层次聚类算法共35页
- 格式:ppt
- 大小:228.00 KB
- 文档页数:35
层次聚类最长距离法层次聚类是一种常用的数据分析方法,它可以将数据集划分为不同的群组,以便更好地理解和解释数据。
其中,最长距离法是层次聚类中的一种常见方法,本文将对最长距离法进行详细介绍。
在最长距离法中,首先需要计算数据集中每个样本之间的距离。
常用的距离度量方法有欧氏距离、曼哈顿距离、余弦相似度等。
然后,将每个样本看作一个独立的群组,并将距离最远的两个群组合并为一个新的群组。
这个过程将不断重复,直到所有样本都被合并在一个群组中或达到预设的群组数量。
最长距离法的思想是将距离最远的样本放在不同的群组中,以确保不同群组之间的差异尽可能大。
这种方式可以帮助我们发现数据集中的不同模式和结构,并且在一定程度上可以减少群组内部的差异。
层次聚类的最长距离法可以应用于各种领域,如市场细分、社交网络分析、基因表达分析等。
在市场细分中,我们可以利用层次聚类来将顾客分为不同的细分群体,从而更好地了解不同群体的需求和行为模式。
在社交网络分析中,我们可以利用层次聚类来发现不同的社区结构,从而更好地理解社交网络中的群体关系和信息传播。
在基因表达分析中,我们可以利用层次聚类来发现基因表达的模式,从而更好地理解基因与疾病之间的关系。
最长距离法的一个重要特点是它可以生成一个层次结构的聚类结果。
这个层次结构可以用树状图表示,其中每个节点代表一个群组,节点之间的连接代表群组之间的相似程度。
这个层次结构可以帮助我们更好地理解数据集的整体结构和关系,并且可以根据需要选择不同层次的聚类结果。
层次聚类的最长距离法也有一些局限性。
首先,它对噪声和异常值比较敏感,可能会导致不准确的聚类结果。
因此,在进行层次聚类之前,需要对数据进行预处理,如去除异常值或进行数据归一化。
其次,最长距离法的计算复杂度较高,当数据集较大时,计算时间可能会很长。
因此,在实际应用中,需要根据数据集的规模和计算资源的限制来选择合适的聚类算法。
层次聚类的最长距离法是一种常用的数据分析方法,它通过计算样本之间的距离并将距离最远的样本合并为一个群组来实现数据的聚类。
层次聚类算法层次聚类算法(Hierarchical Clustering Algorithm)是一类数据挖掘的重要方法,它的主要思想是,将最初的n个样本点当成n个单独的聚类,然后依据某一距离度量方式分别计算每两个聚类的距离,从而确定最近距离的两个聚类合并为一个,通过不断合并就可以使得初始点构成的n个聚类缩减成一个。
层次聚类算法可以用来分析数据、挖掘隐藏的知识,它主要包含以下几个步骤:一、算法准备1.计算原始数据集中每个样本之间的距离,通常有曼哈顿距离、欧氏距离等方式可以实现计算,这是层次聚类算法的核心步骤;2.设定阈值,用以控制聚类的数量,实现算法的有效性。
二、算法开始1.将每个样本作为一个单独的簇;2.计算每两个簇之间的距离(根据第一步计算出来的距离);3.将最相近的两个簇合并,更新聚类的数量和距离;4.若聚类的数量不等于预设的数量,则重复步骤2、3,否则结束迭代,给出聚类结果。
三、层次聚类的应用1.人脸识别:用层次聚类算法帮助计算机系统将相近的人脸归为一类;2.文本聚类:在虚拟空间中用层次聚类算法对文本进行聚类,例如聚类微博、聚类博客文章等;3.推荐系统:层次聚类可以在推荐系统中用来分析用户的兴趣点,从而提供更契合用户意愿的服务。
四、层次聚类的优点1.易于控制聚类的数量:用户可以通过设定阈值来控制想要的聚类数量;2.易于可视化:结果可以通过树状图等方式直观可视化;3.准确性较高:可以准确实现用户所关心的目标。
五、层次聚类的缺点1.数据资源要求高:层次聚类算法每次迭代中都需要计算所有数据样本之间的距离,对数据资源要求非常高;2.聚类结果影响大:层次聚类的结果受初始选择的聚类数量的影响很大,可能会出现收敛于局部最优点,不能达到全局最优点;3.高维数据聚类效果不佳:高维数据的距离计算比较复杂,容易导致聚类效果不理想。
总结:层次聚类算法是一类数据挖掘的重要方法,它的核心是将最初的n个样本点当成n 个单独的聚类,依据某一距离度量方式计算每两个聚类之间的距离,然后将最相近的两个聚类合并,不断迭代,最终输出聚类结果,主要应用于人脸识别、文本聚类和推荐系统等。
凝聚的层次聚类算法算法介绍凝聚的层次聚类算法(Agglomerative Hierarchical Clustering Algorithm),简称AGNES,是一种常用的层次聚类算法。
该算法的思想是从每个数据点开始,通过将相邻的点合并为一个簇,逐步凝聚(Agglomerative)簇,直到得到所需的簇数或达到停止条件。
凝聚的层次聚类算法的优点在于不需要预先指定簇的数量,而且可以处理不规则形状的簇。
同时,该算法能够自动获取层次(Hierarchy)信息,即可以得到一个层次树(Dendrogram),用于可视化簇的层次结构。
算法步骤凝聚的层次聚类算法的步骤如下:1.初始化:将每个数据点视为一个簇。
2.计算数据点之间的相似性矩阵,常用的相似性度量有欧氏距离、曼哈顿距离等。
3.找出相似性最高的两个簇,将其合并为一个新的簇。
4.更新相似性矩阵,将被合并的簇视为一个新的数据点,重新计算其与其他簇的相似性。
5.重复步骤3和4,直到达到所需的簇数或停止条件。
6.根据得到的层次树,可以将其剪枝得到所需的簇,也可以根据簇的相似性选择合适的簇数。
相似性度量相似性度量在凝聚的层次聚类算法中起着重要的作用。
常用的相似性度量有欧氏距离、曼哈顿距离、余弦相似度等。
•欧氏距离:假设有两个数据点A(x1, y1)和B(x2, y2),其中x和y是特征的数值。
则欧氏距离可以通过以下公式计算:•曼哈顿距离:假设有两个数据点A(x1, y1)和B(x2, y2),其中x和y是特征的数值。
则曼哈顿距离可以通过以下公式计算:•余弦相似度:假设有两个数据点A(x1, y1)和B(x2, y2),其中x和y是特征的向量。
则余弦相似度可以通过以下公式计算:其中,公式中的·表示向量的内积,|A|和|B|表示向量的模。
簇的合并方式不同的合并方式会影响凝聚的层次聚类算法的结果。
常用的簇的合并方式有单链接(Single Linkage)、完全链接(Complete Linkage)、平均链接(Average Linkage)等。
聚类算法⼀(Kmeans、层次类聚、谱类聚)⼀、 K-means 1、基础1 Clustering 中的经典算法,数据挖掘⼗⼤经典算法之⼀2 算法接受参数 k ;然后将事先输⼊的n个数据对象划分为 k个聚类以便使得所获得的聚类满⾜: 同⼀聚类中的对象相似度较⾼;⽽不同聚类中的对象相似度较⼩。
3 算法思想:以空间中k个点为中⼼进⾏聚类,对最靠近他们的对象归类。
通过迭代的⽅法,逐次更新各聚类中⼼的值,直⾄得到最好的聚类结果4 算法描述:(1)适当选择c个类的初始中⼼;(2)在第k次迭代中,对任意⼀个样本,求其到c各中⼼的距离,将该样本归到距离最短的中⼼所在的类;(3)利⽤均值等⽅法更新该类的中⼼值;(4)对于所有的c个聚类中⼼,如果利⽤(2)(3)的迭代法更新后,值保持不变,则迭代结束;否则,则继续迭代。
2、算法流程:输⼊:k, data[n];(1)选择k个初始中⼼点,例如c[0]=data[0],…c[k-1]=data[k-1];(2)对于data[0]….data[n], 分别与c[0]…c[k-1]⽐较,假定与c[i]差值最少,就标记为i;(3)对于所有标记为i点,重新计算c[i]={ 所有标记为i的data[j]之和}/标记为i的个数;(4)重复(2)(3),直到所有c[i]值的变化⼩于给定阈值。
3、优缺点 优点:速度快,简单 缺点:最终结果跟初始点选择相关,容易陷⼊局部最优,需直到k值⼆、层次类聚 上篇k-means算法却是⼀种⽅便好⽤的聚类算法,但是始终有K值选择和初始聚类中⼼点选择的问题,⽽这些问题也会影响聚类的效果。
为了避免这些问题,我们可以选择另外⼀种⽐较实⽤的聚类算法-层次聚类算法。
顾名思义,层次聚类就是⼀层⼀层的进⾏聚类,可以由上向下把⼤的类别(cluster)分割,叫作分裂法;也可以由下向上对⼩的类别进⾏聚合,叫作凝聚法;但是⼀般⽤的⽐较多的是由下向上的凝聚⽅法。
1、分裂法: 分裂法指的是初始时将所有的样本归为⼀个类簇,然后依据某种准则进⾏逐渐的分裂,直到达到某种条件或者达到设定的分类数⽬。
层次聚类算法python摘要:一、层次聚类算法简介1.层次聚类算法的概念2.层次聚类算法的基本原理二、Python 中层次聚类算法的实现1.常用的Python 库2.层次聚类算法的Python 代码实现三、层次聚类算法的应用1.数据降维2.数据可视化3.文本聚类四、层次聚类算法的优缺点1.优点2.缺点正文:一、层次聚类算法简介层次聚类算法是一种聚类分析方法,它将数据点逐步地合并成越来越大的簇,同时保持聚类的层次结构。
层次聚类算法的基本原理是计算数据点之间的距离,并根据距离将数据点分为不同的簇。
随着簇的不断合并,层次聚类算法可以生成一棵聚类树,树上的每个节点表示一个簇,叶节点表示最终的簇。
二、Python 中层次聚类算法的实现在Python 中,可以使用scikit-learn 库和hcluster 库来实现层次聚类算法。
1.常用的Python 库scikit-learn 库是Python 中常用的机器学习库,其中包括了多种聚类算法,如K-means、DBSCAN 等。
hcluster 库是一个专门用于层次聚类算法的库。
2.层次聚类算法的Python 代码实现以下是使用scikit-learn 库实现层次聚类算法的代码示例:```pythonfrom sklearn.cluster import AgglomerativeClusteringfrom sklearn.datasets import load_irisfrom sklearn.metrics import silhouette_score# 加载数据集data = load_iris()X = data.data# 创建层次聚类对象clustering = AgglomerativeClustering(n_clusters=2)# 进行层次聚类clustering.fit(X)# 计算聚类结果的轮廓系数silhouette = silhouette_score(X, bels_)print("Silhouette Score:", silhouette)```三、层次聚类算法的应用层次聚类算法可以应用于以下方面:1.数据降维:层次聚类算法可以将高维数据降到低维,从而减少数据的维度,便于后续分析。
2024年大数据应用及处理技术能力知识考试题库与答案一、单选题1.当图像通过信道传输时,噪声一般与()无关。
A、信道传输的质量B、出现的图像信号C、是否有中转信道的过程D、图像在信道前后的处理参考答案:B2.在留出法、交叉验证法和自助法三种评估方法中,()更适用于数据集较小、难以划分训练集和测试集的情况。
A、留出法B、交叉验证法C、自助法D、留一法参考答案:C3.在数据科学中,通常可以采用()方法有效避免数据加工和数据备份的偏见。
A、A/B测试B、训练集和测试集的划分C、测试集和验证集的划分D、图灵测试参考答案:A4.下列不属于深度学习内容的是(_)oA、深度置信网络B、受限玻尔兹曼机C、卷积神经网络D、贝叶斯学习参考答案:D5.在大数据项目中,哪个阶段可能涉及使用数据工程师来优化数据查询性能?A、数据采集B、数据清洗C、数据存储与管理D、数据分析与可视化参考答案:C6.假定你现在训练了一个线性SVM并推断出这个模型出现了欠拟合现象,在下一次训练时,应该采取下列什么措施()A、增加数据点B、减少数据点C、增加特征D、减少特征参考答案:C7.两个变量相关,它们的相关系数r可能为0?这句话是否正确0A、正确B、错误参考答案:A8.一幅数字图像是()。
A、一个观测系统B、一个由许多像素排列而成的实体C、一个2-D数组中的元素D、一个3-D空间中的场景参考答案:C9.以下说法正确的是:()。
一个机器学习模型,如果有较高准确率,总是说明这个分类器是好的如果增加模型复杂度,那么模型的测试错误率总是会降低如果增加模型复杂度,那么模型的训练错误率总是会降低A、1B、2C、3D、land3参考答案:c10.从网络的原理上来看,结构最复杂的神经网络是0。
A、卷积神经网络B、长短时记忆神经网络C、GRUD、BP神经网络参考答案:B11.LSTM中,(_)的作用是确定哪些新的信息留在细胞状态中,并更新细胞状态。
A、输入门B、遗忘门G输出门D、更新门参考答案:A12.Matplotiib的核心是面向()。
列举常用聚类算法聚类算法是一种将数据集中的相似数据分组的方法。
它是无监督学习的一种应用,可以在没有标签或类别信息的情况下对数据进行分类。
在机器学习和数据挖掘中,聚类算法被广泛应用于数据分析、图像处理、模式识别等领域。
本文将列举常用的聚类算法。
一、K均值聚类算法(K-means Clustering)K均值聚类算法是一种基于距离度量的聚类方法,它将数据集划分为K 个簇,每个簇包含距离其它簇最近的点。
该算法首先随机选择K个点作为初始质心,然后将每个点分配到与其距离最近的质心所在的簇中,并计算每个簇内所有点的平均值作为新的质心。
重复以上过程直到质心不再改变或达到预定迭代次数。
二、层次聚类算法(Hierarchical Clustering)层次聚类算法是一种自下而上或自上而下逐步合并或拆分簇来建立层次结构的方法。
该算法有两种实现方式:凝聚层次聚类和分裂层次聚类。
凝聚层次聚类从每个数据点开始,将它们逐步合并成越来越大的簇,直到所有点都被合并为一个簇。
分裂层次聚类从整个数据集开始,将其逐步拆分成越来越小的簇,直到每个簇只包含一个点。
三、DBSCAN聚类算法(Density-Based Spatial Clustering of Applications with Noise)DBSCAN聚类算法是一种基于密度的聚类方法,它可以识别任意形状的簇,并能够自动排除离群值。
该算法首先选择一个未访问的核心点作为起始点,并找到其可达范围内的所有点,并将它们加入同一簇中。
然后继续寻找未访问的核心点,并重复以上过程直到所有核心点都被访问完毕。
四、谱聚类算法(Spectral Clustering)谱聚类算法是一种基于图论和线性代数的聚类方法,它将数据集看作是一个图,在图上进行划分。
该算法首先构建一个相似度矩阵或邻接矩阵,并通过特征值分解或奇异值分解来获取特征向量和特征值。
然后将特征向量作为新的数据集,使用K均值或层次聚类等方法对其进行聚类。
一、层次聚类1、层次聚类的原理及分类1层次法Hierarchical methods先计算样本之间的距离;每次将距离最近的点合并到同一个类;然后,再计算类与类之间的距离,将距离最近的类合并为一个大类;不停的合并,直到合成了一个类;其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等;比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离;层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法agglomerative和divisive,也可以理解为自下而上法bottom-up和自上而下法top-down;自下而上法就是一开始每个个体object都是一个类,然后根据linkage寻找同类,最后形成一个“类”;自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”;这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快;至于根据Linkage判断“类”的方法就是最短距离法、最长距离法、中间距离法、类平均法等等其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中;为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位;2Hierarchical methods中比较新的算法有BIRCHBalanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类主要是在数据量很大的时候使用,而且数据类型是numerical;首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCKA Hierarchical Clustering Algorithm for Categorical Attributes主要用在categorical 的数据类型上;ChameleonA Hierarchical Clustering Algorithm Using Dynamic Modeling里用到的linkage是kNNk-nearest-neighbor算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,On^2;2、层次聚类的流程凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足;绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同;这里给出采用最小距离的凝聚层次聚类算法流程:1 将每个对象看作一类,计算两两之间的最小距离;2 将距离最小的两个类合并成一个新类;3 重新计算新类与所有类之间的距离;4 重复2、3,直到所有类最后合并成一类;聚类的效果如下图,黑色是噪音点:另外我们可以看出凝聚的层次聚类并没有类似基本K均值的全局目标函数,没有局部极小问题或是很难选择初始点的问题;合并的操作往往是最终的,一旦合并两个簇之后就不会撤销;当然其计算存储的代价是昂贵的;3、层次聚类的优缺点优点:1,距离和规则的相似度容易定义,限制少;2,不需要预先制定聚类数;3,可以发现类的层次关系;4,可以聚类成其它形状缺点:1,计算复杂度太高;2,奇异值也能产生很大影响;3,算法很可能聚类成链状r语言中使用hclustd, method = "complete", members=NULL:进行层次聚类;d为距离矩阵;method 表示类的合并方法,single最短距离法,complete最长距离法,median中间距离法,mcquitty相似法,average类平均法,centroid重心法,ward离差平方和法;members为NULL或d长度的矢量;二、划分聚类法k-means基于划分的方法Partition-based methods:其原理简单来说就是,想象你有一堆散点需要聚类,想要的聚类效果就是“类内的点都足够近,类间的点都足够远”;首先你要确定这堆散点最后聚成几类,然后挑选几个点作为初始中心点,再然后依据预先定好的启发式算法heuristic algorithms给数据点做迭代重置iterative relocation,直到最后到达“类内的点都足够近,类间的点都足够远”的目标效果;Partition-based methods聚类多适用于中等体量的数据集,但我们也不知道“中等”到底有多“中”,所以不妨理解成,数据集越大,越有可能陷入局部最小;1、Kmeans算法的原理k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低;k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心,即选择K个初始质心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值; 这个过程不断重复,直到准则函数收敛,直到质心不发生明显的变化;通常,采用平方误差准则,误差的平方和SSE作为全局的目标函数,即最小化每个点到最近质心的欧几里得距离的平方和;此时,簇的质心就是该簇内所有数据点的平均值;选择K个点作为初始质心repeat将每个点指派到最近的质心,形成K个簇重新计算每个簇的质心until簇不发生变化或达到最大迭代次数时间复杂度:OtKmn,其中,t为迭代次数,K为簇的数目,m为记录数,n为维数空间复杂度:Om+Kn,其中,K为簇的数目,m为记录数,n为维数K-Means 算法的详细过程从上图中,我们可以看到,A, B, C, D, E 是五个在图中点;而灰色的点是我们的种子点,也就是我们用来找点群的点;有两个种子点,所以K=2;然后,K-Means的算法如下:①随机在图中取K这里K=2个种子点;②然后对图中的所有点求到这K个种子点的距离,假如点Pi离种子点Si最近,那么Pi属于Si点群;我们可以看到A,B属于上面的种子点,C,D,E属于下面中部的种子点③接下来,我们要移动种子点到属于他的“点群”的中心;见图上的第三步④然后重复第2和第3步,直到,种子点没有移动我们可以看到图中的第四步上面的种子点聚合了A,B,C,下面的种子点聚合了D,E;聚类的效果如下图,折线是历次循环时3个簇的质心的更新轨迹,黑点是初始质心:我们查看基本K均值算法实现步骤及上面的聚类效果可以发现,该聚类算法将所有数据点都进行了指派,不识别噪音点;另外选择适当的初试质心是基本K均值过程的关键;2、k均值的优缺点及分类优点:1,简单,易于理解和实现;2,时间复杂度低缺点:1kmeans要手工输入类数目,对初始值的设置很敏感;所以有了k-means++、intelligent k-means、genetic k-means;2k-means对噪声和离群值非常敏感,所以有了k-medoids和k-medians;3k-means只用于numerical类型数据,不适用于categorical类型数据,所以k-modes;4k-means不能解决非凸non-convex数据,所以有了kernel k-means;5k-means主要发现圆形或者球形簇,不能识别非球形的簇;3、k-means与DBSCAN的区别k-means聚类算法的初始点选择不稳定,是随机选取的,这就引起聚类结果的不稳定;k-means属于动态聚类,往往聚出来的类有点圆形或者椭圆形;kmeans对于圆形区域聚类效果较好,dbscan基于密度,对于集中区域效果较好;对于不规则形状,kmeans完全无法用,dbscan可以起到很好的效果;4、k-means注意问题1K如何确定kmenas算法首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数;这样做的前提是我们已经知道数据集中包含多少个簇,但很多情况下,我们并不知道数据的分布情况,实际上聚类就是我们发现数据分布的一种手段;如何有效的确定K值,这里大致提供几种方法:①与层次聚类结合2经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类;②稳定性方法3稳定性方法对一个数据集进行2次重采样产生2个数据子集,再用相同的聚类算法对2个数据子集进行聚类,产生2个具有k个聚类的聚类结果,计算2个聚类结果的相似度的分布情况;2个聚类结果具有高的相似度说明k个聚类反映了稳定的聚类结构,其相似度可以用来估计聚类个数;采用次方法试探多个k,找到合适的k值;③系统演化方法3系统演化方法将一个数据集视为伪热力学系统,当数据集被划分为K个聚类时称系统处于状态K;系统由初始状态K=1出发,经过分裂过程和合并过程,系统将演化到它的稳定平衡状态Ki,所对应的聚类结构决定了最优类数Ki;系统演化方法能提供关于所有聚类之间的相对边界距离或可分程度,适用于明显分离的聚类结构和轻微重叠的聚类结构;④使用canopy算法进行初始划分4基于Canopy Method的聚类算法将聚类过程分为两个阶段Stage1、聚类最耗费计算的地方是计算对象相似性的时候,Canopy Method在第一阶段选择简单、计算代价较低的方法计算对象相似性,将相似的对象放在一个子集中,这个子集被叫做Canopy ,通过一系列计算得到若干Canopy,Canopy之间可以是重叠的,但不会存在某个对象不属于任何Canopy的情况,可以把这一阶段看做数据预处理;Stage2、在各个Canopy 内使用传统的聚类方法如K-means,不属于同一Canopy 的对象之间不进行相似性计算;从这个方法起码可以看出两点好处:首先,Canopy 不要太大且Canopy 之间重叠的不要太多的话会大大减少后续需要计算相似性的对象的个数;其次,类似于K-means这样的聚类方法是需要人为指出K 的值的,通过Stage1得到的Canopy 个数完全可以作为这个K值,一定程度上减少了选择K的盲目性;其他方法如贝叶斯信息准则方法BIC可参看文献5;2初始质心的选取选择适当的初始质心是基本kmeans算法的关键步骤;常见的方法是随机的选取初始质心,但是这样簇的质量常常很差;处理选取初始质心问题的一种常用技术是:多次运行,每次使用一组不同的随机初始质心,然后选取具有最小SSE误差的平方和的簇集;这种策略简单,但是效果可能不好,这取决于数据集和寻找的簇的个数;第二种有效的方法是,取一个样本,并使用层次聚类技术对它聚类;从层次聚类中提取K个簇,并用这些簇的质心作为初始质心;该方法通常很有效,但仅对下列情况有效:1样本相对较小,例如数百到数千层次聚类开销较大;2K相对于样本大小较小第三种选择初始质心的方法,随机地选择第一个点,或取所有点的质心作为第一个点;然后,对于每个后继初始质心,选择离已经选取过的初始质心最远的点;使用这种方法,确保了选择的初始质心不仅是随机的,而且是散开的;但是,这种方法可能选中离群点;此外,求离当前初始质心集最远的点开销也非常大;为了克服这个问题,通常该方法用于点样本;由于离群点很少多了就不是离群点了,它们多半不会在随机样本中出现;计算量也大幅减少;第四种方法就是上面提到的canopy算法;3距离的度量常用的距离度量方法包括:欧几里得距离和余弦相似度;两者都是评定个体间差异的大小的;欧几里得距离度量会受指标不同单位刻度的影响,所以一般需要先进行标准化,同时距离越大,个体间差异越大;空间向量余弦夹角的相似度度量不会受指标刻度的影响,余弦值落于区间-1,1,值越大,差异越小;但是针对具体应用,什么情况下使用欧氏距离,什么情况下使用余弦相似度从几何意义上来说,n维向量空间的一条线段作为底边和原点组成的三角形,其顶角大小是不确定的;也就是说对于两条空间向量,即使两点距离一定,他们的夹角余弦值也可以随意变化;感性的认识,当两用户评分趋势一致时,但是评分值差距很大,余弦相似度倾向给出更优解;举个极端的例子,两用户只对两件商品评分,向量分别为3,3和5,5,这两位用户的认知其实是一样的,但是欧式距离给出的解显然没有余弦值合理;4质心的计算对于距离度量不管是采用欧式距离还是采用余弦相似度,簇的质心都是其均值,即向量各维取平均即可;5算法停止条件一般是目标函数达到最优或者达到最大的迭代次数即可终止;对于不同的距离度量,目标函数往往不同;当采用欧式距离时,目标函数一般为最小化对象到其簇质心的距离的平方和;当采用余弦相似度时,目标函数一般为最大化对象到其簇质心的余弦相似度和;6空聚类的处理如果所有的点在指派步骤都未分配到某个簇,就会得到空簇;如果这种情况发生,则需要某种策略来选择一个替补质心,否则的话,平方误差将会偏大;一种方法是选择一个距离当前任何质心最远的点;这将消除当前对总平方误差影响最大的点;另一种方法是从具有最大SSE的簇中选择一个替补的质心;这将分裂簇并降低聚类的总SSE;如果有多个空簇,则该过程重复多次;另外,编程实现时,要注意空簇可能导致的程序bug;三、基于密度的聚类基于密度的方法Density-based methods:k-means解决不了不规则形状的聚类;于是就有了Density-based methods来系统解决这个问题;该方法同时也对噪声数据的处理比较好;基于密度聚类的思想:思路就是定一个距离半径,最少有多少个点,然后把可以到达的点都连起来,判定为同类;其原理简单说画圈儿,其中要定义两个参数,一个是圈儿的最大半径,一个是一个圈儿里最少应容纳几个点;最后在一个圈里的,就是一个类;DBSCAN Density-Based Spatial Clustering of Applications with Noise就是其中的典型,可惜参数设置也是个问题,对这两个参数的设置非常敏感;DBSCAN的扩展叫OPTICSOrdering Points To Identify Clustering Structure通过优先对高密度high density进行搜索,然后根据高密度的特点设置参数,改善了DBSCAN的不足;1、DBSCAN的概念dbscan基于密度,对于集中区域效果较好,为了发现任意形状的簇,这类方法将簇看做是数据空间中被低密度区域分割开的稠密对象区域;一种基于高密度连通区域的基于密度的聚类方法,该算法将具有足够高密度的区域划分为簇,并在具有噪声的空间数据中发现任意形状的簇;DBSCAN中的几个定义:Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域;核心对象:如果给定对象Ε领域内的样本点数大于等于MinPts,则称该对象为核心对象;直接密度可达:对于样本集合D,如果样本点q在p的Ε领域内,并且p为核心对象,那么对象q从对象p直接密度可达;密度可达:对于样本集合D,给定一串样本点p1,p2….pn,p= p1,q= pn,假如对象pi从pi-1直接密度可达,那么对象q从对象p密度可达;注意:密度可达是单向的,密度可达即可容纳同一类;密度相连:存在样本集合D中的一点o,如果对象o到对象p和对象q都是密度可达的,那么p和q密度相联;密度可达是直接密度可达的传递闭包,并且这种关系是非对称的;密度相连是对称关系;DBSCAN目的是找到密度相连对象的最大集合;有了以上的概念接下来就是算法描述了:DBSCAN通过检查数据库中每点的r邻域来搜索簇;如果点p 的r邻域包含的点多于MinPts个,则创建一个以p为核心对象的新簇;然后,DBSCAN迭代的聚集从这些核心对象直接密度可达的对象,这个过程可能涉及一些密度可达簇的合并;当没有新的点可以添加到任何簇时,该过程结束;例如:Eg: 假设半径Ε=3,MinPts=3,点p的E领域中有点{m,p,p1,p2,o}, 点m的E领域中有点{m,q,p,m1,m2},点q的E领域中有点{q,m},点o的E领域中有点{o,p,s},点s的E领域中有点{o,s,s1}.那么核心对象有p,m,o,sq不是核心对象,因为它对应的E领域中点数量等于2,小于MinPts=3;点m从点p直接密度可达,因为m在p的E领域内,并且p为核心对象;点q从点p密度可达,因为点q从点m直接密度可达,并且点m从点p直接密度可达;点q到点s密度相连,因为点q从点p密度可达,并且s从点p密度可达;2、簇的生成原理及过程1DBSCAN聚类算法原理的基本要点:确定半径eps的值①DBSCAN算法需要选择一种距离度量,对于待聚类的数据集中,任意两个点之间的距离,反映了点之间的密度,说明了点与点是否能够聚到同一类中;由于DBSCAN算法对高维数据定义密度很困难,所以对于二维空间中的点,可以使用欧几里德距离来进行度量;②DBSCAN算法需要用户输入2个参数:一个参数是半径Eps,表示以给定点P为中心的圆形邻域的范围;另一个参数是以点P为中心的邻域内最少点的数量MinPts;如果满足:以点P为中心、半径为Eps 的邻域内的点的个数不少于MinPts,则称点P为核心点;③DBSCAN聚类使用到一个k-距离的概念,k-距离是指:给定数据集P={pi; i=0,1,…n},对于任意点Pi,计算点Pi到集合D的子集S={p1, p2, …, pi-1, pi+1, …, pn}中所有点之间的距离,距离按照从小到大的顺序排序,假设排序后的距离集合为D={d1, d2, …, dk-1, dk, dk+1, …,dn},则dk就被称为k-距离;也就是说,k-距离是点pi到所有点除了pi点之间距离第k近的距离;对待聚类集合中每个点pi都计算k-距离,最后得到所有点的k-距离集合E={e1, e2, …, en};④根据经验计算半径Eps:根据得到的所有点的k-距离集合E,对集合E进行升序排序后得到k-距离集合E’,需要拟合一条排序后的E’集合中k-距离的变化曲线图,然后绘出曲线,通过观察,将急剧发生变化的位置所对应的k-距离的值,确定为半径Eps的值;⑤根据经验计算最少点的数量MinPts:确定MinPts的大小,实际上也是确定k-距离中k的值,DBSCAN 算法取k=4,则MinPts=4;⑥另外,如果觉得经验值聚类的结果不满意,可以适当调整Eps和MinPts的值,经过多次迭代计算对比,选择最合适的参数值;可以看出,如果MinPts不变,Eps取得值过大,会导致大多数点都聚到同一个簇中,Eps过小,会导致一个簇的分裂;如果Eps不变,MinPts的值取得过大,会导致同一个簇中点被标记为噪声点,MinPts过小,会导致发现大量的核心点;我们需要知道的是,DBSCAN算法,需要输入2个参数,这两个参数的计算都来自经验知识;半径Eps的计算依赖于计算k-距离,DBSCAN取k=4,也就是设置MinPts=4,然后需要根据k-距离曲线,根据经验观察找到合适的半径Eps的值;2连通核心点生成簇核心点能够连通有些书籍中称为:“密度可达”,它们构成的以Eps长度为半径的圆形邻域相互连接或重叠,这些连通的核心点及其所处的邻域内的全部点构成一个簇;假设MinPts=4,则连通的核心点示例,如下图所示:计算连通的核心点的思路是,基于广度遍历与深度遍历集合的方式:从核心点集合S中取出一个点p,计算点p与S集合中每个点除了p点是否连通,可能会得到一个连通核心点的集合C1,然后从集合S中删除点p和C1集合中的点,得到核心点集合S1;再从S1中取出一个点p1,计算p1与核心点集合S1集中每个点除了p1点是否连通,可能得到一个连通核心点集合C2,再从集合S1中删除点p1和C2集合中所有点,得到核心点集合S2,……最后得到p、p1、p2、……,以及C1、C2、……就构成一个簇的核心点;最终将核心点集合S中的点都遍历完成,得到所有的簇;参数eps的设置,如果eps设置过大,则所有的点都会归为一个簇,如果设置过小,那么簇的数目会过多;如果MinPts设置过大的话,很多点将被视为噪声点;3、根据数据点的密度分为三类点:1核心点:该点在邻域内的密度超过给定的阀值MinPs;2边界点:该点不是核心点,但是其邻域内包含至少一个核心点;3噪音点:不是核心点,也不是边界点;有了以上对数据点的划分,聚合可以这样进行:各个核心点与其邻域内的所有核心点放在同一个簇中,把边界点跟其邻域内的某个核心点放在同一个簇中;聚类的效果如下图,黑色是噪音点:初识聚类算法:因为DBSCAN使用簇的基于密度的定义,因此它是相对抗噪音的,并且能处理任意形状和大小的簇;但是如果簇的密度变化很大,例如ABCD四个簇,AB的密度大大大于CD,而且AB附近噪音的密度与簇CD 的密度相当,这是当MinPs较大时,无法识别簇CD,簇CD和AB附近的噪音都被认为是噪音;当MinPs 较小时,能识别簇CD,但AB跟其周围的噪音被识别为一个簇;这个问题可以基于共享最近邻SNN的聚类结局;4、DBSCAN的优缺点:优点:1. 与K-means方法相比,DBSCAN不需要事先知道要形成的簇类的数量;2. 与K-means方法相比,DBSCAN可以发现任意形状的簇类;3. 同时,DBSCAN能够识别出噪声点;对于数据库中样本的顺序不敏感,即Pattern的输入顺序对结果的影响不大;但是,对于处于簇类之间边界样本,可能会根据哪个簇类优先被探测到而其归属有所摆动;缺点:1. DBScan不能很好反映高尺寸数据;2. DBScan不能很好反映数据集变化的密度;3.对于高维数据,点之间极为稀疏,密度就很难定义了;。
各种聚类算法的比较聚类的目标是使同一类对象的相似度尽可能地小;不同类对象之间的相似度尽可能地大。
目前聚类的方法很多,根据基本思想的不同,大致可以将聚类算法分为五大类:层次聚类算法、分割聚类算法、基于约束的聚类算法、机器学习中的聚类算法和用于高维度的聚类算法。
摘自数据挖掘中的聚类分析研究综述这篇论文。
1、层次聚类算法1.1聚合聚类1.1.1相似度依据距离不同:Single-Link:最近距离、Complete-Link:最远距离、Average-Link:平均距离1.1.2最具代表性算法1)CURE算法特点:固定数目有代表性的点共同代表类优点:识别形状复杂,大小不一的聚类,过滤孤立点2)ROCK算法特点:对CURE算法的改进优点:同上,并适用于类别属性的数据3)CHAMELEON算法特点:利用了动态建模技术1.2分解聚类1.3优缺点优点:适用于任意形状和任意属性的数据集;灵活控制不同层次的聚类粒度,强聚类能力缺点:大大延长了算法的执行时间,不能回溯处理2、分割聚类算法2.1基于密度的聚类2.1.1特点将密度足够大的相邻区域连接,能有效处理异常数据,主要用于对空间数据的聚类1)DBSCAN:不断生长足够高密度的区域2)DENCLUE:根据数据点在属性空间中的密度进行聚类,密度和网格与处理的结合3)OPTICS、DBCLASD、CURD:均针对数据在空间中呈现的不同密度分不对DBSCAN作了改进2.2基于网格的聚类2.2.1特点利用属性空间的多维网格数据结构,将空间划分为有限数目的单元以构成网格结构;1)优点:处理时间与数据对象的数目无关,与数据的输入顺序无关,可以处理任意类型的数据2)缺点:处理时间与每维空间所划分的单元数相关,一定程度上降低了聚类的质量和准确性2.2.2典型算法1)STING:基于网格多分辨率,将空间划分为方形单元,对应不同分辨率2)STING+:改进STING,用于处理动态进化的空间数据3)CLIQUE:结合网格和密度聚类的思想,能处理大规模高维度数据4)WaveCluster:以信号处理思想为基础2.3基于图论的聚类2.3.1特点转换为组合优化问题,并利用图论和相关启发式算法来解决,构造数据集的最小生成数,再逐步删除最长边1)优点:不需要进行相似度的计算2.3.2两个主要的应用形式1)基于超图的划分2)基于光谱的图划分2.4基于平方误差的迭代重分配聚类2.4.1思想逐步对聚类结果进行优化、不断将目标数据集向各个聚类中心进行重新分配以获最优解1)概率聚类算法期望最大化、能够处理异构数据、能够处理具有复杂结构的记录、能够连续处理成批的数据、具有在线处理能力、产生的聚类结果易于解释2)最近邻聚类算法——共享最近邻算法SNN特点:结合基于密度方法和ROCK思想,保留K最近邻简化相似矩阵和个数不足:时间复杂度提高到了O(N^2)3)K-Medioids算法特点:用类中的某个点来代表该聚类优点:能处理任意类型的属性;对异常数据不敏感4)K-Means算法1》特点:聚类中心用各类别中所有数据的平均值表示2》原始K-Means算法的缺陷:结果好坏依赖于对初始聚类中心的选择、容易陷入局部最优解、对K值的选择没有准则可依循、对异常数据较为敏感、只能处理数值属性的数据、聚类结构可能不平衡3》K-Means的变体Bradley和Fayyad等:降低对中心的依赖,能适用于大规模数据集Dhillon等:调整迭代过程中重新计算中心方法,提高性能Zhang等:权值软分配调整迭代优化过程Sarafis:将遗传算法应用于目标函数构建中Berkh in等:应用扩展到了分布式聚类还有:采用图论的划分思想,平衡聚类结果,将原始算法中的目标函数对应于一个各向同性的高斯混合模型5)优缺点优点:应用最为广泛;收敛速度快;能扩展以用于大规模的数据集缺点:倾向于识别凸形分布、大小相近、密度相近的聚类;中心选择和噪声聚类对结果影响大3、基于约束的聚类算法3.1约束对个体对象的约束、对聚类参数的约束;均来自相关领域的经验知识3.2重要应用对存在障碍数据的二维空间按数据进行聚类,如COD(Clustering with Obstructed Distance):用两点之间的障碍距离取代了一般的欧式距离3.3不足通常只能处理特定应用领域中的特定需求4、用于高维数据的聚类算法4.1困难来源因素1)无关属性的出现使数据失去了聚类的趋势2)区分界限变得模糊4.2解决方法1)对原始数据降维2)子空间聚类CACTUS:对原始空间在二维平面上的投影CLIQUE:结合基于密度和网格的聚类思想,借鉴Apriori算法3)联合聚类技术特点:对数据点和属性同时进行聚类文本:基于双向划分图及其最小分割的代数学方法4.3不足:不可避免地带来了原始数据信息的损失和聚类准确性的降低5、机器学习中的聚类算法5.1两个方法1)人工神经网络方法自组织映射:向量化方法,递增逐一处理;映射至二维平面,实现可视化基于投影自适应谐振理论的人工神经网络聚类2)基于进化理论的方法缺陷:依赖于一些经验参数的选取,并具有较高的计算复杂度模拟退火:微扰因子;遗传算法(选择、交叉、变异)5.2优缺点优点:利用相应的启发式算法获得较高质量的聚类结果缺点:计算复杂度较高,结果依赖于对某些经验参数的选择。
基于层次的聚类算法
基于层次的聚类算法是一种常见的数据分析方法。
该算法将数据集分为不同的层次,每个层次包含一组相似的数据点。
在聚类的过程中,该算法会不断合并相似的层次,直到最终形成一个聚类集合。
基于层次的聚类算法可以分为两种:自上而下的聚合聚类和自下而上的分裂聚类。
自上而下的聚合聚类从整个数据集开始,根据数据点之间的相似性逐步合并聚类。
而自下而上的分裂聚类则从单个数据点开始,逐步将其划分为不同的聚类。
在基于层次的聚类算法中,需要选择合适的相似度度量和聚类合并策略。
常用的相似度度量包括欧几里得距离、曼哈顿距离和余弦相似度等。
而聚类合并策略则包括单链接、完全链接和均值链接等。
基于层次的聚类算法广泛应用于数据挖掘、生物信息学和图像处理等领域。
它可以帮助我们发现数据集中的内在结构和模式,从而更好地理解和分析数据。
- 1 -。