动能、动能定理、做功和能量的关系
- 格式:doc
- 大小:130.00 KB
- 文档页数:7
功和能、动能、动能定理
知识总结归纳
1. 能的概念:粗浅地说,如果一个物体能够对外界做功,我们就说物体具有能量。
能量有各种不同的形式。
2. 功和能关系:各种不同形式的能可通过做功来转化,能转化的多少通过功来量度,即功是能转化的量度。
3.动能定义:物体由于运动而具有的能叫做动能。
表达式:122:物体由于运动而具有的能叫做动能。
表达式:E mv k =
注意:动能是状态量,只与运动物体的质量以及速率有关,而与其运动方向无关,能是标量,只有大小,没有方向,单位是焦耳(J )。
4. 动能定理的推导:设物体质量为m ,初速度为v 1,在与运动方向同向的恒定合外力F 作用下,发生一段位移s ,速度增加到v 2。
由F=ma 和联立解得:
由和联立解得:F ma v v as Fs mv mv =-==-221
2221221212 5.动能定理公式:末初W E E k k k ==-∆E
注意:W 为合外力做的功或外力做功的代数和,ΔE k 是物体动能的增量;ΔE k 为正值时,说明物体动能增加,ΔE k 为负值时,说明物体动能减少。
6. 应用动能定理进行解题的一般步骤:
(1)确定研究对象,明确它的运动过程;
(2)分析物体在运动过程中的受力情况,明确各个力是否做功,是正功还是负功;
(3)明确起始状态和终了状态的动能。
()用列方程求解总421W E E k k k ==-∆E。
物理总复习:动能、动能定理【考纲要求】 1、理解动能定理,明确外力对物体所做的总功与物体动能变化的关系;2、会用动能定理分析相关物理过程;3、熟悉动能定理的运用技巧;4、知道力学中各种能量变化和功的关系,会用动能定理分析问题。
【知识网络】【考点梳理】考点一、动能动能是物体由于运动所具有的能,其计算公式为212k E mv =。
动能是标量,其单位与 功的单位相同。
国际单位是焦耳(J )。
考点二、动能定理1、动能定理合外力对物体所做的功等于物体动能的变化,这个结论叫做动能定理。
2、动能定理的表达式21k k W E E =-。
式中W 为合外力对物体所做的功,2k E 为物体末状态的动能,1k E 为物体初状态的动能。
动能定理的计算式为标量式,v 为相对同一参考系的速度,中学物理中一般取地球为参考系。
要点诠释:1、若物体运动过程中包含几个不同的过程,应用动能定理时,可以分段考虑,也可以视全过程为整体来处理。
2、应用动能定理解题的基本步骤(1)选取研究对象,明确它的运动过程。
(2)分析研究对象的受力情况和各个力的做功情况:受哪些力?每个力是否做功?做正功还是做负功?做多少功?然后求各个外力做功的代数和。
(3)明确物体在始、末状态的动能1k E 和2k E 。
(4)列出动能定理的方程21k k W E E =-及其他必要的辅助方程,进行求解。
动能定理中的W 总是物体所受各力对物体做的总功,它等于各力做功的代数和,即123=W W W W +++⋅⋅⋅总若物体所受的各力为恒力时,可先求出F 合,再求cos W F l α=总合3、一个物体动能的变化k E ∆与合外力做的功W 总具有等量代换的关系。
因为动能定理实质上反映了物体动能的变化,是通过外力做功来实现的,并可以用合外力的功来量度。
0k E ∆>,表示物体动能增加,其增加量就等于合外力做的功;0k E ∆<,表示物体动能减少,其减少量就等于合外力做负功的绝对值;0k E ∆=,表示物体动能不变,合外力对物体不做功。
物理总复习:动能、动能定理编稿:李传安审稿:张金虎【考纲要求】1、理解动能定理,明确外力对物体所做的总功与物体动能变化的关系;2、会用动能定理分析相关物理过程;3、熟悉动能定理的运用技巧;4、知道力学中各种能量变化和功的关系,会用动能定理分析问题。
【知识络】【考点梳理】考点一、动能动能是物体由于运动所具有的能,其计算公式为212k Emv?。
动能是标量,其单位与功的单位相同。
国际单位是焦耳(J)。
考点二、动能定理1、动能定理合外力对物体所做的功等于物体动能的变化,这个结论叫做动能定理。
2、动能定理的表达式21kk WEE??。
式中W为合外力对物体所做的功,2k E为物体末状态的动能,1k E为物体初状态的动能。
动能定理的计算式为标量式,v为相对同一参考系的速度,中学物理中一般取地球为参考系。
要点诠释:1、若物体运动过程中包含几个不同的过程,应用动能定理时,可以分段考虑,也可以视全过程为整体来处理。
2、应用动能定理解题的基本步骤(1)选取研究对象,明确它的运动过程。
(2)分析研究对象的受力情况和各个力的做功情况:受哪些力?每个力是否做功?做正功还是做负功?做多少功?然后求各个外力做功的代数和。
(3)明确物体在始、末状态的动能1k E和2k E。
(4)列出动能定理的方程21kk WEE??及其他必要的辅助方程,进行求解。
动能定理中的W总是物体所受各力对物体做的总功,它等于各力做功的代数和,即123=WWWW??????总若物体所受的各力为恒力时,可先求出F合,再求cosWFl??总合3、一个物体动能的变化k E?与合外力做的功W总具有等量代换的关系。
因为动能定理实质上反映了物体动能的变化,是通过外力做功来实现的,并可以用合外力的功来量度。
0k E??,表示物体动能增加,其增加量就等于合外力做的功;0k E??,表示物体动能减少,其减少量就等于合外力做负功的绝对值;0k E??,表示物体动能不变,合外力对物体不做功。
动能和动能定理1.动能:物体由于运动而具有的能叫动能.动能E k = mv 2.动能是标量.v 为瞬时速度,通常选的面为参照物2.动能定理(1)合外力所做的功等于物体动能的变化,即W=E k2-E k1(2)物理意义物体动能的变化的大小由做功的多少来量度.3.能及其基本性质(1)物体具有能量就能对外界做功,因而能是物体所具有的做功本领.(2)能的最基本的性质:各种不同形式的能量之间互相转化的过程中,能的总量是守恒的.1.两辆汽车在同一平直路面上行驶,它们的质量之比m 1:m 1=1:2,速度之比v 1:v 2=2:1,当两车急刹车后,甲车滑行的最大距离为s 1,乙车滑行的最大距离为s 2,设两车与路面间的滑动摩擦因数相等,不计空气阻力,则( )。
A .s 1:s 2=1:2B .s 1:s 2=1:1C .s 1:s 2=2:1D .s 1:s 2=4:13.如图所示,手持一根长为l 的轻绳一端,在水平桌面上做半径为r 、角速度为ω的匀速圆周运动,绳始终保持与该圆周相切,绳的另一端系—质量为m 的木块,木块也在桌面上做匀速圆周运动,不计空气阻力,则( )A .手对木块不做功B .木块不受桌面的摩擦力C .绳的拉力大小等于,mω2D .手拉木块做功的功率等于mω3r(l 2+r 2)/l4.质量为m 的物体置于光滑水平面上,在恒力F 的作用下由静止开始做匀加速直线运动,若在第n 秒内动能增加量为E ,则物体所受恒力F 的大小为__________。
5.质点所受的力F 随时间变化的规律如图所示,力的方向始终在一直线上.已知2122r lt=0时质点的速度为零.在右图所示的t 1、t 2、t 3和t 4各时刻中,质点动能最大的时刻是( ).(A)t 1 (B)t 2 (C)t 3 (D)t 46.如图所示,电梯质量为M ,它的水平地板上放置一质量为m 的物体,电梯在钢索的拉力作用下由静止开始竖直向上加速运动。
动能定理能量守恒的基本原理动力学是物理学中的一个重要分支,研究物体的运动和受力情况。
其中,动能定理和能量守恒定律是描述物体运动过程中能量变化的基本原理。
一、动能定理动能定理是描述物体运动过程中动能变化的原理。
动能是物体运动的能量,定义为:动能 = 1/2 * m * v^2其中,m为物体的质量,v为物体的速度。
根据动能的定义,可以得出动能定理的表达式:物体的动能增量等于物体所受的净外力所做的功。
数学表达式为:ΔK = W其中,ΔK表示动能的增量,W表示净外力所做的功。
动能定理可以用来解释物体在外力作用下的运动状态和能量变化情况。
当物体受到力的作用时,外力对物体做功,使得物体的动能发生变化。
如果物体所受的外力为零,则根据动能定理得知物体的动能保持不变。
二、能量守恒定律能量守恒定律是自然界中一个普适的定律,描述了能量在一个封闭系统中的守恒性质。
能量守恒定律的表达式为:系统的总能量在封闭的过程中不变。
能量可以存在多种形式,包括动能、势能、热能等。
根据能量守恒定律,一个封闭系统中各种形式的能量可以相互转化,但总能量保持不变。
在物体运动过程中,动能和势能之间可以相互转化。
当物体处于高处时,具有势能;当物体运动时,其势能转化为动能,而动能定理也可以说明动能的变化量等于势能转化的大小。
能量守恒定律可以帮助我们理解许多物理现象,例如弹性碰撞、机械能转化等。
三、动能定理与能量守恒的关系动能定理和能量守恒定律在描述和分析物体的运动过程中密切相关。
首先,动能定理可以通过计算外力对物体做功的大小来描述物体动能的变化。
而能量守恒定律则表明,在一个封闭系统中,物体动能的变化可以转化为其他形式的能量,但总能量保持不变。
其次,动能定理和能量守恒定律都是适用于经典力学体系的基本原理,可以帮助我们理解和解释物态变化和能量转化的规律。
最后,动能定理和能量守恒定律的应用广泛,不仅适用于机械运动的问题,还可以推广到其他物理学领域,如热力学、电动力学等。
动能定理功与能量的关系动能定理是物理学中一个重要的定理,它描述了物体的动能与物体所受的外力之间的关系。
而功则是物理学中另一个重要概念,它表示力对物体所做的功或能量转化的量。
在这篇文章中,我们将探讨动能定理、功和能量之间的关系。
一、动能定理的概念和公式动能定理是描述物体的动能与其所受外力之间的关系的定理。
根据动能定理,一个物体的动能的变化等于作用在该物体上的净外力所做的功。
动能定理的数学表达式如下:ΔK = Wnet其中,ΔK表示物体动能的变化,Wnet表示作用在物体上的净外力所做的功。
当物体受到其他物体的作用力时,作用力可能非常复杂,但可以将所有作用力的总和表示为净外力。
因此,动能定理描述了外力对物体动能的影响。
二、功的概念和公式功是物理学中表示力对物体所做的功或能量转化的量。
在力学中,功的大小等于力在物体上产生的位移与力的方向相同的分量之积。
功的数学表达式如下:W = F·d·cosθ其中,W表示功,F表示力的大小,d表示物体在力的方向上产生的位移,θ表示力和位移之间的夹角。
三、功与能量的关系根据能量守恒定律,能量既不能被创造也不能被销毁,只能从一种形式转化为另一种形式。
而功是能量转化的一种方式,它表示力对物体所做的能量转化的量。
根据物体的动能定理,物体的动能的变化等于作用在物体上的净外力所做的功。
因此,可以得出以下关系:ΔK = W也就是说,物体的动能的变化等于作用在物体上的净外力所做的功。
这个关系表明了动能与功之间的直接关系。
当外力对物体做正功时,物体的动能增加;当外力对物体做负功时(即物体对外力做正功),物体的动能减少。
功与能量转化是一个非常关键的概念,在物理学的许多领域都有应用。
例如,在机械运动中,当力对物体做功时,能量会从一个形式转化为另一个形式。
在热力学中,功是描述能量转化的重要概念,它与热量的传递和做功的能力之间存在着密切的关系。
总结:动能定理功与能量之间有着密切的关系。
动能定理物体动能与功的关系动能定理是物理学中一个重要的定理,它描述了物体的动能与所受的做功之间的关系。
本文将详细介绍动能定理,并探讨物体动能与功之间的关系。
一、动能定理的定义和表达式动能定理是描述物体动能变化的定理。
它可以表达为:物体的动能变化等于物体所受的净外力所做的功。
动能定理的数学表达式为:物体的动能的变化量等于物体所受的净外力所做的功的总和。
数学表达式为:ΔKE = W_net其中,ΔKE表示物体动能的变化量,W_net表示物体所受的净外力所做的功的总和。
二、物体动能与功的关系根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
这意味着,当一个物体所受的净外力做功时,它的动能会发生变化。
1. 净外力与功的关系在动能定理中,功是由物体所受的净外力所做的。
净外力是指物体所受的所有作用力的矢量和。
功可以由净外力的大小和方向以及物体位移的大小和方向来计算。
2. 功对动能的影响根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
如果物体所受的净外力所做的功为正值,那么物体的动能将增加;如果功为负值,物体的动能将减小;如果功为零值,物体的动能将保持不变。
3. 动能与功的关系示例例如,当一个人用力推动一辆静止的小车,小车受到的作用力将进行功,将其推动到一定的位移。
这时,小车的动能将增加,同时也可以通过功的大小来计算增加的动能。
另一个示例是,当一个物体从高处自由下落时,在下落过程中,重力对物体进行功,使其动能增加。
这也可以通过功的大小来计算物体的动能增加量。
三、总结动能定理是描述物体动能与所受的净外力所做的功之间的关系的定理。
根据动能定理,物体的动能的变化量等于物体所受的净外力所做的功的总和。
净外力的大小和方向以及物体位移的大小和方向都会影响功的大小,进而影响物体动能的变化。
在实际问题中,我们可以利用动能定理来分析物体的运动情况和动能的变化。
通过计算功的大小和方向,我们可以了解物体动能的增加或减少,从而加深对动能和功之间关系的理解。
鲁教版高一物理动能、动能定理、做功和能量的关系本周教学容: 1、动能 2、动能定理3、做功和能量的关系细解知识点 1. 动能物体由于运动而具有的能量叫动能;公式:221mv E k =动能是标量,只有大小没有方向;动能是状态量,因为动能对应的是物体的一个运动状态;动能是相对量,因为速度具有相对性,参考系不同速度往往不同,动能也就不同,一般取地面作为惯性参考系;动能相等的两个物体,它的速度不一定相等。
动能单位是J 。
它的推导过程是 1kg ·m 2/s 2=1N ·m =1J 2. 动能定理(1)动能定理的推导因为ma F =和as v v 22122=-122122212221212k k E E mv mv a v v ma Fs W -=-=-==12k k E E W -=即合力所做的功,等于物体动能的变化。
(2)动能定理的表述合外力做的功等于物体动能的变化。
(这里的合外力指物体受到的所有外力的合力,包括重力)。
表达式为K E w ∆=动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。
实际应用时,后一种表述比较好操作。
不必求合力,特别是在全过程的各个阶段受力有变化的情况下,只要把各个力在各个阶段所做的功都按照代数和加起来,就可以得到总功。
(3)应用动能定理解题的步骤 ①确定研究对象和研究过程。
②对研究对象进行受力分析。
(研究对象以外的物体施于研究对象的力都要分析,含重力)。
③写出该过程中合外力做的功,或分别写出各个力做的功(注意功的正负)。
如果研究过程中物体受力情况有变化,要分别写出该力在各个阶段做的功。
④按照动能定理列式求解。
3. 做功和能量的关系做功的过程就是能量改变的过程。
外力对物体做正功,物体的能量增加;外力对物体做负功或物体对外做功,物体能量减少。
例如:使一个本来静止的物体运动且具有50J的动能,那就是说外力使物体产生了加速度,使物体提高了速度,做了50J的功,才使它具有50J的动能。
所以功的数量表示了物体有多少能量发生了转化。
即功是能量转化的量度。
【典型例题】例1、如图所示,斜面倾角为α,长为L,AB段光滑,BC段粗糙,且BC=2AB。
质量为m的木块从斜面顶端无初速下滑,到达C端时速度刚好减小到零。
求物体和斜面BC段间的动摩擦因数μ。
解析:以木块为对象,在下滑全过程中用动能定理:重力做的功为mgL sinα,摩擦力做的功为αμcos32mgL-,支持力不做功。
初、末动能均为零。
mgL sinααμcos32mgL-=0,αμtan23=小结:从本例题可以看出,由于用动能定理列方程时不牵扯过程中不同阶段的加速度,所以比用牛顿定律和运动学方程解题简洁得多。
例2、将小球以初速度v0竖直上抛,在不计空气阻力的理想状况下,小球将上升到某一最大高度。
由于有空气阻力,小球实际上升的最大高度只有该理想高度的80%。
设空气阻力大小恒定,求小球落回到抛出点时的速度大小v。
vvfGG f解析:有空气阻力和无空气阻力两种情况下分别在上升过程对小球用动能定理:221mvmgH=和()2218.0mvHfmg=+,可得H=v02/2g,mgf41=再以小球为对象,在有空气阻力的情况下对上升和下落的全过程用动能定理。
全过程重力做的功为零,所以有:22021218.02mvmvHf-=⨯⋅,解得053vv=小结:从本题可以看出:根据题意灵活地选取研究过程可以使问题变得简单。
有时取全过程简单;有时则取某一阶段简单。
原则是尽量使做功的力减少,或所求各个力的功相对计算方便;或使初、末动能等于零。
例3、一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图所示,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同,求摩擦因数μ。
解析:以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔE K=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系。
设该面倾角为α,斜坡长为l,则物体沿斜面下滑时,重力和摩擦力在斜面上的功分别为物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则对物体在全过程中应用动能定理mg l·sinα-μmg l·cosα-μmgS2=0得h-μS1-μS2=0式中S1为斜面底端与物体初位置间的水平距离,故小结:本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动,依据各阶段中动力学和运动学关系也可求解本题。
比较上述两种研究问题的方法,不难显现动能定理解题的优越性。
用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的。
不仅适用于恒力作用下的问题,同样适用于变力作用的问题。
例4、质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2。
求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=?解析:因为机车的功率恒定,由公式P =Fv 可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W =P ·t 可求出牵引力做功,由动能定理结合P =f ·v m ,可求出机车的功率,利用求出的功率和最大速度可求阻力,再根据v PF =求出36km/h 时的牵引力,再根据牛顿第二定律求出机车的加速度a 。
(1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据动能定理有当机车达到最大速度时有m fv P =(2)当机车速度v =36km/h 时机车的牵引力根据ΣF =ma 可得机车v =36km/h 时的加速度小结:机车以恒定功率起动,直到最大速度,属于变力做功的问题,由于阻力恒定,所以机车在任一时刻运动的加速度m f mv P a -=。
由于速度增大导致加速度减小,汽车做加速度逐渐减小而速度逐渐变大的变加速运动。
此类问题应用牛顿第二定律求解,在中学物理围是无法求解的。
但应用动能定理求解变力做功,进而求解相关物理量是一种简捷优化的解题思路与方法。
例5、在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体。
当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?解析:由题意:物体先做匀加速运动,后做匀减速运动回到原处。
整个过程中的位移为零,根据牛顿第二定律和运动学公式,即可确定两个力的大小关系,然后根据全过程中两个力做功和动能的变化即可得解。
物体从静止受水平恒力F甲作用,做匀加速运动,经过一段时间t后的速度为经时间t后回到原处,前后两段时间的位移大小相等,方向相反,所以因此F乙=3F甲设在F甲作用下物体的位移为S,对全过程应用动能定理F甲·S+F乙·S=ΔE k,代入F乙=3F甲,F甲·S+3F甲·S=ΔE k,所以恒力甲和乙做的功分别为小结:本题属多阶段物理过程求功问题,运动往复性的不同阶段有不同的恒力作用,运用功能定理从整体上考证功能转换比从力和运动关系去研究要简便。
当然此题也可根据两个力作用时间相同、两个物理过程中的位移大小相等,由平均速度的大小相等找出两者末速度的关系求解;也可以利用v-t图线更直观地得到启发,根据图线上下方与t轴间的面积相等求两段加速度之比,进而求解。
【模拟试题】1. 如图所示,一木块放在光滑水平面上,一子弹水平射入木块中,射入深度为d,平均阻力为f。
设木块离原点s远时开始匀速前进,下列判断正确的是()A. 功fs量度子弹损失的动能B. f(s+d)量度子弹损失的动能C. fd量度子弹损失的动能D. fd 量度子弹、木块系统总机械能的损失2. 下列关于运动物体所受的合外力、合外力做功和动能变化的关系,正确的是()A. 如果物体所受的合外力为零,那么,合外力对物体做的功一定为零B. 如果合外力对物体所做的功为零,则合外力一定为零C. 物体在合外力作用下做变速运动,动能一定变化D. 物体的动能不变,所受的合外力必定为零3. 关于做功和物体动能变化的关系,不正确的是()A. 只要动力对物体做功,物体的动能就增加B. 只要物体克服阻力做功,它的动能就减少C. 外力对物体做功的代数和等于物体的末动能与初动能之差D. 动力和阻力都对物体做功,物体的动能一定变化4. 一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度为2 m/s,则下列说确的是()A. 手对物体做功12JB. 合外力对物体做功12JC. 合外力对物体做功2JD. 物体克服重力做功10 J5. 光滑水平面上,静置一总质量为M的小车,车板侧面固定一根弹簧,水平车板光滑. 另有质量为m的小球把弹簧压缩后,再用细线拴住弹簧,烧断细线后小球被弹出,离开车时相对车的速度为v,则小车获得的动能是()6. 静止在光滑水平面上的物体,在水平力F的作用下产生位移s而获得速度v,若水平面不光滑,物体运动时受到摩擦力为F/n(n是大于1的常数),仍要使物体由静止出发通过位移s而获得速度v,则水平力为()7. 物体在水平恒力作用下,在水平面上由静止开始运动,当位移s时撤去F,物体继续前进3s后停止运动,若路面情况相同,则物体的摩擦力和最大动能是()8. 一颗子弹速度为v时,刚好打穿一块钢板,那么速度为2v时,可打穿_____块同样的钢板,要打穿n块同样的钢板,子弹速度应为_____。
9. 质量为m的跳水运动员以高为H的跳台上的速度率v1起跳,落水时的速率为v2,运动中遇有空气阻力。
那么运动员起跳时做功是______,在空气中克服空气阻力所做的功是______。
10. 质量为M=500t的机车,以恒定的功率从静止出发,经过时间t=5min在路面上行驶了s=2.25km,速度达到了最大值v m=54km/h,试求该机车的功率及机车在运动中所受到的平均阻力。
11. 质量为m的滑块,由仰角θ=30°的斜面底端A点沿斜面上滑,如图所示,已知滑块在斜面底时初速度v0=4m/s,滑块与接触面的动摩擦因数均为0.2,且斜面足够长,求滑块最后静止时的位置。
【试题答案】1. BD2. A3. ABD4. ACD5. D6. A7. D8. 4 v n9.222121212121mvmgHmvmv++,10. P=37.5kW f=2.5×104N11. S AC=1.21m。