类:选择相似度最高的两个聚类合并为一个新的聚类。
4.更新相似度矩阵:将新的聚类与其他聚类之间的相似度重新计算。
5.重复步骤3和4,直到所有的样本都属于同一个聚类或满足终止条件。
终止条件可以是聚类数目达到预设的数量,或者聚类之间的相似度低于预设的阈值。
一般情况下,层次聚类算法会生成一个层次结构的聚类树,可以通过设置不同的阈值来获取不同级别的聚类结果。
三、层次聚类算法的应用:1.生物学:层次聚类算法可以将蛋白质或基因的表达数据聚类成不同的细胞类型或疾病类别,用来研究生物进化、基因功能等。
2.市场分析:层次聚类算法可以将消费者细分成不同的市场群体,从而帮助企业进行市场营销策略的制定和产品定位。
3.图像分割:层次聚类算法可以将图像中的像素点按照颜色、纹理等特征进行聚类,用于图像分割和目标识别等应用。
4.社交网络分析:层次聚类算法可以将社交网络中的用户聚类成不同的社群,用于研究社交网络的结构和关系。
总结:层次聚类算法是一种常用的聚类分析方法,主要应用于生物学、市场分析、图像分割和社交网络分析等领域。
通过逐步合并或拆分样本,层次聚类算法可以形成聚类层次结构,帮助我们理解数据的内在结构和相似性。
在实际应用中,我们可以根据具体问题选择合适的距离度量和终止条件,以获得满足需求的聚类结果。
一原理基本工作原理给定要聚类的n的对象以及n*n的距离矩阵(或者是相似性矩阵), 层次式聚类方法的基本步骤(参看s.c. johnson in 1967)如下:1. 将每个对象归为一类, 共得到n 类, 每类仅包含一个对象. 类与类之间的距离就是它们所包含的对象之间的距离.1.找到最接近的两个类并合并成一类, 于是总的类数少了一个.3. 重新计算新的类与所有旧类之间的距离.4. 重复第2步和第3步, 直到最后合并成一个类为止(此类包含了n个对象).根据步骤3的不同, 可将层次式聚类方法分为几类: single-linkage, plete-linkage 以及 average-linkage 聚类方法等.2.single-linkage 聚类法(也称 connectedness 或 minimum 方法):3.类间距离等于两类对象之间的最小距离,若用相似度衡量,则是各类中的任一对象与另一类中任一对象的最大相似度。
4.plete-linkage 聚类法 (也称 diameter 或 maximum 方法):5.组间距离等于两组对象之间的最大距离。
6.average-linkage 聚类法:7.组间距离等于两组对象之间的平均距离。
8.average-link 聚类的一个变种是r. d'andrade (1978) 的uclus方法, 它使用的是median距离, 在受异常数据对象的影响方面, 它要比平均距离表现更佳一些.9.参考:10.11.二函数原型12. scipy.cluster.hierarchy.linkage(y, method='single', metric='euclidean',optimal_ordering=false)13.参考自:14.1.1method15.主要是 method 这个参数16. d(u,v) = min(dist(u[i],u[j]))17.对于u中所有点i和v中所有点j。
层次聚类算法python摘要:一、层次聚类算法简介1.层次聚类算法的概念2.层次聚类算法的基本原理二、Python 中层次聚类算法的实现1.常用的Python 库2.层次聚类算法的Python 代码实现三、层次聚类算法的应用1.数据降维2.数据可视化3.文本聚类四、层次聚类算法的优缺点1.优点2.缺点正文:一、层次聚类算法简介层次聚类算法是一种聚类分析方法,它将数据点逐步地合并成越来越大的簇,同时保持聚类的层次结构。
层次聚类算法的基本原理是计算数据点之间的距离,并根据距离将数据点分为不同的簇。
随着簇的不断合并,层次聚类算法可以生成一棵聚类树,树上的每个节点表示一个簇,叶节点表示最终的簇。
二、Python 中层次聚类算法的实现在Python 中,可以使用scikit-learn 库和hcluster 库来实现层次聚类算法。
1.常用的Python 库scikit-learn 库是Python 中常用的机器学习库,其中包括了多种聚类算法,如K-means、DBSCAN 等。
hcluster 库是一个专门用于层次聚类算法的库。
2.层次聚类算法的Python 代码实现以下是使用scikit-learn 库实现层次聚类算法的代码示例:```pythonfrom sklearn.cluster import AgglomerativeClusteringfrom sklearn.datasets import load_irisfrom sklearn.metrics import silhouette_score# 加载数据集data = load_iris()X = data.data# 创建层次聚类对象clustering = AgglomerativeClustering(n_clusters=2)# 进行层次聚类clustering.fit(X)# 计算聚类结果的轮廓系数silhouette = silhouette_score(X, bels_)print("Silhouette Score:", silhouette)```三、层次聚类算法的应用层次聚类算法可以应用于以下方面:1.数据降维:层次聚类算法可以将高维数据降到低维,从而减少数据的维度,便于后续分析。
五种层次聚类法
- K均值聚类:这可能是最知名的聚类算法。
在代码中很容易理解和实现。
该算法的优点是速度非常快,因为它的计算复杂度为线性O(n)。
但缺点是必须选择要使用的类/组的数量,而且结果可能因随机初始化聚类中心而异,缺乏一致性。
- K-Medians聚类:与K-Means类似,但不是使用组的中心点来重新计算组的中心点,而是使用组的中值向量。
这种方法对异常值不太敏感,但对于较大的数据集要慢得多,因为在计算中值向量时,每次迭代都需要进行排序。
- Mean-Shift聚类:这是一种基于滑动窗口的算法,试图找到密集的数据点区域。
这是一个基于中心的算法,通过更新中心点的候选者作为滑动窗口内点的平均值来定位每个组/类的中心点。
然后这些候选窗口被过滤到后处理阶段,以消除近似的重复,形成最终的中心点集及其相应的组。
- DBSCAN Density-Based Spatial Clustering of Applications with Noise)聚类:该算法根据数据点的密度来聚类。
它可以识别任意形状的簇,并且可以处理噪声点。
该算法具有简单、高效的优点,但需要选择两个参数:邻域半径和最小密度阈值。
- OPTICS Ordering Points to Identify the Clustering Structure)聚类:该算法通过创建一个基于距离的层次结构来识别聚类。
它可以处理大型数据集,并且可以识别任意形状的簇。
该算法的优点是速度快,但需要选择一个参数:邻域半径。
聚类算法(五)--层次聚类(系统聚类)及超易懂实例分析博客上看到的,叫做层次聚类,但是《医学统计学》上叫系统聚类(chapter21)思想很简单,想象成⼀颗倒⽴的树,叶节点为样本本⾝,根据样本之间的距离(相似系数),将最近的两样本合并到⼀个根节点,计算新的根节点与其他样本的距离(类间相似系数),距离最⼩的合为新的根节点。
以此类推对于样本X=(x1,x2,,,x m ),共n 个样品,m 个特征,我们可以考虑两种情形聚类R 型聚类:m 个特征之间的聚类,可以理解为⼀种降维。
Q 型聚类:n 个样品之间的聚类,这就是⼀般意义上机器学习中的系统聚类(⽂中的下标i 、j 在R 型、Q 型中的含义不⼀样,聪明的读者⾃⾏分辨)相似系数:R 型(真正意义上的相似系数)(r )r ij =∑X i −¯X i X j −¯X j ∑X i −¯X i 2∑X j −¯X j 2可以看到r ij 越⼤标明两特征相似程度越⾼Q 型(真正意义上的样品距离)(d )闵可夫斯基(Minkowski )距离:px −µi pMinkowski 距离没有考虑变量之间的相关关系。
引进马⽒距离:d ij =X ′S −1X其中X=(X_{i1}-X_{j1} \right , X_{i2}-X_{j2} \right, X_{im}-X_{jm})(不明原因的公式不正确显⽰)类间相似系数:最⼤相似系数法r=Max(r)D=Min(d)|()()|√()()√||最⼩相似系数法r=Min(r)D=Max(d)可以看出,就是⼈为规定了,当某两个指标或样品合并后,新的样本(或指标)与上⼀节点样品(或指标)的距离(或相似系数)的选取现举实例说明测量了300名成年⼥⼦⾝⾼(X1)、下肢长(X2)、腰围(X3)、胸围(X4)得到相似系数矩阵可以看到X1,X2的相似系数最⼤,所以将X1,X2合并为G5X3变为G3,X4变为G4G3与G4的相似系数不变,为0.73G5与G3、G5与G4的类间相似系数采⽤最⼤相似系数法G5与G3的类间相似系数r = Max r即r53=Max(r13,r23)=Max(0.09,0.05)=0.09r54=Max(r14,r24)=Max(0.23,0.17)=0.23所以有根据上述步骤,直到所有的类都归为⼀类。