第六讲 全称量词命题与存在量词命题-(解析版)
- 格式:doc
- 大小:1.75 MB
- 文档页数:10
第一章第五节全称量词与存在量词一、电子版教材二、教材解读知识点一 全称量词命题和存在量词命题的判断1.全称量词与全称量词命题(1)短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示.(2)含有全称量词的命题叫做全称量词命题,通常将含有变量x 的语句用p (x ),q (x ),r (x ),…表示,变量x 的取值范围用M 表示,那么全称量词命题“对M 中任意一个x ,p (x )成立”可用符号简记为∀x ∈M ,p (x ).2.存在量词与存在量词命题(1)短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)含有存在量词的命题,叫做存在量词命题,存在量词命题“存在M 中的元素x ,使p (x )成立”,可用符号简记为“∃x ∈M ,p (x )”.【例题1】(2020·全国高一)判断下列存在量词命题的真假:(1)存在一个四边形,它的两条对角线互相垂直;(2)至少有一个整数n ,使得2n n +为奇数;(3){|x y y ∃∈是无理数},2x 是无理数.【解析】(1)真命题,因为正方形的两条对角线互相垂直;(2)假命题,因为若n 为整数,则(1)n n +必为偶数;(3)真命题,因为π是无理数,2π是无理数.【例题2】(2020·全国高一)把下列定理表示的命题写成含有量词的命题:(1)勾股定理;(2)三角形内角和定理.【解析】(1)任意一个直角三角形,它的斜边的平方都等于两直角边的平方和;(2)所有三角形的内角和都是180°.【例题3】(2020·全国高一)指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.(1)∀x ∈N ,2x +1是奇数;(2)存在一个x ∈R ,使11x -=0; (3)对任意实数a ,|a |>0;【解析】(1)是全称量词命题.因为,21x N x ∀∈+都是奇数,所以该命题是真命题.(2)是存在量词命题.因为不存在x ∈R ,使101x =-成立,所以该命题是假命题. (3)是全称量词命题.因为00=,所以||0a >不都成立,因此,该命题是假命题.知识点二 含有一个量词的命题的否定一般地,对于含有一个量词的命题的否定,有下面的结论:全称量词命题p :∀x ∈M ,p (x ),它的否定﹁p :∃x ∈M ,﹁p (x );存在量词命题p :∃x ∈M ,p (x ),它的否定﹁p :∀x ∈M ,﹁p (x ).全称量词命题的否定是存在量词命题,存在量词命题的否定是全称量词命题.【例题4】(2020·全国高一)写出下列命题的否定:(1)所有人都晨练;(2)2,10x x x ∀∈++>R ;(3)平行四边形的对边相等;(4)2,10x x x ∃∈-+=R .【解析】(1)因为命题“所有人都晨练”是全称命题,所以其否定是“有的人不晨练”.(2)因为命题“2,10x x x ∀∈++>R ”是全称命题,所以其否定是“2,10x x x ∃∈++≤R ”.(3)因为命题“平行四边形的对边相等”是指任意一个平行四边形的对边相等,是一个全称命题, 所以它的否定是“存在平行四边形,它的对边不相等”.(4)因为命题“2,10x x x ∃∈-+=R ”是特称命题,所以其否定是“2,10x x x ∀∈-+≠R ”.【例题5】(2020·全国高一)写出下列全称量词命题的否定:(1)所有能被3整除的整数都是奇数;(2)每一个四边形的四个顶点在同一个圆上;(3)对任意x ∈Z ,2x 的个位数字不等于3.【解析】(1)该命题的否定:存在一个能被3整除的整数不是奇数.(2)该命题的否定:存在一个四边形,它的四个顶点不在同一个圆上.(3)该命题的否定:x Z ∃∈,2x 的个位数字等于3.【例题6】(2020·四川省泸县五中高二月考(理))命题“∀x ≤0,x 2+x +1>0”的否定是( )A .∀x >0,x 2+x +1≤0B .∀x >0,x 2+x +1>0C .∃x 0≤0,x 02+x 0+1≤0D .∃x 0≤0,x 02+x 0+1>0【答案】C【解析】命题“∀x ≤0,x 2+x +1>0”为全称命题,故其否定为:∃x 0≤0,x 02+x 0+1≤0【例题7】(2020·天津一中高二期末)“x R ∀∈,2210x x ++>”的否定是( )A .x R ∀∈,2210x x ++≤B .x R ∀∈,2210x x ++<C .0x R ∃∈,使得200210x x ++<D .0x R ∃∈,使得200210x x ++≤【答案】D【解析】全称量词的否定是特称量词,大于的否定是小于等于,故“x R ∀∈,2210x x ++>”的否定是“0x R ∃∈,使得200210x x ++≤”三、素养聚焦1.命题“[1,2]x ∀∈,2320x x -+≤”的否定是( )A .[1,2]x ∀∈,2320x x -+>B .[1,2]x ∀∉,2320x x -+>C .0[1,2]x ∃∈,200320x x -+>D .0[1,2]x ∃∉,200320x x -+>【答案】C【解析】命题是全称命题,则命题的否定是特称命题,即0[1,2]x ∃∈,200320x x -+>,2.设命题p :0x ∀>,sin x x >,则⌝p 为( )A .0x ∃>,sin x x ≤B .0x ∀>,sin x x ≤C .0x ∃≤,sin x x ≤D .0x ∀≤,sin x x ≤ 【答案】A【解析】命题p :0x ∀>,sin x x >,则⌝p :0x ∃>,sin x x ≤.3.已知命题2 :1,2log 1x p x x ∀≥-≥,则p ⌝为( ) A .21,2log 1xx x ∀<-< B .21,2log 1xx x ∀≥-< C .21,2log 1xx x ∃<-<D .21,2log 1xx x ∃≥-<【答案】D【解析】因为全称命题的否定是特称命题,所以命题:p 1x ∀≥,22log 1xx -≥,:p ⌝1x ∃≥,22log 1x x -<.4.命题:0p x ∀≥,都有1x e x ≥-+,则命题p 的否定为( ) A .0x ∀≥,都有1x e x <-+B .0x ∀<,都有1x e x ≥-+C .00x ∃≥,01xe x <-+D .00x ∃<,01xe x <-+【答案】C 【解析】命题:0p x ∀≥,都有1x e x ≥-+,∴命题p 的否定为00x ∃≥,01x e x <-+,5.命题p :对任意一个x ∈Z ,21x +是整数,则p ⌝为( ) A .对任意一个x Z ∉,21x +不是整数 B .对任意一个x Z ∉,21x +是整数 C .0x Z ∃∈,021x +不是整数 D .0x Z ∃∉,021x +不是整数【答案】C 【解析】命题p 为全称命题,∴p ⌝为“0x Z ∃∈,021x +不是整数”.6.已知命题P :x R ∀∈,sin 1x ≤,则p ⌝为( ) A .0x R ∃∈,0sin 1x ≥ B .x R ∀∈,sin 1x ≥ C .0x R ∃∈,0sin 1x > D .x R ∀∈,sin 1x >【答案】C 【解析】全称量词命题的否定是存在量词命题,且命题P :x R ∀∈,sin 1x ≤,00:,sin 1p x R x ∴⌝∃∈>.7.命题“,sin 10x R x ∀∈+≥”的否定是( ) A .00,sin 10x R x ∃∈+< B .,sin 10x R x ∀∈+< C .00,sin 10x R x ∃∈+≥ D .,sin 10x R x ∀∈+≤【答案】A【解析】因为,sin 10x R x ∀∈+≥的否定为00,sin 10x R x ∃∈+<, 所以选A.8.命题“,x R ∃∈使得21x =-”的否定是( ) A .x R ∀∉都有21x =- B .x R ∃∉使得21x =- C .,x R ∃∈使得21x ≠- D .,x R ∀∈都有21x ≠-【答案】D【解析】命题“,x R ∃∈使得21x =-”的否定是“,x R ∀∈都有21x ≠-”. 9.已知命题p :0x ∀>,总有(1)1x x e +>,则p ﹁为( )A .00x ∃≤,使得00(1)1xx e +≤B .00x ∃>,使得00(1)1xx e +≤C .0x ∀>,总有(1)1x x e +≤D .0x ∀≤,使得(1)1x x e +≤【答案】B【解析】因为命题p :0x ∀>,总有(1)1xx e +>,所以p ﹁:00x ∃>,使得00(1)1x x e +≤.10.命题p :∀x ∈N ,|x +2|≥3的否定为( ) A .∀x ∈N ,|x +2|<3 B .∀x ∉N ,|x +2|<3 C .∃x ∈N ,|x +2|≥3D .∃x ∈N ,|x +2|<3【答案】D【解析】因为命题p :∀x ∈N ,|x +2|≥3是全称命题, 所以其否定是特称命题,所以命题p :“∀x ∈N ,|x +2|≥3”的否定为:∃x ∈N ,|x +2|<3.11.若“122x ⎡⎤∃∈⎢⎥⎣⎦,使得2210x x λ-+<成立”是假命题,则实数λ的取值范围为( )A .(-∞B .⎡⎤⎣⎦C .⎡⎤-⎣⎦D .3λ=【答案】A【解析】因为命题“1[,2]2x ∃∈,使得2210x x λ-+<成立”为假命题,所以该命题的否定“1[,2]2x ∀∈,使得2210x x λ-+≥恒成立成立”,即221x xλ+≤对于1[,2]2x ∀∈恒成立,而22112x x x x +=+≥=12x x =,即2x =时取等号),即λ≤ A. 12.命题“*,x R n N ∀∈∃∈,使得2n x ≥”的否定形式是( ) A .*,x R n N ∀∈∃∈,使得2n x < B .*,x R n N ∀∈∀∈,使得2n x < C .*,x R n N ∃∈∃∈,使得2n x < D .*,x R n N ∃∈∀∈,使得2n x <【答案】D【解析】∀的否定是∃,∃的否定是∀,2n x ≥的否定是2n x <.故选D . 13.已知命题p :“0a ∀>,都有1a e ≥成立”,则命题p ⌝为( ) A .0a ∃≤,有1a e <成立 B .0a ∃≤,有1a e ≥成立 C .0a ∃>,有1a e ≥成立 D .0a ∃>,有1a e <成立 【答案】D【解析】全称量词的否定为存在量词,命题的否定只否定结论,1a e ≥的否定为1a e <.命题p ⌝为0a ∃>,有1a e <成立14.已知命题:p x R ∀∈,210x x -+>,则p ⌝( ) A .x R ∃∈,210x x -+≤ B .x R ∀∈,210x x -+≤ C .x R ∃∈,210x x -+> D .x R ∀∈,210x x -+≥ 【答案】A【解析】由题意,根据全称命题与特称命题的关系,可得命题:p x R ∀∈,210x x -+>, 则:p ⌝x R ∃∈,210x x -+≤,故选A .15.命题“0x R ∃∈,20010x x ++≤”的否定为( )A .x R ∀∈,210x x ++>B .x R ∀∉ ,210x x ++≤C .0x R ∃∈,20010x x ++>D .0x R ∃∉, 20010x x ++≤【答案】A【解析】因为命题“0x R ∃∈,20010x x ++≤”为特称命题,所以其否定为“x R ∀∈,210x x ++>”.16.命题“00x ∃>,20010x x ++<”的否定是( )A .0x ∀>,210x x ++≥B .0x ∀≤,210x x ++<C .0x ∀>,210x x ++<D .0x ∀≤,210x x ++≥【答案】A【解析】由题意,根据全称命题与存在性命题的关系,可得命题“00x ∃>,20010x x ++<”的否定为:“0x ∀>,210x x ++≥”.17.命题“1x ∀>,20x x ->”的否定是( )A .01x ∃≤,2000x x -≤ B .1x ∀>,20x x -≤ C .01x ∃>,2000x x -≤D .1x ∀≤,20x x ->【答案】C【解析】因为全称命题的否定是特称命题,所以命题“1x ∀>,20x x ->”的否定是:“01x ∃>,2000x x -≤”,故选C.18.下列说法:①命题“0x ∀>,20x x -≤”的否定是“0x ∃≤,20x x ->”;②若一个命题的逆命题为真,则它的否命题也一定为真;③“矩形的两条对角线相等”的逆命题是真命题;④“3x <”是“3x <”成立的充分条件,其中错误的个数是( ) A .1 B .2 C .3 D .4【答案】C【解析】命题“0x ∀>,20x x -≤”的否定是“0x ∃>,20x x ->”,故①错误一个命题的逆命题和否命题互为逆否命题,同真假性,故②正确 对角线相等的等腰梯形不是矩形,故③错误由3x <推不出3x <,如4x =-时,满足3x <,但推不出3x <,故④错误 所以错误的个数是319.下列有关命题的说法正确的是( ).A .命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”B .“1x =-”是“2560x x --=”的必要不充分条件C .命题“R x ∃∈,使得210x x ++<”的否定是:“R x ∀∈,均有210x x ++<”D .命题“若x y =,则sin sin x y =”的逆否命题为真命题 【答案】D【解析】对于A :命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.因为否命题应为“若21x ≠,则1x ≠”,故A 错误.对于B :“1x =-”是“2560x x --=”的必要不充分条件.因为21560x x x =-⇒--=,应为充分条件,故B 错误.对于C :命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈,均有210x x ++<”. 因为命题的否定应为x R ∀∈,均有210x x ++≥.故C 错误. 由排除法得到D 正确.20.已知命题2000:,220p x R x x ∃∈++≤,则p ⌝为( )A .2,220x x x ∀∈++>RB .2,220x R x x ∀∈++≤C .2,220 x R x x ∃∈++≤D .2,220x x x ∃∈++>R【答案】A【解析】特称命题的否定是全称命题,命题2000:,220p x R x x ∃∈++≤,则p ⌝为:2,220x x x ∀∈++>R .21.已知命题1,20x p x R -∀∈>:,则命题p ⌝为( ) A .1,20x x R -∀∈≤B .1,20x x R -∃∈≤C .1,20x x R -∃∈≠D .1,20x x R -∀∈<【答案】B【解析】因为命题1,20x p x R -∀∈>:所以命题:p ⌝1,20x x R -∃∈≤22.若命题“存在0x R ∈,使220x x m --≤0”是假命题,则实数m 的取值范围是( ) A .B .C .[]11-, D .【答案】D 【解析】命题“存在0x R ∈,使220x x m --≤0”是假命题, ∴不等式220x x m --≤0无解, ()2240m ∴∆=-+<,解得1m <-,∴实数m 的取值范围是,23.命题“x R ∃∈,2210x x -+<”的否定是( ) A .x R ∃∈,2210x x -+≥ B .x R ∃∈,2210x x -+> C .x R ∀∈,2210x x -+≥ D .x R ∀∈,2210x x -+<【答案】C【解析】特称命题的否定是全称命题,改量词,且否定结论,故命题20",210"x R x x ∃∈-+<的否定是“2,210x R x x ∀∈-+≥”.24.(多选题)下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“任意x ∈R ,则210x x ++<”的否定是“存在x ∈R ,则210x x ++≥”. C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件 D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要不充分条件 【答案】ABD【解析】对于A ,1110a a a -<⇔>()10a a ⇔->0a ⇔<或1a >,则“1a >”是“11a<”的充分不必要条件,故A 对;对于B ,全称命题的否定是特称命题,“任意x ∈R ,则210x x ++<”的否定是“存在x ∈R ,则210x x ++≥”,故B 对;对于C ,“2x ≥且2y ≥” ⇒ “224x y +≥”, “2x ≥且2y ≥” 是 “224x y +≥”的充分条件,故C 错; 对于D ,00ab a ≠⇔≠,且0b ≠,则“0a ≠”是“0ab ≠”的必要不充分条件,故D 对; 25.(多选题)在下列命题中,真命题有( ) A .x R ∃∈,230x x ++= B .x Q ∀∈,211132x x ++是有理数 C .,x y Z ∃∈,使3210x y -= D .x R ∀∈,2||x x >E.命题“x R ∀∈,3210x x -+≤”的否定是“x R ∃∈,3210x x -+>” 【答案】BCE【解析】A 中,221113024x x x ⎛⎫++=++> ⎪⎝⎭,故A 是假命题; B 中,x Q ∈,211132x x ++一定是有理数,故B 是真命题; C 中,4x =,1y =时,3210x y -=成立,故C 是真命题;对于D ,当0x =时,左边=右边=0,故D 为假命题;E 命题否定的形式正确,故为真命题. 故真命题有BCE .26.(多选题)下列命题中是真命题的是( ) A .“1x >”是“21x >”的充分不必要条件B .命题“0x ∀>,都有sin 1x ≤”的否定是“00x ∃>,使得0sin 1x >”C .数据128,,,x x x 的平均数为6,则数据12825,25,,25x x x ---的平均数是6D .当3a =-时,方程组232106x y a x y a -+=⎧⎨-=⎩有无穷多解【答案】ABD【解析】选项A ,1x >,则有21x >,但21x >,则1x >或1x <-, 所以“1x >”是“21x >”的充分不必要条件,选项A 正确; 选项B ,命题“0x ∀>,都有sin 1x ≤”的否定是 “00x ∃>,使得0sin 1x >”,所以选项B 正确; 选项C ,数据128,,,x x x 的平均数为6, 则数据12825,25,,25x x x ---的平均数是7,所以选项C 错误;选项D ,当3a =-时,方程组为32103210x y x y -+=⎧⎨-+=⎩,所以有无数个解,所以选项D 正确.27.(多选题)给出下列命题,其中真命题有( ) A .存在0x <,使|x|>x B .对于一切0x <,都有|x|>x C .存在0x <,使||x x ≤D .已知2a n =,3b n =,则存在*n ∈N ,使得a b = E.已知*{|2,}A a a n n ==∈N ,*{|3,}B b b n n ==∈N ,则A B =∅【答案】AB【解析】对A ,当1x =-时,11>-成立,故A 正确; 对B ,对0x <都0|x|>,显然有|x|>x ,故B 正确;对C ,命题“存在0x <,使||x x ≤”,是B 中命题的否定,所以C 为假命题,故C 错误; 对D ,“存在*n ∈N ,使得a b =”的否定是“对于任意的*n ∈N ,都有a b ”,由于23a b n n n -=-=-,所以对于任意的*n ∈N ,都有a b <,即a b ≠,故D 为假命题;对E ,已知*{|2,}A a a n n ==∈N ,*{|3,}B b b n n ==∈N ,易知6A ∈,6B ∈,因此E 为假命题;28.(多选题)下面命题正确的是( ) A .“1a >”是“11a<”的充分不必要条件 B .命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.C .设,x y R ∈,则“2x ≥且2y ≥”是“224x y +≥”的必要而不充分条件D .设,a b ∈R ,则“0a ≠”是“0ab ≠”的必要 不 充 分 条件 【答案】ABD【解析】选项A:根据反比例函数的性质可知:由1a >,能推出11a <,但是由11a<,不能推出1a >,例如当0a <时,符合11a<,但是不符合1a >,所以本选项是正确的; 选项B: 根据命题的否定的定义可知:命题“若1x <,则21x <”的 否 定 是“ 存 在1x <,则21x ≥”.所以本选项是正确的;选项C:根据不等式的性质可知:由2x ≥且2y ≥能推出224x y +≥,本选项是不正确的;选项D: 因为b 可以等于零,所以由0a ≠不能推出0ab ≠,再判断由0ab ≠能不能推出0a ≠,最后判断本选项是否正确.29.(多选题)关于下列命题正确的是( )A .一次函数320kx y k ++-=图象的恒过点是213⎛⎫- ⎪⎝⎭, B .3322,,()()a b R a b a b a ab b ∀∈+=+++ C .(2,4),(2)(4)x y x x ∀∈-=+-的最大值为9 D .若p 为假命题,则()p ⌝⌝为真命题 【答案】AC【解析】对A ,由320kx y k ++-=,即(1)320k x y ++-=,可令10x +=,即1x =-,320y -=,可得23y =,故直线320kx y k ++-=恒过定点2(1,)3-,故A 正确; 对B ,由两数的立方和公式可得a ∀,b R ∈,3322()()a b a b a ab b +=+-+,故B 错误;对C ,(2,4)x ∀∈-,可得20x +>,40x ->,则224(2)(4)()92x x y x x ++-=+-=,当且仅当1x =时y 取得最大值为9,故C 正确;对D ,若p 为假命题,则p ⌝为真命题,()p ⌝⌝为假命题,故D 错误. 30.(多选题)已知下列命题其中正确的有( ) A .“实数都大于0”的否定是“实数都小于或等于0” B .“三角形外角和为360度”是含有全称量词的真命题C .“至少存在一个实数x ,使得||0x ≥0”是含有存在量词的真命题 D .“能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题 【答案】BCD【解析】对于A, “实数都大于0”的否定是“实数不都大于0”,故A 错误. 对于B, “三角形外角和为360度”含有全称量词,且为真命题,所以B 正确;对于C, “至少存在一个实数x ,使得||0x ≥0”含有存在量词,且为真命题,所以C 正确; 对于D, “能被3整除的整数,其各位数字之和也能被3整除”是全称量词命题,所以D 正确. 综上可知,正确命题为BCD。
§2.3 全称量词命题与存在量词命题 题型一:全称命题的否定及其真假判断1.已知命题p :∃n ∃N ,n 2>3,则﹁p 为( )A .∃n ∃N ,n 2≤3B .∃x ∃N ,n 2≤3C .∃n ∃N ,n 2>3D .∃n ∃N ,n 2=3【答案】A【点拨】根据特称命题的否定形式,即可判断选项.【详解】根据特称命题的否定形式,可知:p x N ⌝∀∈,23n ≤.故选:A2.命题“x ∃∈R ,12y <≤”的否定形式是( )A .x ∀∈R ,12y <≤B .x ∃∈R ,1y <或2y >C .x ∀∈R ,1y ≤或2y >D .x ∃∈R ,1y ≤或2y >【答案】C【点拨】根据特称命题的否定直接求解即可.【详解】命题“x ∃∈R ,12y <≤”的否定形式是x ∀∈R ,1y ≤或2y >.故选:C.3.命题“∃实数x ,使1x >”的否定是( )A .∀实数x ,都有1x >B .∃实数x ,使1x <C .∀实数x ,都有1x ≤D .∃实数x ,使1x ≤【答案】C【点拨】根据存在量词命题的否定是全称量词命题可得答案.【详解】因为存在量词命题的否定是全称量词命题,所以命题“∃实数x ,使1x >”的否定是“∀实数x ,都有1x ≤”.故选:C .4.命题“0x ∃>,2230x x -+<”的否定是( )A .0x ∃≤,2230x x -+<B .0x ∀≤,2230x x -+<C .0x ∃>,2230x x -+≥D .0x ∀>,2230x x -+≥一维练基础【答案】D【点拨】将特称命题否定为全称命题即可.【详解】命题“0x ∃>,2230x x -+<”的否定是“0x ∀>,2230x x -+≥”,故选:D5.命题:p x Z ∃∈,0x <,则p ⌝是( )A .x Z ∀∈,0x ≤B .x Z ∀∈,0x ≥C .x Z ∃∈,0x ≤D .x Z ∃∈,0x ≥【答案】B【点拨】根据存在量词命题的否定为全称量词命题判断即可;【详解】解:命题:p x Z ∃∈,0x <,为特称量词命题,其否定为x Z ∀∈,0x ≥;故选:B题型二:特称命题的否定及其真假判断1.命题“0x ∀>,220x +≥”的否定是( )A .0x ∃>,220x +<B .0x ∀>,220x +<C .0x ∃≤,220x +<D .0x ∀≤,220x +<【答案】A【点拨】全称量词命题的否定是存在量词命题,把任意改为存在,把结论否定.【详解】0x ∀>,220x +≥的否定是0x ∃>,220x +<.故选:A .2.命题“x ∀∈R ,210x -<”的否定是( )A .x ∀∈R ,210x -B .x ∃∈R ,210x -C .x ∃∈R ,210x -D .x ∀∈R ,210x -<【答案】B【点拨】全称量词命题的否定,是把全称量词改成存在量词,并把后面的结论否定.【详解】根据全称命题的否定是特称命题可得,命题“x ∀∈R ,210x -<”的否定是“x ∃∈R ,210x -”. 故选:B.3.命题p :(0,),310x x ∀∈+∞+<则命题p 的否定为( )A .(0,),310x x ∀∈+∞+>B .(0,),310x x ∃∈+∞+>C .(0,),310x x ∀∉+∞+≥D .(0,),310x x ∃∈+∞+≥【答案】D【点拨】根据全称量词命题的否定为存在量词命题即可得解.【详解】解:因为全称量词命题的否定为存在量词命题,所以命题p 的否定为(0,),310x x ∃∈+∞+≥.故选:D.4.命题“20,10x x x ∀>-->”的否定是( )A .20,10x x x ∃>--≤B .20,10x x x ∀>--≤C .20,10x x x ∃≤--≤D .20,10x x x ∀≤--≤【答案】A【点拨】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】由题意,命题“20,10x x x ∀>-->”是全称量词命题,根据全称命题与存在性命题的关系,可得其否定是“2“0,10x x x ∃>--≤”.故选:A.5.命题“0x ∀≠,222x x +≥”的否定是( ) A .0x ∀≠,222x x +<B .0x ∃=,222x x +≥ C .0x ∃≠,222x x +<D .0x ∃=,222x x+< 【答案】C【点拨】全称命题的否定是特称命题,按规则否定即可【详解】命题“0x ∀≠,222x x +≥”的否定是: 0x ∃≠,222x x+<, 故选:C1.下列命题中,既是全称量词命题又是真命题的是( )A .矩形的两条对角线垂直B .对任意a ,b ∈R ,都有a 2 + b 2 ≥ 2(a ﹣b ﹣1)C .∃x ∈R , |x | + x = 0D .至少有一个x ∈Z ,使得x 2 ≤ 2成立二维练能力【答案】B【点拨】根据全称量词和特称量词命题的定义判断,全称量词命题要为真命题必须对所以的成立,对选项逐一判断即可.【详解】A 选项为全称量词命题,却是假命题,矩形的两条对角线相等,并不垂直,故A 错误. C,D 选项是特称量词命题,故错误.B 选项是全称量词命题,用反证法证明,因为()()2222222110a b a b a b +-++=-++≥所以对,a b ∀∈R ,()2221a b a b +--≥,故B 正确. 故选:B.2.下列选项中,可以作为a b >的必要不充分条件的是( )A .0x ∃≤,a x b +>B .0x ∃<,a x bC .0x ∀≥,a b x >-D .0x ∀≥,a b x -≥【答案】D【点拨】根据充要条件和必要条件的概念,直接判定即可.【详解】A ,B ,C 选项均等价于a b >,D 选项等价于a b ≥,而a b ≥是a b >的必要不充分条件. 故选:D.3.下列命题中,既是真命题又是全称量词命题的是( ).A .实数都大于0B .有些菱形是正方形C .三角形内角和为180°D .有小于1的自然数【答案】C【点拨】B 、D 不是全称命题,A 、C 是全称命题而A 显然错误.【详解】实数都大于0,是全称命题,但不是真命题,所以A.选项错误;有些菱形是正方形,不是全称命题,所以B 选项错误;三角形内角和为180°,是真命题,也是全称命题,所以C 选项正确;有小于1的自然数,是真命题,但不是全称命题,所以D 选项错误.故选:C.4.下列四个命题中的真命题为( )A .0x Z ∃∈,0143x <<B .0x Z ∃∈,0410+=xC .∃x ∃R ,210x -=D .∃x ∃R ,2220x x -+≥【答案】D【点拨】根据全称命题和特称命题的定义进行推理即可.【详解】若1<04x <3,得14<0x 34<,则0Z x ∉,故A 错误, 由0410+=x 得0x 14=-,则0Z x ∉,故B 错误, 由210x -=得1x =±,故C 错误,()2222110-+=-+≥x x x 恒成立,故D 正确,故选:D .5.已知集合{}|0A x x a =≤≤,集合{}22|34B x m x m =+≤≤+,如果命题“m ∃∈R ,A B ⋂≠∅”为假命题,则实数a 的取值范围为______.【答案】(),3-∞【点拨】先由题意得到“m ∀∈R ,A B =∅”为真命题,讨论0a <和0a ≥两种情况,即可求出结果.【详解】命题“m ∃∈R ,A B ⋂≠∅”为假命题,则其否定“m ∀∈R ,A B =∅”为真命题.当0a <时,集合A =∅,符合A B =∅.当0a ≥时,因为230m +>,所以由m ∀∈R ,A B =∅,得23a m <+对于任意m ∈R 恒成立,又233m +≥,所以03a ≤<.综上,实数a 的取值范围为(),3-∞.故答案为:(),3-∞.6.已知命题“x ∀∈R ,220x x m -+>”为假命题,则实数m 的取值范围为______.【答案】1m【点拨】根据命题的否定与原命题真假性相反,即可得到x ∃∈R ,220x x m -+≤为真命题,则0∆≥,从而求出参数的取值范围;【详解】解:因为命题“x ∀∈R ,220x x m -+>”为假命题,所以命题“x ∃∈R ,220x x m -+≤”为真命题,所以()2240m ∆=--≥,解得1m ;故答案为:1m7.若命题2:R,21p x x x ∃∈-≥-,则p 的否定为_____________.【答案】2R,21x x x ∀∈-<-【点拨】根据给定条件利用含有一个量词的命题的否定方法直接写出p 的否定作答.【详解】命题2:R,21p x x x ∃∈-≥-,则命题p 是存在量词命题,其否定是全称量词命题,所以p 的否定是:2R,21x x x ∀∈-<-.故答案为:2R,21x x x ∀∈-<-8.已知命题2:,20p x R x x a ∀∈++≥恒成立;2:,10q x R x ax ∃∈-+<,若p ,q ⌝均为真,则实数a 的取值范围__________.【答案】[]1,2【点拨】根据题意得到命题p 为真命题,q 为假命题,结合二次函数的图象与性质,即可求解.【详解】根据题意,命题p ,q ⌝均为真命题,可得命题p 为真命题,q 为假命题,由命题2:,20p x R x x a ∀∈++≥恒成立,可得21240a ∆=-≤,解得1a ≥;又由命题2:,10q x R x ax ∃∈-+<为假命题,可得22()40a ∆=--≤,解得22a -≤≤,所以12a ≤≤,即实数a 的取值范围为[]1,2.故答案为:[]1,2.9.写出下列命题的否定.(1)有些四边形的四个顶点在同一个圆上;(2)x ∀∈Q ,211123x x -+∈Q ; (3)所有能被3整除的数都是奇数;(4)1∃<a ,12a a+=; (5)不论m 取何实数,方程20x x m +-=必有实数根.【答案】(1)所有四边形的四个顶点不在同一个圆上(2)x ∃∈Q ,211123x x -+∉Q (3)有些能被3整除的数不是奇数(4)1a ∀<,12a a+≠ (5)存在实数m ,使得20x x m +-=没有实数根【点拨】首先分析命题是全称命题还是特称命题,再根据全称命题和特称命题的否定形式,即可求解.【详解】(1)此命题是特称命题,特称命题的否定是全称命题,即“所有四边形的四个顶点不在同一个圆上”;(2)此命题是全称命题,全称命题的否定是特称命题,即“x ∃∈Q ,211123x x -+∉Q ”; (3)此命题是全称命题,全称命题的否定是特称命题,即“有些能被3整除的数不是奇数”;(4)此命题是特称命题,特称命题的否定是全称命题,即“1a ∀<,12a a+≠”; (5)此命题是全称命题,全称命题的否定是特称命题,即“存在实数m ,使得20x x m +-=没有实数根”. 10.判断下列命题的真假:(1)Z x ∃∈,22x =;(2)R x ∃∈,22x =;(3)线段的垂直平分线上的点到这条线段两个端点的距离相等;(4)平面上任意两条直线必有交点.【答案】(1)假命题;(2)真命题;(3)真命题;(4)假命题【点拨】解方程,即可判断(1)(2),根据垂直平分线的性质判断(3),根据平面内两直线的位置关系判断(4);【详解】(1)解:若22x =,解得2x =±,因为2±不是整数,故命题“Z x ∃∈,22x =”为假命题; (2)解:若22x =,解得2x =±,因为2R ±∈,故命题“R x ∃∈,22x =”为真命题;(3)解:根据垂直平分线的性质可知,线段的垂直平分线上的点到这条线段两个端点的距离相等;故命题:“线段的垂直平分线上的点到这条线段两个端点的距离相等;”为真命题;(4)解:平面上两条直线的位置关系有相交与平行,当两直线平行时,两直线没有交点,故命题“平面上任意两条直线必有交点.”为假命题;1.命题“[]1,2x ∀∈,230x a -≥”为真命题的一个充分不必要条件是( )A .2a ≤B .2a ≥C .3a ≤D .4a ≤【答案】A【点拨】根据不等式恒成立求出命题为真命题时a 的范围,再选择其真子集即可求解.【详解】若“[]21,2,30x x a ∀∈-≥为真命题,得23a x ≤对于[]1,2x ∈恒成立,只需()2min 33a x ≤=,三维练素养所以2a ≤是命题“[]21,2,30x x a ∀∈-≥为真命题的一个充分不必要条件,故选:A.2.下列说法错误的是( )A .命题“x ∃∈R ,210x x ++<”,则p ⌝:“x ∀∈R ,210x x ++≥”B .已知a ,b ∈R ,“1a >且1b >”是“1ab >”的充分而不必要条件C .“1x =”是“2320x x -+=”的充要条件D .若p 是q 的充分不必要条件,则q 是p 的必要不充分条件【答案】C【点拨】根据充分条件,必要条件,全称与特称命题的否定依次讨论各选项即可得答案.【详解】解:对于A 选项,命题p :“x ∃∈R ,210x x ++<”,则,p ⌝:“x ∀∈R ,210x x ++≥”满足命题的否定形式,所以A 正确;对于B 选项,已知a ,b ∈R ,“1a >且1b >”能够推出“1ab >,“1ab >”不能推出“1a >且1b >”,所以B 正确;对于C 选项,1x =时,2320x x -+=成立,反之,2320x x -+=时,1x =或2x =,所以C 不正确;对于D 选项,若p 是q 的充分不必要条件,则q 是p 的必要不充分条件,满足充分与必要条件的定义,所以D 正确.故选:C .3.给出下面四个命题:∃x R ∀∈,11x +≥;∃x R ∀∈,0x x +≥;∃x R ∃∈,2x 的个位数字等于3;∃x R ∃∈,210x x -+=.其中真命题的个数是( )A .1B .2C .3D .4【答案】B【点拨】∃根据不等式性质和全称命题定义判断;∃根据不等式性质和称命题定义判断;∃用例举法判断;∃用一元二次方程根的判断式判断.【详解】对于∃,因为0x ≥,所以x R ∀∈,11x +≥,所以∃对;对于∃,当0x ≥时,20x x x +=≥,当0x <时,00x x +=≥,所以x R ∀∈,0x x +≥成立,所以∃对;对于∃,设10x a b =+,{}0,1,2,3,4,5,6,7,8,9b ∈,()22210102x a ab b =++,2x 的个位数字等于2b 的个位数字, 所以2x 的个位数字都不等于3,所以∃错;对于∃,因数()2141130∆=--⨯⨯=-<,所以方程210x x -+=无实数解,所以∃错.故选:B. 4.下列四个命题中,假命题是( )A .1,2x R x x∀∈+≥B .2,5x R x x ∃∈-> C .,|1|0x R x ∃∈+<D .,|1|0x R x ∀∈+>【答案】ACD【点拨】取0x <,可判断A ;取3x =,可判断B ;根据绝对值的定义,可判断C ;取1x =-,可判断D【详解】对于A 中,当0x <时,10x x+<不成立,所以命题“1,2x R x x ∀∈+≥”是假命题; 对于B 中,取3x =时,265x x -=>,所以命题“2,5x R x x ∃∈->”为真命题;对于C 中,根据绝对值的定义,可得10x +≥恒成立,所以命题“,10x R x ∃∈+<”是假命题;对于D 中,当1x =-时,10x +=,所以命题“,10x R x ∀∈+>”为假命题.故选:ACD5.下列命题中,真命题的是( )A .0a b +=的充要条件是1a b=- B .1a >,1b >是1ab >的充分条件C .命题“R x ∃∈,使得210x x ++<”的否定是“R x ∀∈都有210x x ++≥”D .“1x >”是“220x x +->”的充分不必要条件【答案】BCD【点拨】根据充分必要条件的定义,命题的否定的定义判断.【详解】0a b 时,0a b +=,但a b无意义,A 错; 1,1a b >>时一定有1ab >,而当2,3a b =-=-时,61ab =>,但1,1a b <<,充分性正确,B 正确; 由存在命题的否定是全称命题,命题“R x ∃∈,使得210x x ++<”的否定是“R x ∀∈都有210x x ++≥”,C 正确;22(1)(2)0x x x x +-=-+>,2x <-或1x >,因此D 正确.故选:BCD .6.下列语句是假命题的是______(填序号).∃所有的实数x 都能使2360x x -+>成立;∃存在一个实数0x ,使200360x x -+<成立; ∃存在一个实数0x ,使200360x x -+=. 【答案】∃∃【点拨】由二次方程2360x x -+=的判别式可得二次函数的性质,进而可判断∃∃∃是否正确,可得正确答案.【详解】因为在2360x x -+=中,()2346150=--⨯=-<∆,所以2360x x -+=无解,2360x x -+>恒成立.所以所有的实数x 都能使2360x x -+>成立;∃是真命题,不存在实数0x ,使200360x x -+<成立,∃是假命题, 不存在实数0x ,使200360x x -+=,∃是假命题,所以∃∃是假命题.故答案为:∃∃.7.命题“对2,210x R ax x ∀∈++≥”为真命题,则实数a 的最小值是_______.【答案】1【点拨】分两种情况讨论a ,根据不等式恒成立,结合抛物线的图象,列不等式求解即可.【详解】当0a =时,210x +≥不恒成立,为假命题,不符合题意;当0a ≠时,要使x R ∀∈,2210ax x ++≥为真命题,则需201440a a a >⎧⇒≤⎨∆=-≤⎩, 综上可得实数a 的最小值是1.故答案为:18.已知命题:p {|620}x x x ∃∈≤≤,2x a < ,命题:q 2R,20x x x a ∀∈+->.(1)若命题p 和命题q ⌝有且只有一个为假命题,求实数a 的取值范围;(2)若命题p 和命题q 至少有一个为真命题,求实数a 的取值范围.【答案】(1)[1,3]-;(2)(,1)(3,)-∞-⋃+∞.【点拨】(1)先分别解出当命题p 、q 均为真时,实数a 的范围,再分p 真q ⌝为假和p 假q ⌝为真两种情况分别求解后取并集即可;(2)运用补集思想,结合(1)中p 假q 假的结论,即可求得结论.【详解】(1)解:当命题p 为真时有:26a >,解得3a >;当命题q 为真时有:440a ∆=+<,解得:1a <-,又命题p 和命题q ⌝有且只有一个为假命题,当p 真时,q ⌝为假,即p 真q 真,所以31a a >⎧⎨<-⎩,无解; 当p 假时,q ⌝为真,即p 假q 假,所以31a a ≤⎧⎨≥-⎩,解得13a -≤≤. 综上所述,实数a 的取值范围为:[1,3]-;(2)解:由(1)可知当p 假q 假时,13a -≤≤.所以当命题p 和命题q 至少有一个为真命题时,实数a 的取值范围为:(,1)(3,)-∞-⋃+∞。
1.5.2全称量词命题与存在量词命题否定1.命题“每一个四边形的四个顶点共圆”的否定是()A.存在一个四边形,它的四个顶点不共圆B.存在一个四边形,它的四个顶点共圆C.所有四边形的四个顶点共圆D.所有四边形的四个顶点都不共圆解析:选A.根据全称量词命题的否定是存在量词命题,得命题“每一个四边形的四个顶点共圆”的否定是“存在一个四边形的四个顶点不共圆”,故选A.2.命题“存在实数x,使x>1”的否定是()A.对任意实数x,都有x≤1B.不存在实数x,使x≤1C.对任意实数x,都有x>1D.存在实数x,使x≤1解析:存在量词命题的否定是全称量词命题,即“存在实数x,使x>1”的否定是“对任意实数x,都有x≤1”.3.存在量词命题“∃x0∉M,p(x0)”的否定是()A.∀x∈M,¬p(x) B.∀x∉M,p(x)C.∀x∉M,¬p(x) D.∀x∈M,p(x)解析:由存在量词命题的否定的定义可得C正确.4.下列四个命题中的真命题为()A.∃x∈Z,1<4x<3B.∃x∈Z,5x+1=0C .∀x ∈R ,x 2-1=0D .∀x ∈R ,x 2+x +2>0解析:1<4x <3,14<x <34,这样的整数x 不存在,故选项A 为假命题;5x +1=0,x =-15∉Z ,故选项B 为假命题;x 2-1=0,x =±1,故选项C 为假命题;对任意实数x ,都有x 2+x +2=⎝ ⎛⎭⎪⎫x +122+74>0,故选D. 5.命题“对任意的x ∈R ,都有x 2-2x +1≥0”的否定是( )A .不存在x 0∈R ,使得x 20-2x 0+1≥0B .存在x 0∈R ,使得x 20-2x 0+1≤0C .存在x 0∈R ,使得x 20-2x 0+1<0D .对任意的x ∈R ,都有x 2-2x +1<0解析:命题“对任意的x ∈R ,都有x 2-2x +1≥0”的否定是“存在x 0∈R ,使得x 20-2x 0+1<0”.故选C.6.已知命题p :∃x 0∈R,2x 0+1≤0,则命题p 的否定是( )A .∃x 0∈R,2x 0+1>0B .∀x ∈R,2x +1>0C .∃x 0∈R,2x 0+1≥0D .∀x ∈R,2x +1≥0解析:命题p :∃x 0∈R,2x 0+1≤0的否定是“∀x ∈R,2x +1>0”,故选B.7.命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( )A .∀x ∈R ,∃n ∈N *,使得n <x 2B .∀x ∈R ,∀n ∈N *,使得n <x 2C .∃x ∈R ,∃n ∈N *,使得n <x 2D.∃x∈R,∀n∈N*,使得n<x2解析:将“∀”改写为“∃”,“∃”改写为“∀”,再否定结论可得,命题的否定为“∃x∈R,∀n∈N*,使得n<x2”.8.命题“∀x∈{x|1≤x≤2},x2-3x+2≤0”的否定为()A.∀x∈{x|1≤x≤2},x2-3x+2>0B.∀x∉{x|1≤x≤2},x2-3x+2>0C.∃x0∈{x|1≤x≤2},x20-3x0+2>0D.∃x0∉{x|1≤x≤2},x20-3x0+2>0解析:由全称量词命题的否定为存在量词命题知,命题“∀x∈{x|1≤x≤2},x2-3x+2≤0”的否定为“∃x0∈{x|1≤x≤2},x20-3x0+2>0”,故选C.9.已知命题p:∃x0>0,x0+a-1=0,若p为假命题,则实数a的取值范围是()A.{a|a<1} B.{a|a≤1}C.{a|a>1} D.{a|a≥1}解析:因为p为假命题,所以綈p为真命题,所以∀x>0,x+a-1≠0,即x≠1-a,所以1-a≤0,即a≥1,故选D.10.命题“∀x∈R,∃n0∈N*,使得n0≥2x+1”的否定形式是()A.∀x∈R,∃n0∈N*,使得n0<2x+1B.∀x∈R,∀n0∈N*,使得n0<2x+1C.∃x0∈R,∃n∈N*,使得n<2x0+1D.∃x0∈R,∀n∈N*,使得n<2x0+1解析:由题意可知,全称量词命题“∀x∈R,∃n0∈N*,使得n0≥2x+1”的否定形式为存在量词命题“∃x0∈R,∀n∈N*,使得n<2x0+1”,故选D.11.命题:“对任意k>0,方程x2+x-k=0有实根”的否定是.解析:全称量词命题的否定是存在量词命题,故原命题的否定是“存在k0>0,使得方程x2+x-k0=0无实根”.12.命题“至少有一个正实数x满足方程x2+2(a-1)x+2a+6=0”的否定是________________________________________________________________________.解析:把量词“至少有一个”改为“所有”,“满足”改为“都不满足”得命题的否定.∴所有正实数x都不满足方程x2+2(a-1)x+2a+6=013.命题“对任意实数x,都有x2-2x+2>0”的否定为.答案:存在实数x,满足x2-2x+2≤0.14.设命题p:∀x∈R,x2+ax+2<0,若¬p为真,则实数a的取值范围是.解析:因为¬p:∃x0∈R,x20+ax0+2≥0为真,且函数y=x2+ax+2的图象是开口向上的抛物线,所以a∈R.15.已知命题q:“三角形有且只有一个外接圆”,则¬q 为。
1.5全称量词与存在量词1.全称量词与全称量词命题(1)全称量词短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示(2)全称量词命题含有全称量词的命题,叫做全称量词命题(3)全称量词命题的符号及记法记作:M x ∈∀,()x p 读作:对任意x 属于M ,有()x p 成立考点1.判断全称量词命题的真假例1判断下列全称量词命题的真假:(1)每个四边形的内角和都是360°;(2)任何实数都有算术平方根;(3){|x y y ∀∈是无理数},3x 是无理数.【答案】(1)真命题;(2)假命题;(3)假命题【分析】对每个全称量词命题进行判断,从而得到答案.【详解】(1)真命题.连接一条对角线,将一个四边形分成两个三角形,而一个三角形的内角和180°,所以四边形的内角和都是360°是真命题;(2)假命题.因为负数没有算术平方根,所以任何实数都有算术平方根是假命题;(3)假命题,因为x =是无理数,3x 2=是有理数,所以{|x y y ∀∈是无理数},3x 是无理数是假命题.【点睛】本题考查判断全称量词命题的真假,属于简单题.例2将下列命题用量词等符号表示,并判断命题的真假:(1)所有实数的平方都是正数;(2)任何一个实数除以1,仍等于这个实数.【答案】(1)2,0x R x ∀∈>,假命题;(2),1x x R x ∀∈=,真命题【分析】(1)易得该命题为全称命题,再举出反例判定即可.(2)易得该命题为全称命题,再直接判定即可.【详解】(1)命题为:2,0x R x ∀∈>.易得当0x =时20x =,故原命题为假命题.(2)命题为:,1x x R x ∀∈=,易得为真命题.【点睛】本题主要考查了全称命题的定义与真假的判定.属于基础题.变式2-1判断下列全称量词命题的真假:(1)所有的素数都是奇数;(2)x R ∀∈,11≥+x ;(3)对任意一个无理数x ,2x 也是无理数.【答案】(1)假命题;(2)真命题;(3)假命题【分析】对每个全称量词命题进行判断,从而得到答案.【详解】(1)2是素数,但2不是奇数.所以全称量词命题“所有的素数是奇数”是假命题.(2)x R ∀∈,总有||0x ,因而||11x +.所以全称量词命题“x R ∀∈,||11x +”是真命题.(3是无理数,但22=是有理数.所以,全称量词命题“对每一个无理数x ,2x 也是无理数”是假命题.【点睛】本题考查判断全称量词命题的真假,属于简单题.变式2-2判断下列全称量词命题的真假:(1)每一个末位是0的整数都是5的倍数;(2)线段垂直平分线上的点到这条线段两个端点的距离相等;(3)对任意负数2,x x 的平方是正数;(4)梯形的对角线相等【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.【分析】(1)根据整数的知识判断即可.(2)根据平面几何的知识判断即可.(3)根据平方的性质判断即可.(4)举出反例判断即可.【详解】(1)根据整数的性质,末位是0的整数都是5的倍数成立.故为真命题.(2)根据垂直平分线的性质可得线段垂直平分线上的点到这条线段两个端点的距离相等.故为真命题.(3)对任意负数0x <,不等式两边同时乘以负数x 有20x >.故为真命题(4)举反例如直角梯形对角线显然不相等.故为假命题.【点睛】本题主要考查了命题真假的判定,属于基础题型.2.存在量词与存在量词命题(1)存在量词短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示(2)存在量词命题含有存在量词的命题,叫做存在量词命题(3)存在量词命题的符号及记法记法:M x ∈∃,()x p 读法:存在M 中的元素x ,使得()x p 成立考点2.判断存在量词命题的真假例3判断下列存在量词命题的真假:(1)有些实数是无限不循环小数;(2)存在一个三角形不是等腰三角形;(3)有些菱形是正方形;(4)至少有一个整数2,1n n +是4的倍数.【答案】(1)真命题;(2)真命题;(3)真命题;(4)假命题.【分析】(1)根据实数的定义分析即可.(2)根据等腰三角形的定义分析即可.(3)根据菱形与正方形的关系分析即可.(4)利用反证法证明是假命题即可.【详解】(1)实数包括有理数与无理数,其中无理数包括无限不循环小数如,e π等.故为真命题.(2)等腰三角形有两条长度相等的边,但并不是每个三角形都有两条长度相等的边,故为真命题.(3)四边长度相等的四边形为菱形,此时若相邻边互相垂直则为正方形,故为真命题.(4)假设有一个整数2,1n n +是4的倍数,则因为21n +能被4整除,故21n +为偶数,故2n 为奇数,故n 为奇数.设21,n k k N =+∈,则221442n k k +=++,故21n +除以4的余数为2与题设矛盾.故不存在整数,n 使得21n +是4的倍数.故为假命题.【点睛】本题主要考查了命题真假的判定,属于基础题型.变式3-1判断下列存在量词命题的真假,并说明理由.(1)存在一个质数是偶数;(2)有一个实数x ,使2230x x ++=.【答案】(1)真命题,详见解析(2)假命题,详见解析【分析】(1)由2既是质数,也是偶数,可判断命题;(2)根据()2223122x x x ++=++≥,可判断命题.【详解】(1)因为2既是质数,也是偶数,所以原命题为真命题.(2)由于()22231220x x x ++=++≥>,所以原命题是假命题.【点睛】本题考查特称命题的判断,属于基础题.例4试判断以下命题的真假:(1)2,20x x ∈+>R ;(2)N x ∈∀,14≥x (3)3,1x x ∃∈<Z ;(4)2,3x x ∃∈=Q .【答案】(1)真命题;(2)假命题;(3)真命题;(4)假命题【分析】(1)根据不等式的性质判断即可;(2)全称命题判断为假,只需举一个反例即可;(3)特称命题判断为真,只需举一个正例即可;(4)解方程即可判断;【详解】解:(1)由于x ∀∈R ,都有20x ,因而有2220x +≥>,即220x +>.因此命题“2,20x x ∀∈+>R ”是真命题.(2)由于0∈N ,当0x =时,41x 不成立.因此命题“4,1x x ∀∈N ”是假命题.(3)由于1-∈Z ,当1x =-时,能使31x <成立.因此命题“3,1x x ∃∈<Z ”是真命题.(4)由于使23x =成立的数只有,而它们都不是有理数,因而没有任何一个有理数的平方能等于3.因此命题“2,3x x ∃∈=Q ”是假命题.【点睛】本题考查含有一个量词的命题的真假性判断,属于基础题.变式4-1判断下列命题的真假:(1)2,x x x ∃∈>R ;(2)2,x x x ∀∈>R ;(3)2,80x x ∃∈-=Q ;(4)2,20x x ∀∈+>R .【答案】(1)真命题;(2)假命题;(3)假命题;(4)真命题【分析】(1)特称命题判断为真,只需举一个正例即可;(2)全称命题判断为假,只需举一个反例即可;(3)通过解方程可判断;(4)根据不等式的性质可证明;【详解】解:(1)因为2x =时,2x x >成立,所以“2,x x x ∃∈>R ”是真命题.(2)因为0x =时,2x x >不成立,所以“2,x x x ∀∈>R ”是假命题.(3)因为使280x -=成立的数只有x =与x =-,但它们都不是有理数,所以“2,80x x ∃∈-=Q ”是假命题.(4)因为对任意实数x ,有20x ≥,则220x +>,即对任意实数,都有220x +>成立,所以“2,20x x ∀∈+>R ”是真命题.【点睛】本题考查命题真假判断,属于基础题.3.全称量词命题和存在量词命题的否定(1)全称量词命题的否定全称量词命题:M x ∈∀,()x p 否定为:M x ∈∃,()x p ⌝(2)存在量词命题的否定存在量词命题:M x ∈∃,()x p 否定为:M x ∈∀,()x p ⌝考点3.全称量词命题和存在量词命题的否定例5命题“1x ∀>>”的否定是()A .01x ∃>≤B .01x ∀>≤C .01x ∃≤≤D .01x ∀≤≤【答案】A【分析】根据全称命题的否定为特称命题即可判断;【详解】解:命题1x ∀>>,为全称命题,全称命题的否定为特称命题,故其否定为01x ∃>≤故选:A【点睛】本题考查全称命题的否定,属于基础题.变式5-1命题“(0,1),x ∀∈20x x -<”的否定是()A .0(0,1),x ∃∉2000x x -≥B .0(0,1),x ∃∈2000x x -≥C .0(0,1),x ∀∉2000x x -<D .0(0,1),x ∀∈2000x x -≥【答案】B【分析】根据“全称命题”的否定一定是“特称命题”判断.【详解】“全称命题”的否定一定是“特称命题”,∴命题“(0,1),x ∀∈20x x -<”的否定是0(0,1),x ∃∈2000x x -≥,故选:B .【点睛】本题主要考查命题的否定,还考查理解辨析的能力,属于基础题.变式5-2命题“所有能被2整除的数都是偶数”的否定是A .所有不能被2整除的数都是偶数B .所有能被2整除的数都不是偶数C .存在一个不能被2整除的数是偶数D .存在一个能被2整除的数不是偶数【答案】D试题分析:命题“所有能被2整除的整数都是偶数”的否定是“存在一个能被2整除的数不是偶数”.故选D .考点:命题的否定.例6命题“0R x ∃∈,20010x x -+<”的否定是()A .R x ∃∈,210x x -+>B .R x ∃∈,210x x -+≥C .R x ∀∈,210x x -+>D .R x ∀∈,210x x -+≥【答案】D【分析】特称命题的否定是全称命题【详解】因为特称命题的否定是全称命题所以命题“0R x ∃∈,20010x x -+<”的否定是“R x ∀∈,210x x -+≥”故选:D【点睛】本题考查的是特称命题的否定,较简单.变式6-1已知命题:N,21000n P n ∃∈>,则P ⌝为()A .N,2100n n ∀∈B .N,21000n n ∀∈>C .N,21000n n ∃∈D .N,21000n n ∃∈<【答案】A【分析】【详解】写特称命题的否命题,将存在量词改为全称量词,再否定结果所以命题:N,21000n P n ∃∈>的否定P ⌝为N,2100n n ∀∈故选:A点评:掌握命题的改写方法变式6-2若命题[]2000:3,3,210p x x x ∃∈-++≤,则命题p 的否定为()A .[]23,3,210x x x ∀∈-++>B .()()2,33,,210x x x ∀∈-∞-⋃+∞++>C .()()2,33,,210x x x ∀∈-∞-⋃+∞++≤D .[]20003,3,210x x x ∀∈-++<【答案】A【分析】利用存在性命题否定的结构形式写出其否定即可.【详解】命题p []23,3,210x x x ∀∈-++>.故选:A.【点睛】全称命题的一般形式是:x M ∀∈,()p x ,其否定为(),x M p x ∃∈⌝.存在性命题的一般形式是x M ∃∈,()p x ,其否定为(),x M p x ∀∈⌝.变式6-3写出下列各题中的p ⌝:(1):,10p x Z x ∃∈->;(2):,20p x Q x ∀∈-≥;(3)2:,10p x R x ∀∈+>;(4)2:,10p x R x ∃∈-<.【答案】(1):,10p x Z x ⌝∀∈-≤;(2):,20p x Q x ⌝∃∈-<;(3)2:,10p x R x ⌝∃∈+≤;(4)2:,10p x R x ⌝∀∈-≥.【分析】(1)特称量词变为全称量词,大于变小于等于得到命题的否定。
姓 名 年级 性 别 学 校 学 科教师上课日期上课时间课题9.1 全称量词与存在量词知识点一、全称量词与全称命题1.短语“所有的”,“任意一个”在逻辑中通常叫做______________,并用符号“_______”表示. 2.含有_____________的命题叫做全称命题,用符号表示为:“对M 中任意一个x ,有p (x )成立”,记为________________.知识点二、存在量词与特称命题1.短语“存在一个”,“至少有一个”在逻辑中叫做____________,用符号“_______”表示.2.含有_______________的命题,叫做特称命题,用符号表示:“存在M 中的元素x 0,使p (x 0)成立,记为:________________”.知识点三、含有一个量词的命题的否定类型一 全称命题和特称命题的概念及真假判断例1 、指出下列命题是全称命题还是特称命题,并判断它们的真假.(1)∀x ∈N,2x +1是奇数;(2)存在一个x 0∈R ,使1x 0-1=0;(3)对任意向量a ,|a|>0;(4)有一个角α,使sin α>1.【自主解答】 (1)是全称命题,因为∀x ∈N,2x +1都是奇数,所以该命题是真命题. (2)是特称命题.因为不存在x 0∈R ,使1x 0-1=0成立,所以该命题是假命题.(3)是全称命题.因为|0|=0,∴|a |>0不都成立,因此,该命题是假命题. (4)是特称命题,因为∀α∈R ,sin α∈[-1,1],所以该命题是假命题. 变式:判断下列命题的真假:(1)∀x ∈R ,x 2+2x +1>0;(2)∀x ∈(0,π2),cos x <1;(3)∃x 0∈Z ,使3x 0+4=0;(4)至少有一组正整数a ,b ,c 满足a 2+b 2+c 2≤3. 【解】 (1)∵当x =-1时,x 2+2x +1=0,∴原命题是假命题. (2)由y =cos x 在(0,π2)的单调性.∴∀x ∈(0,π2),cos x <1为真命题.(3)由于3x +4=5成立时,x =13∉Z ,因而不存在x ∈Z ,使3x +4=5.所以特称命题“∃x 0∈Z ,使3x 0+4=5”是假命题.(4)由于取a =1,b =1,c =1时,a 2+b 2+c 2≤3是成立的,所以特称命题“至少有一组正整数a ,b ,c 满足a 2+b 2+c 2≤3”是真命题.类型二 含有一个量词的命题的否定例2、写出下列命题的否定,并判断其真假.(1)p :不论m 取何实数,方程x 2+x -m =0必有实数根;(2)q: 存在一个实数x 0使得x 20+x 0+1≤0;【错因分析】错解中只否定了命题的结论,忘记了转换量词.【正解】命题的否定:∃x0∈R,若y>0,则x20+y≤0.。
2020-2021学年高一数学同步题型学案(新教材人教版必修第一册)第一章集合与常用的逻辑用语1.5 全称量词与存在量词【课程标准】1.通过已知的数学实例,理解全称量词与存在量词的意义,并会用数学语言表示全称量词命题和存在量词命题,并能判断其真假.2.能正确使用存在量词对全称量词命题进行否定.3.能正确使用全称量词对存在量词命题进行否定.【本节知识点】知识点一 全称量词与全称量词命题全称量词“所有的”“任意一个”“一切”“每一个”“任给”等符号∀全称量词命题含有全称量词的命题形式“对M中任意一个x,p(x)成立”,可用符号简记为“∀x∈M,p(x)”知识点二 存在量词与存在量词命题存在量词“存在一个”“至少有一个”“有些”“有一个”“对某些”“有的”等符号表示∃存在量词命题含有存在量词的命题形式“存在M中的元素x,p(x)成立”可用符号简记为“∃x∈M,p(x)”知识点三 全称量词命题和存在量词命题的否定(1)全称量词命题的否定对含有一个量词的全称量词命题的否定,有下面的结论:全称量词命题p:∀x∈M,p(x),它的⌝⌝否定p:∃x∈M,p(x). 全称量词命题的否定是存在量词命题.(2)存在量词命题的否定对含有一个量词的存在量词命题的否定,有下面的结论:存在量词命题p:∃x∈M,p(x),它的⌝否定綈p:∀x∈M,p(x). 存在量词命题的否定是全称量词命题.(3)在书写这两种命题的否定时,相应地存在量词变为全称量词,全称量词变为存在量词.【题型分类】题型一 全称量词命题和存在量词命题的判断题型要点点拨:判断全称量词命题及存在量词命题时应关注的三点(1)全称量词命题就是陈述某集合中所有元素都具有某种性质的命题,常见的全称量词为“一切”“每一个”等,相应的词语是“都”.(2)有些命题省去了全称量词,但仍是全称量词命题,如“有理数是实数”,就是“所有的有理数都是实数”.(3)存在量词命题就是陈述某集合中存在一个或部分元素具有某种性质的命题,常见的存在量词为“有的”等.【例1】下列语句不是存在量词命题的是( )A.有的无理数的平方是有理数B.存在一个四边形不是平行四边形C.对于任意x∈Z,2x+1是奇数D.存在x∈R,2x+1是奇数【参考答案】C【解析】因为“有的”“存在”为存在量词,“任意”为全称量词,所以选项A、B、D均为存在量词命题,选项C为全称量词命题.【例2】判断下列语句是全称量词命题,还是存在量词命题.①凸多边形的外角和等于360°;②矩形的对角线不相等;③若一个四边形是菱形,则这个四边形的对角线互相垂直.④有些实数a,b能使|a-b|=|a|+|b|;⑤方程3x-2y=10有整数解.【参考答案】见解析【解析】①可以改为所有的凸多边形的外角和等于360°,故为全称量词命题.②可以改为所有矩形的对角线不相等,故为全称量词命题.③若一个四边形是菱形,也就是所有的菱形,故为全称量词命题.④含存在量词“有些”,故为存在量词命题.⑤可改写为:存在一对整数x ,y ,使3x -2y =10成立.故为存在量词命题.【方法技巧】判断语句是全称量词命题还是存在量词命题的步骤(1)判断语句是否为命题,若不是命题,就当然不是全称量词命题或存在量词命题.(2)若是命题,再分析命题中所含的量词,含有全称量词的命题是全称量词命题,含有存在量词的命题是存在量词命题.(3)当命题中不含量词时,要注意理解命题含义的实质.【易错提醒】全称量词命题可能省略全称量词,存在量词命题的存在量词一般不能省略.【同类练习】1.设非空集合P ,Q 满足P ⊆Q,则表述正确的是( )A .∀x ∈Q,有x ∈PB .∀x ∈P ,有x ∈QC .∃x ∉Q,使得x ∈PD .∃x ∈P ,使得x ∉Q【参考答案】B【解析】:因为P ⊆Q,则由子集的定义知P 集合中的任何一个元素都在Q 中,所以选B.2.用量词符号“∀”或“∃”表述下列命题.(1)对任意x ∈{x |x >-1},3x +4>0成立;(2)对所有实数a ,b ,方程ax +b =0恰有一个解;(3)有些整数既能被2整除,又能被3整除;(4)某个四边形不是平行四边形.【参考答案】见解析【解析】:(1)∀x ∈{x |x >-1},3x +4>0.(2)∀a ,b ∈R,方程ax +b =0恰有一解.(3)∃x ∈Z,x 既能被2整除,又能被3整除.(4)∃x ∈{y |y 是四边形},x 不是平行四边形.题型二、全称量词命题与存在量词命题真假判断【例3】(多选题)在下列命题中,真命题有( )A .,x R ∃∈230x x ++=B .,是有理数x Q ∀∈211132x x ++C .,使,x y Z ∃∈3210x y -=D .,x R ∀∈2||x x >E.命题“,”的否定是“,”x R ∀∈3210x x -+≤x R ∃∈3210x x -+>【参考答案】BCE【解析】A 中,,故A 是假命题;B 中,,一221113024x x x ⎛⎫++=++> ⎪⎝⎭x Q ∈211132x x ++定是有理数,故B 是真命题;C 中,,时,成立,故C 是真命题;4x =1y =3210x y -=对于D,当时,左边=右边=0,故D 为假命题;E 命题否定的形式正确,故为真命题.0x =【方法技巧】全称量词命题与存在量词命题的真假判定的技巧(1)全称量词命题的真假判定要判定一个全称量词命题是真命题,必须对限定集合M 中的每个元素x 验证p (x )成立;但要判定全称量词命题是假命题,只需举出集合M 中的一个x ,使得p (x )不成立即可(这就是通常所说的“举出一个反例”).(2)存在量词命题的真假判定要判定一个存在量词命题是真命题,只要在限定集合M 中,找到一个x ,使p (x )成立即可;否则,这一存在量词命题就是假命题.【同类练习】1.有下列四个命题:①∀x ∈R,+1>0;x 2②∀x ∈{1,-1,0},2x +1>0;③∃x ∈N,x 2≤x ;④∃x ∈N *,x 为29的约数.其中真命题的个数为( )A .1B .2C .3D .4【参考答案】 C【解析】对于①,这是全称量词命题,因为≥0对任意实数都成立,所以+1>0,故①为真x 2x 2命题;对于②,这是全称量词命题,因为当x=-1时,2x+1>0不成立,故②为假命题;对于③,这是存在量词命题,当x=0或x=1时,有x2≤x成立,故③为真命题;对于④,这是存在量词命题,当x =1时,x为29的约数成立,所以④为真命题.2.下列结论中正确的是( )A.∀n∈N*,2n2+5n+2能被2整除是真命题B.∀n∈N*,2n2+5n+2不能被2整除是真命题C.∃n∈N*,2n2+5n+2不能被2整除是真命题D.∃n∈N*,2n2+5n+2能被2整除是假命题【参考答案】C【解析】:当n=1时,2n2+5n+2不能被2整除,当n=2时,2n2+5n+2能被2整除,所以A、B、D错误,C项正确.故选C.题型三、 含有一个量词的命题的否定【例4】写出下列命题的否定,并判断其真假.(1)p:∀x,y∈N,x-y∈N;(2)q:所有的正方形都是矩形;(3)s:至少有一个实数x,使x3+1=0.【参考答案】见解析⌝【解析】 (1)p:∃x,y∈N,x-y∉N,真命题,因为当x=2,y=4时,x-y=-2∉N.⌝(2)q:至少存在一个正方形不是矩形,假命题.⌝(3)s:∀x∈R,x3+1≠0,假命题,因为x=-1时,x3+1=0.【方法技巧】全称量词命题与存在量词命题的否定的思路(1)一般地,写含有一个量词的命题的否定,首先要明确这个命题是全称量词命题还是存在量词命题,并找到量词及相应结论,然后把命题中的全称量词改成存在量词,存在量词改成全称量词, 同时否定结论.(2)对于省略量词的命题,应先挖掘命题中隐含的量词,改写成含量词的完整形式,再依据规则来写出命题的否定. 【同类练习】1.写出下列命题的否定.(1)所有自然数的平方是正数;(2)任何实数x都是方程5x-12=0的根;(3)有些质数是奇数.【参考答案】见解析【解析】:(1)有些自然数的平方不是正数.(2)存在实数x不是方程5x-12=0的根.(3)所有的质数都不是奇数.2.判断下列命题的真假,并写出它们的否定.(1)对任意x∈R,x3-x2+1≤0;(2)所有能被5整除的整数都是奇数;(3)每个二次函数的图象都开口向下.【参考答案】见解析【解析】:(1)当x=2时,23-22+1=5>0,故(1)是假命题.命题的否定:存在x∈R,x3-x2+1>0.(2)10能被5整除,10是偶数,故(2)是假命题.命题的否定:存在一个能被5整除的整数不是奇数.(3)每个二次函数的图象都开口向下,是全称量词命题,是假命题.命题的否定:存在一个二次函数的图象开口不向下.【本节同步分层练习】一、夯实基础1.命题“存在实数x,使x>1”的否定是( )A.对任意实数x,都有x>1 B.不存在实数x,使x≤1C.对任意实数x,都有x≤1D.存在实数x,使x≤1【参考答案】C【解析】:由存在量词命题的否定为全称量词命题可知,原命题的否定为:对于任意的实数x,都有x≤1.2.(多选题)下列命题中,是全称量词命题的有()A .至少有一个x 使成立B .对任意的x 都有成立2210x x ++=2210x x ++=C .对任意的x 都有不成立D .存在x 使成立2210x x ++=2210x x ++=E.矩形的对角线垂直平分【参考答案】BCE【解析】A 和D 中用的是存在量词“至少有一个”“存在”,属存在量词命题;B 和C 用的是全称量词“任意的”,属全称量词命题,所以B 、C 是全称量词命题;E 中命题“矩形的对角线垂直平分”省略量词“任意”,是全称量词命题.3.下列命题中为存在量词命题的是( )A .所有的整数都是有理数B .每个三角形至少有两个锐角C .有些三角形是等腰三角形D .正方形都是菱形【参考答案】C【解析】: A 、B 、D 为全称量词命题,C 中含有存在量词“有些”,故为存在量词命题.4.下列命题中是全称量词命题并且是真命题的是( )A .∀x ∈R,2x +1>0B .若2x 为偶数,则∀x ∈NC .所有菱形的四条边都相等D .π是无理数【参考答案】C【解析】:对A,是全称量词命题,但不是真命题,故A 不正确;对B,是真命题,但不是全称量词命题,故B 不正确;对C,是全称量词命题,也是真命题,故C 正确;对D,是真命题,但不是全称量词命题,故D 不正确,故选C.5.命题“所有能被2整除的整数都是偶数”的否定是( )A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的整数是偶数D.存在一个能被2整除的整数不是偶数【参考答案】D【解析】:原命题是全称量词命题,其否定是:存在一个能被2整除的整数不是偶数.6.命题p:∃m∈R,方程x2+mx+1=0有实根,则綈p是( )A.∃m∈R,方程x2+mx+1=0无实根B.∀m∈R,方程x2+mx+1=0无实根C.不存在实数m,使方程x2+mx+1=0无实根D.至多有一个实数m,使方程x2+mx+1=0有实根【参考答案】B【解析】:存在量词命题的否定为全称量词命题,所以命题p:∃m∈R,方程x2+mx+1=0有实根的否定为“∀m∈R,方程x2+mx+1=0无实根”.7.已知命题p:∃x>0,x+a-1=0,若p为假命题,则a的取值范围是( )A.{a|a<-1} B.{a|a≥1}C.{a|a>1}D.{a|a≤-1}【参考答案】B【解析】: ∵p为假命题,∴p为真命题,即:∀x>0,x+a-1≠0,即x≠1-a,∴1-a≤0,则a≥1.∴a的取值范围是{a|a≥1},故选B.8.若命题“∃x∈R,x2-4x+a=0”为假命题,则实数a的取值范围是________.【参考答案】:{a|a>4}【解析】:∵命题∃x∈R,x2-4x+a=0为假命题,∴方程x2-4x+a=0没有实数根,则Δ=(-4)2-4a<0,解得a>4.9.下列四个命题:①有些不相似的三角形面积相等;②∃x∈Q,x2=2;③∃x∈R,x2+1=0;④有一个实数的倒数是它本身.其中真命题的个数为________.【参考答案】:2【解析】:只要找出等底等高的两个三角形,面积就相等,但不一定相似,∴①为真命题.当且仅当x =±时,x 2=2,∴不存在x ∈Q,使得x 2=2,∴②为假命题.对∀x ∈R,x 2+1≠0,∴③为假命2题.④中1的倒数是它本身,∴④为真命题.∴①④均为真命题.10.判断下列命题是全称量词命题还是存在量词命题,并判断其真假.(1)有理数都是实数;(2)至少有一个整数,它既能被11整除,又能被9整除;(3)∀x ∈{x |x >0},x +>2.1x 【参考答案】见解析【解析】:(1)命题中隐含了全称量词“所有的”,因此命题应为“所有的有理数都是实数”,是全称量词命题,且为真命题.(2)命题中含有存在量词“至少有一个”,因此是存在量词命题,且为真命题.(3)命题中含有全称量词“∀”,是全称量词命题,且为假命题,当x =1时,x +=2.1x 二、能力提升1.命题“对任意的,”的否定是( )x ∈R 323240x x -+<A .不存在,B .存在,x ∈R 323240x x -+≥x ∉R 333240x x -+≥C .存在,D .存在,,x ∈R 323240x x -+≥x ∈R 323240x x -+<【参考答案】C【解析】命题“对任意的,”是全称命题,否定时将量词对任意的实数x ∈R 323240x x -+<变为存在,再将不等号变为即可,即存在,,故选:.x ∈R x ∈R <≥x ∈R 323240x x -+≥C 2.命题“任意的,”的否定是( )0x >01xx >-A .存在,B .存在,0x <01x x ≤-0x >01xx ≤-C .任意的,D .任意的,0x >01x x ≤-0x <01xx >-【参考答案】B【解析】因为命题“任意的,”,所以否定是:存在,.0x >01xx >-0x >01xx ≤-3.已知命题“,使”是假命题,则实数的取值范围是( )x R ∃∈212(1)02x a x +-+≤a A .B .(,1)-∞-(1,3)-C .D .(3,)-+∞(3,1)-【参考答案】B【解析】因为命题“,使”是假命题,所以x R ∃∈212(1)02x a x +-+≤212(1)02x a x +-+>恒成立,所以,解得,故实数的取值范围是.2()114202a ∆=--⨯⨯<13a -<<a (1,3)-4.(多选题)下列说法正确的是( )A .命题“,”的否定是“,”x ∀∈R 21x >-x ∃∈R 21x <-B .命题“,”的否定是“,”(3,)x ∃∈-+∞29x ≤(3,)x ∀∈-+∞29x >C .“”是“”的必要而不充分条件22x y >x y >D .“”是“关于的方程有一正一负根”的充要条件0m <x 2x 2x m 0-+=【参考答案】BD【解析】A.命题“,”的否定是“,”,故错误;x ∀∈R 21x >-x ∃∈R 21x ≤-B.命题“,”的否定是“,”,正确;(3,)x ∃∈-+∞29x ≤(3,)x ∀∈-+∞29x >C.,不能推出,也不能推出,所以“”是“22x y x y >⇔>x y >x y >x y >x y >22x y >”的既不充分也不必要条件,故错误;x y >D.关于的方程有一正一负根,所以“”是“关于x 2x 2x m 0-+=4400m m m ->⎧⇔⇔<⎨<⎩0m <x的方程有一正一负根”的充要条件,正确,2x 2x m 0-+=5.(多选题)下列命题的否定中,是全称命题且是真命题的是( )A .B .所有正方形都是矩形21,04x R x x ∃∈-+<C .D .至少有一个实数x ,使2,220x R x x ∃∈++=310x +=【参考答案】AC【解析】由题意可知:原命题为特称命题且为假命题.选项A. 原命题为特称命题,,所以原命题为假命题,所以选项A 满足条2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭件.选项B. 原命题是全称命题,所以选项B 不满足条件.选项C. 原命题为特称命题,在方程中,所以方程无实数根,所以原命题为假命题,所以选项C 满足条2220x x ++=4420∆=-⨯<件.选项D. 当时,命题成立. 所以原命题为真命题,所以选项D 不满足条件.1x =-6.某中学开展小组合作学习模式,高二某班某组小王同学给组内小李同学出题如下:若命题“∃x ∈R,x 2+2x +m ≤0”是假命题,求m 的范围.小李略加思索,反手给了小王一道题:若命题“∀x ∈R,x 2+2x +m >0”是真命题,求m 的范围.你认为,两位同学题中m 的范围是否一致?________(填“是”“否”中的一种)【参考答案】:是【解析】:∵命题“∃x ∈R,x 2+2x +m ≤0”的否定是“∀x ∈R,x 2+2x +m >0”.而命题“∃x ∈R,x 2+2x +m ≤0”是假命题,则其否定“∀x ∈R,x 2+2x +m >0”为真命题.∴两位同学题中m 的范围是一致的.7.下列命题:①存在x <0,x 2-2x -3=0;②对一切实数x <0,都有|x |>x ;③∀x ∈R,=x ;x 2④已知a n =2n ,b m =3m ,对于任意n ,m ∈N *,a n ≠b m .其中,所有真命题的序号为________.【参考答案】:①②【解析】:因为x 2-2x -3=0的根为x =-1或3,所以存在x =-1<0,使x 2-2x -3=0,故①为真命题;②显然为真命题;③=|x |=Error!故③为假命题;x 2④当n =3,m =2时,a 3=b 2,故④为假命题.8.若命题“∀x ∈R,2x 2+3x +a ≠0”是假命题,则实数a 的取值范围是________.【参考答案】a ≤98【解析】因为命题“∀x ∈R,2x 2+3x +a ≠0”是假命题,所以其否定“∃x ∈R,2x 2+3x +a =0”是真命题,所以Δ=32-4×2×a ≥0,解得a ≤.故实数a 的取值范围是a ≤.98989.指出下列命题是全称量词命题还是存在量词命题,并判断它们的真假.(1)∀x ∈N ,2x +1是奇数;(2)存在一个x ∈R ,使=0;11x -(3)对任意实数a ,|a |>0;【解析】(1)是全称量词命题.因为都是奇数,所以该命题是真命题.,21x N x ∀∈+(2)是存在量词命题.因为不存在,使成立,所以该命题是假命题.x ∈R 11x =-(3)是全称量词命题.因为,所以不都成立,因此,该命题是假命题.00=||0a >10.写出下列命题的否定:(1)所有人都晨练;(2);2,10x x x ∀∈++>R (3)平行四边形的对边相等;(4).2,10x x x ∃∈-+=R 【解析】(1)因为命题“所有人都晨练”是全称命题,所以其否定是“有的人不晨练”.(2)因为命题“”是全称命题,所以其否“”.2,10x x x ∀∈++>R 2,10x x x ∃∈++≤R (3)因为命题“平行四边形的对边相等”是指任意一个平行四边形的对边相等,是一个全称命题,所以它的否定是“存在平行四边形,它的对边不相等”.(4)因为命题“”是特称命题,所以其否“”.2,10x x x ∃∈-+=R 2,10x x x ∀∈-+≠R 三、挑战高考1.a,b,c为实数,且a=b+c+1,证明:两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.【证明】 要证明结论的否定:两个方程都没有两个不相等的实数根,则有:Δ1=1-4b≤0,Δ2=a2-4c≤0.所以Δ1+Δ2=1-4b+a2-4c≤0.因为a=b+c+1,所以b+c=a-1.所以1-4(a-1)+a2≤0,即a2-4a+5≤0.但是a2-4a+5=(a-2)2+1>0,故矛盾.所以要证明结论的否定是假命题,要证明的结论为真命题,即两个一元二次方程x2+x+b=0,x2+ax+c=0中至少有一个方程有两个不相等的实数根.10.已知命题p:∀x∈R,2x≠-x2+m,命题q:∃x∈R,x2+2x-m-1=0,若命题p为假命题,命题q为真命题,求实数m的取值范围.【参考答案】m≥-1【解析】 因为命题p为假命题,所以命题p的否定为真命题,即命题“∃x∈R,2x=-x2+m”为真命题.则-x2-2x+m=0有实根.所以Δ=4+4m≥0,所以m≥-1.若命题q:∃x∈R,x2+2x-m-1=0为真命题,则方程x2+2x-m-1=0有实根,所以Δ=4+4(m+1)≥0,所以m≥-2.所以m≥-1且m≥-2,所以m的取值范围为m≥-1.。
2.3全称量词命题与存在量词命题(解析版)2.3全称量词命题与存在量词命题(解析版)在数理逻辑中,全称量词命题和存在量词命题是重要的概念。
本文将详细解析这两种命题的含义、特点以及它们在推理和证明中的应用。
全称量词命题是表示一个命题对于某一特定论域中的所有个体都成立。
通常用符号∀x 来表示全称量词,其中 x 是论域中的个体。
举例来说,全称量词命题 "对于所有的学生x,x是努力学习的" 表明在论域中的每个学生都是努力学习的。
全称量词命题具有以下特点:1. 它对论域中的每个个体都进行了普遍的断言,因此涵盖了整个论域。
2. 全称量词命题通常用于进行普遍性的推理和推广,能够从一个特例得出普遍结论。
3. 当全称量词命题能够通过具体的例证或数学证明得到验证时,我们可以得出它的真值。
存在量词命题则表示在论域中存在至少一个个体使该命题成立。
用符号∃x 表示存在量词,其中 x 仍然是论域中的个体。
例如 "存在一个学生x,x是优秀的" 表明论域中至少存在一个优秀的学生。
存在量词命题的特点如下:1. 它只需要论证至少存在一个使命题成立的个体,而不需要考虑其他个体。
2. 存在量词命题通常用于证明问题的存在性,例如存在一个解,存在一个答案等。
3. 能否验证存在量词命题的真值取决于具体的情境和论域。
全称量词命题与存在量词命题在推理和证明中具有不同的应用。
全称量词命题可以用于推理和推广,通过观察和验证特例来得出普遍性结论。
它也可以用于证明某个性质对于论域中的每个个体都成立。
而存在量词命题则可以用于证明问题的存在性,例如存在一个解或存在一个满足条件的对象。
在解析命题时,我们需要根据命题的具体形式和要求来确定是应该使用全称量词还是存在量词。
通过正确地使用全称量词和存在量词,我们能够准确地表达命题的意思,并进行有效的推理和证明。
总结起来,全称量词命题和存在量词命题是数理逻辑中重要的概念。
全称量词命题表示对于论域中所有个体都成立的命题,而存在量词命题表示在论域中存在至少一个个体使命题成立。
通用版2022-2023学年初升高衔接新知识预习篇专题:存在量词与全称量词(解析版)一、基本知识及其典型例题【例1】判断下列语句是全称量词命题,还是存在量词命题:(1)矩形的对角线不相等;(2)凸多边形的外角和等于360°;(3)存在x∈N,使得2x+1是偶数;(4)若一个四边形是菱形,则这个四边形的对角线互相垂直.【解析】(1)可以改为所有矩形的对角线不相等,故为存在量词命题.(2)可以改为所有的凸多边形的外角和等于360°,故为全称量词命题.(3)含有存在量词“存在”,故是存在量词命题.(4)若一个四边形是菱形,也就是所有的菱形,故为存在量词命题.【变式1】判断下列命题是全称命题还是特称命题:(1)存在实数x,使得x2+2x+3>0;(2)菱形都是正方形;(3)方程x2﹣8x+12=0有一个根是奇数.【详解】(1)该命题是特称命题, (2)该命题是全称命题, (3)该命题是特称命题,【例2】将下列命题用“∀”或“∃”表示. (1)实数的平方是非负数;(2)方程ax 2+2x +1=0(a <0)至少存在一个负根;【解析】 (1)∀x ∈R ,x 2≥0.(2)∃x 0<0,ax 20+2x 0+1=0(a <0). 【变式2】用符号“∀”“∃”表达下列命题. (1)实数都能写成小数的形式;(2)存在一实数对()x y ,,使30x y ++<成立; (3)任意实数乘1-,都等于它的相反数; (4)存在实数x ,使得32x x >. 【答案】答案见解析. 【分析】按照全称命题和特称命题的定义进行求解 【详解】解:(1)x R ∀∈,x 能写成小数形式; (2)(,),,x y x R y R ∃∈∈,使30x y ++<; (3),(1)x R x x ∀∈⋅-=-; (4)32,x R x x ∃∈>. 【点睛】此题考查全称命题和特称命题的含义及符号表示,属于基础题.【例3】指出下列命题是全称量词命题还是存在量词命题,并判断下列命题的真假. (1)存在一个x ∈R ,使1x -1=0;(2)对任意实数a ,|a |>0;(3)每一条线段的长度都能用正有理数表示;(4)存在一个实数x 0,使等式x 20+x 0+8=0成立.【解析】(1)是存在量词命题.假命题,因为不存在x ∈R ,使1x -1=0成立.(2)是全称量词命题.假命题,因为|0|=0,所以|a |>0不都成立.(3)是全称量词命题.假命题,如:边长为1的正方形的对角线长为2,它的长度就不是有理数.(4)是存在量词命题.假命题,因为该方程的判别式Δ=-31<0,故无实数解 【变式3.1】(多选题)下列全称量词命题中真命题的有() A.负数没有对数;B.对任意的实数a ,b ,都有a 2+b 2≥2ab ;C.二次函数f (x )=x 2-ax -1与x 轴恒有交点; D.∀x ∈R ,y ∈R ,都有x 2+|y |>0. 【解析】ABC 为真命题.D 中,当0==y x 时,x 2+|y |=0,不符合。
1.5 全称量词与存在量词A 组-[应知应会]1.(2019秋•埇桥区期末)将命题“”改写成全称命题为 222x y xy +…()A .对任意,,都有成立x y R ∈222x y xy +…B .存在,,使成立x y R ∈222x y xy +…C .对任意,,都有成立0x >0y >222x y xy +…D .存在,,使成立0x <0y <222x y xy +…【分析】直接把命题改写成含有全称量词的命题即可.【解答】解:命题“”是指对任意,,都有成立,222x y xy +…x y R ∈222x y xy +…故命题“”改写成全称命题为:对任意,,都有成立.222x y xy +…x y R ∈222x y xy +…故选:.A 2.下列全称命题的否定形式中,假命题的个数是 ()(1)所有能被3整除的数能被6整除(2)所有实数的绝对值是正数(3),的个位数不是2.x Z ∀∈2x A .0B .1C .2D .3【分析】(1)写出原命题的否定形式,再举例判断即可;(2)写出原命题的否定形式,再举例,,不是正数,判断即可;00x R =∈|0|0=(3)由,,,,,,,,,,可知,的个位数不是2,写出其否定形式,可判断(3).200=211=224=239=2416=2525=2636=2749=2864=2981=x Z ∀∈2x 【解答】解:(1)“所有能被3整除的数能被6整除”的否定形式为“能被3整除的数不能被6整除”正确,如3,是能被3整除,不能被6整除的数,故(1)的否定∃形式正确;(2)所有实数的绝对值是正数,其否定为:,,不是正数,故(2)的否定形式正确;00x R ∃=∈|0|0=(3)因为,,,,,,,,,,200=211=224=239=2416=2525=2636=2749=2864=2981=所以,的个位数不是2的否定形式为:,的个位数是2,错误.x Z ∀∈2x x Z ∃∈2x综上所述,以上全称命题的否定形式中,假命题的个数是1个,故选:.B3.下列特称命题中假命题的个数是 ()①有的实数是无限不循环小数;②有些三角形不是等腰三角形;③有的菱形是正方形.A .0B .1C .2D .3【分析】①从实数的组成可知②从三角形的类型入手③正方形是特殊的菱形,一一进行判断即可.【解答】解:在①中若,是无限不循环小数,故真;x π=在②中若边长为3.4.5的三角形不是等腰三角形,故真;在③中有一个内角为90度的菱形是正方形,故真;其中①②③全是真命题.故选:.A 4.(2020•广元模拟)已知集合,,,下列命题为假命题的是 2{|28}A x x x =-…{2B =-0}()A .,B .,C .,D .,0x A ∃∈0x B ∈0x B ∃∈0x A ∈x A ∀∈x B ∈x B ∀∈x A∈【分析】先求出集合,再根据,之间的关系即可求解结论.A AB 【解答】解:因为集合;2{|28}{|24}A x x x x x =-=-………,,{2B =- 0}A ⊆,;x A ∴∀∈x B ∈故选:.C 5.命题“对任何,”的否定是 .x R ∈|2||4|3x x -+->【分析】利用全称命题的否定是特称命题,可求命题的否定.【解答】解:因为命题为全称命题,根据全称命题的否定是特称命题得到命题“对任何,”的否定是:存在,使得.x R ∈|2||4|3x x -+->x R ∈|2||4|3x x -+-…故参考答案为:存在,使得.x R ∈|2||4|3x x -+-…6.(2019秋•长宁区期末)命题“若,则”是真命题,则实数的范围是 .1x >x a >a 【分析】根据命题是真命题,转化为两个集合之间的关系建立条件关系即可得到结论.【解答】解:“若,则”是真命题,1x >x a >则,,,(1)(a +∞⊆)+∞,1a ∴…即实数的取值范围是,a 1a …故参考答案为:.1a …7.用符号“”与“”表示下列含有量词的命题,并判断真假:∀∃(1)任意实数的平方大于或等于0;(2)对任意实数,二次函数的图象关于轴对称;a 2y x a =+y (3)存在整数,,使得;x y 243x y +=(4)存在一个无理数,它的立方是有理数.【分析】利用全称量词、存在量词的意义即可得出命题.【解答】解:(1),则,为真命题;x R ∀∈20x …(2),则二次函数的图象关于轴对称,为真命题;a R ∀∈2y x a =+y (3),,使得,为假命题;x ∃y Z ∈243x y +=(4),使得,为真命题.0R x Q ∃∈ð30x Q ∈8.判断下列命题是全称命题还是存在性命题,并写出它们的否定:(1):对任意的,都成立;p x R ∈210x x ++=(2),.:p x R ∃∈2250x x ++>【分析】利用全称命题和特称命题的定义分别判断,然后写出它们的否定.【解答】解:(1)由于命题中含有全称量词“任意的”,因而是全称命题;又由于“任意的”的否定为“存在一个”,因此,:存在一个,使成立,即“,使成立”;p ⌝x R ∈210x x ++≠x R ∃∈210x x ++≠(2)由于“”表示存在一个实数,即命题中含有存在量词“存在一个”,x R ∃∈x 因而是存在性命题;又由于“存在一个”的否定为“任意一个”,因此,:对任意一个都有,即“,”.p ⌝x 2250x x ++…x R ∀∈2250x x ++…9.(2019秋•怀仁市校级期末)写出下列命题的否定,并判断其真假:(1),方程必有实根;:p x R ∀∈20x x m +-=(2),使得.:q x R ∃∈210x x ++…【分析】命题的否定即命题的对立面.可根据如下规则书写:“全称量词”与“存在量词”正好组成了意义相反的表述.如“对所有的都成立”与“至少有一个⋯不成立”;“都是”与“不都是”等,所以“全称命题”的否定一定是“存在性命题”,“存在性命题”的否定一定是“全称命题”.⋯【解答】解:(1).方程无实数根;:p m R ⌝∃∈20x x m +-=由于当时,方程的根的判别式△,1m =-20x x m +-=0<方程无实数根,故其是真命题.∴20x x m +-=(2),使得;:q x R ⌝∀∈210x x ++>由于,22131(024x x x ++=++>故其是真命题.B 组-[素养提升](2019秋•沈阳期末)设,,若是真命题,则实数的取值范围是 .:p x R ∀∈20x x a ++…p a 【分析】由含参不等式恒成立问题,得:,等价于△,解不等式即可得的取值范围.x R ∀∈20x x a ++…0…a 【解答】解:若,,是真命题,则△,解得;:p x R ∀∈20x x a ++...140a =- (1)4a …故的取值范围是:;a 14a …故参考答案为:.14a …知识改变命运。
第六讲 全称量词命题与存在量词命题【学习目标】1. 通过已知的数学实例,理解全称量词与存在量词的意义.2. 能正确使用存在量词对全称量词命题进行否定.3.能正确使用全称量词对存在量词命题进行否定.【基础知识】1.全称量词和全称量词命题(1)全称量词:短语“所有的”“任意一个”在逻辑中通常叫做全称量词,并用符号“∀”表示. (2)常见的全称量词还有“一切”“每一个”“任给”等.(3)全称量词命题:含有全称量词的命题叫做全称量词命题.全称量词命题“对M 中任意一个x ,有p (x )成立”可用符号简记为∀x ∈M ,p (x ). 2.存在量词与存在量词命题(1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫做存在量词,并用符号“∃”表示.(2)常见的存在量词还有“有些”“有一个”“对某些”“有的”等.(3)存在量词命题:含有存在量词的命题叫做存在量词命题.存在量词命题“存在M 中的元素x ,使p (x )成立”可用符号简记为∃x ∈M ,p (x ). 3.命题与命题的否定的真假判断一个命题和它的否定不能同时为真命题,也不能同时为假命题,只能一真一假. 4.全称量词命题的否定 命题的否定:改变量词,否定结论 全称量词命题p :∀x ∈M ,p (x ), 它的否定p ⌝:∃x ∈M ,p ⌝ (x ). 全称量词命题的否定是存在量词命题. 5.存在量词命题的否定存在量词命题p :∃x ∈M ,p (x ), 它的否定p ⌝:∀x ∈M ,p ⌝ (x ). 存在量词命题的否定是全称量词命题.4.常见正面词语的否定举例如下:正面词语等于大于(>)小于(<)是都是否定不等于不大于(≤)不小于(≥)不是不都是正面词语至少有一个至多有一个任意的所有的至多有n个否定一个也没有至少有两个某个某些至少有n+1个【考点剖析】考点一:全称量词命题与存在量词命题的识别例1.下列命题中(1)有些自然数是偶数;(2)正方形是菱形;(3)能被6整除的数也能被3整除;(4)对于任意x R∈,总有211 1x+.存在量词命题的个数是()A.0 B.1 C.2 D.3【答案】B【解析】对于(1),有些自然数是偶数,含有存在量词“有些”,是存在量词命题;对于(2),正方形是菱形,可以写成“所有的正方形都是菱形”,它是全称量词命题;对于(3),能被6整除的数也能被3整除,可以写成“所有能被6整除的数也能被3整除”,是全称量词命题;对于(4),对于任意x R∈,总有211 1x+,含有全称量词“任意的”,是全称量词命题.所以存在量词命题的序号是(1),有1个.故选B.考点二:全称量词命题与存在量词命题的真假的判断例2.下列命题为真命题的是()A .0x R ∃∈,使200x <B .x R ∀∈,有20xC .x R ∀∈,有20x >D .x R ∀∈,有20x <【答案】B【解析】因为x R ∈,所以20x ,所以x R ∀∈,有20x , 故选B .考点三:依据含量词命题的真假求参数取值范围例3.已知命题“x R ∀∈,使214(2)04x a x +-+>”是真命题,则实数a 的取值范围是( ) A .(,0)-∞ B .[0,4] C .[4,)+∞ D .(0,4)【答案】D【解析】命题“x R ∀∈,使214(2)04x a x +-+>”是真命题, 即判别式△21(2)4404a =--⨯⨯<, 即△2(2)4a =-<,则222a -<-<,即04a <<, 故选D .考点四:全称量词命题的否定例4.全称命题:x R ∀∈,254x x +=的否定是( ) A .x R ∃∈,254x x += B .x R ∀∈,254x x +≠ C .x R ∃∈,254x x +≠ D .以上都不正确 【答案】C【解析】全称命题的否定是特称命题,x R ∴∀∈,254x x +=的否定是:x R ∃∈,254x x +≠.故选C .考点五:存在量词命题的否定例5.设命题0:(0,)p x ∃∈+∞,0303x x <,则命题p 的否定为( )A .(0,)x ∀∈+∞,33x x <B .(0,)x ∀∈+∞,33x x >C .(0,)x ∀∈+∞,33x xD .(0,)x ∃∈+∞,33x x【答案】C【解析】命题0:(0,)p x ∃∈+∞,0303x x <,则命题p 的否定为:(0,)x ∀∈+∞,33x x . 故选C .考点六:根据全称量词命题、存在量词命题的否定求参数例6.已知命题:p x R ∃∈,使220ax x a ++,当a A ∈时,p 为假命题,求集合. 【解析】当a A ∈时,p 为假命题, 则当a A ∈时,x R ∀∈,使220ax x a ++<, 若0a =,不等式等价为0x <,不满足条件. 若0a ≠,要使不等式恒成立,则20440a a <⎧⎨=-<⎩,即011a a a <⎧⎨><-⎩或,则1a <-, 即(,1)A =-∞-.【真题演练】1.下列命题是全称量词命题的是( ) A .有一个偶数是素数B .至少存在一个奇数能被15整除C .有些三角形是直角三角形D .每个四边形的内角和都是360︒ 【答案】D【解析】A ,有一个,存在性量词,特称命题, B ,至少存在一个,存在性量词,特称命题, C ,有些,存在性量词,特称命题,D ,每个,全称量词,全称命题, 故选D .2.下列命题中是全称量词命题并且是真命题的是( ) A .x R ∀∈,2210x x ++> B .所有菱形的4条边都相等 C .若2x 为偶数,则x N ∈ D .π是无理数【答案】B【解析】对于:A x R ∀∈,2221(1)0x x x ++=+,故A 错误; 对于B :所有菱形的4条边都相等,满足两个条件,故B 正确; 对于C :若2x 为偶数,则x N ∈或N -,故C 错误; 对于:D π是无理数不是全称命题,故D 错误. 故选B .3.已知对{|13}x x x ∀∈<,都有m x >,则m 的取值范围为( ) A .3m B .3m > C .1m > D .1m【答案】A【解析】对{|13}x x x ∀∈<,都有m x >, 3m ∴,故选A .4.下列命题含有全称量词的是( ) A .某些函数图象不过原点 B .实数的平方为正数C .方程2250x x ++=有实数解D .素数中只有一个偶数【答案】B【解析】A :某些函数图象不过原点,不是全部的意思,不是全称量词命题;B :实数的平方为正数即是所有实数的平方根都为正数,是全称量词命题;C :方程2250x x ++=有实数解,不是全称量词命题;D :素数中只有一个偶数,不是全称量词命题;故选B .5.有下列四个命题:①x R ∀∈10>;②x N ∀∈,20x >;③x N ∃∈,[3x ∈-,1)-;④x Q ∃∈,22x =.其中真命题的个数为( ) A .1B .2C .3D .4【答案】A【解析】对于①,x R ∀∈10>,是真命题,2010>; 对于②,x N ∀∈,20x >,是假命题, 因为0x =时,x N ∈,20x =;对于③,x N ∃∈,[3x ∈-,1)-,是假命题, 由x N ∈知0x ,所以[3x ∉-,1)-; 对于④,x Q ∃∈,22x =,是假命题, 因为x Q ∀∈,22x ≠.所以真命题的序号是①,共1个. 故选A .6.全称命题:x R ∀∈,254x x +=的否定是( ) A .x R ∃∈,254x x += B .x R ∀∈,254x x +≠ C .x R ∃∈,254x x +≠ D .以上都不正确 【答案】C【解析】全称命题的否定是特称命题,x R ∴∀∈,254x x +=的否定是:x R ∃∈,254x x +≠.故选C .7.若命题“x R ∃∈,使得23210x ax ++<”是假命题,则实数a 的取值范围是( )A .a <B .3a -,或3aC .33aD .a <a >【答案】C【解析】命题“x R ∃∈,使得23210x ax ++<”是假命题,即“x R ∀∈,23210x ax ++成立”是真命题, 故△24120a =-,解得33a .故选C .8.命题:x R ∃∈,210x x -+=的否定是 .【答案】x R ∀∈,210x x -+≠【解析】因为特称命题的否定是全称命题,所以x R ∃∈,210x x -+=的否定是:x R ∀∈,210x x -+≠. 故答案为:x R ∀∈,210x x -+≠.9.设命题:p x R ∃∈,2230x x m -+-=,命题:q x R ∀∈,222(5)190x m x m --++≠.若p ,q 都为真命题,求实数m 的取值范围.【解析】若命题:p x R ∃∈,2230x x m -+-=为真命题, 则△44(3)0m =--,解得4m ;若命题:q x R ∀∈,222(5)190x m x m --++≠为真命题, 则△224(5)4(19)0m m =--+<,解得3(5m ∈,)+∞,又p ,q 都为真命题,∴实数m 的取值范围是33{|4}{|}(55m m m m >=,4].【过关检测】1.命题“x N +∃∈使230x x m -+”的否定是( ) A .x N +∃∈使230x x m -+< B .不x N +∃∈使230x x m -+<C .对x N +∀∈都有230x x m -+D .对x N +∀∈都有230x x m -+<【答案】D【解析】命题“存在x N +∈,使230x x m ++”为特称命题, ∴命题的否定为:对任意x N +∈,使230x x m ++<,故选D .2.下列语句是特称命题的是( ) A .整数n 是2和7的倍数 B .存在整数n ,使n 能被11整除 C .若430x -=,则34x = D .x M ∀∈,()p x 成立【答案】B【解析】命题:存在整数n ,使n 能被11整除,含有特称量词存在, 故B 是特此命题, 故选B .3.设a 为常数,对任意x R ∈,210ax ax ++>,则a 的取值范围是( ) A .(0,4) B .[0,4) C .(0,)+∞ D .(,4)-∞【答案】B【解析】①当0a =时,10>恒成立,即0a =时满足题意, ②当0a ≠时,由对任意x R ∈,210ax ax ++>,则有: 240a a a >⎧⎨-<⎩,解得:04a <<, 综合①②得:a 的取值范围是[0,4),故选B .4.命题p :任意的x R ∈,使770x x +>,则p ⌝是( )A .0x R ∃∈,使70070x x +B .0x R ∃∈,使70070x x +C .x R ∀∈,使770x x +D .x R ∀∈,使770x x +【答案】B【解析】根据题意,命题p :任意的x R ∈,使770x x +>, 这是全称命题,其否定为特称命题, 即0x R ∃∈,使70070x x +, 故选B .5.若存在x 使2()1x a ->成立.则a 的取值范围是( ) A .(-∞.)+∞ B .(2,)-+∞ C .(0.)+∞ D .(1,)-+∞【答案】A【解析】由2()1x a ->得12x a >+, 若存在x 使2()1x a ->成立, 则(a ∈-∞.)+∞,故选A .6.若命题“[1x ∀∈,2],22430x ax a -+”是真命题,则实数a 的取值范围是( ) A .2(,1]3B .2[,1)3C .2[,1]3D .2(,1)3【答案】C【解析】设22()43f x x ax a =-+,对[1x ∀∈,2],22()430f x x ax a =-+是真命题, ∴22(1)1430(2)4830f a a f a a ⎧=-+⎨=-+⎩,∴113223a a ⎧⎪⎪⎨⎪⎪⎩,∴213a . 故选C .7.已知命题:“[1x ∃∈,2],使220x x a ++”为真命题,则实数a 的取值范围是( ) A .[3-,)+∞ B .(3,)-+∞ C .[8-,)+∞ D .(8,)-+∞【答案】C【解析】设2()2f x x x a =++, 要使[1x ∃∈,2],使220x x a ++, 据二次函数的图象与性质得: 只要:f (2)0即可, 22220a ∴+⨯+,8a ∴-.故选C .8.若“存在[1x ∈,2],使0x a -”是假命题,则实数a 的取值范围是 . 【答案】(,1)-∞【解析】由题转化为命题“[1x ∀∈,2],0x a ->”为真命题,即a x <恒成立, 又y x =在[1,2]上单调递增,所以1min y =,故1a <. 故答案为:(,1)-∞.9.若“0(0,)x ∃∈+∞,21x x λ>+”是假命题,则实数λ的取值范围是 . 【答案】2λ【解析】若“0(0,)x ∃∈+∞,21x x λ>+”是假命题, 则“(0,)x ∀∈+∞,21x x λ+”是真命题; 所以,(0,)x ∈+∞时,1x xλ+恒成立, 又1122x x x x+=,当且仅当1x =时取“=”; 所以实数λ的取值范围是2λ. 故答案为:2λ.10.已知命题p :“x R ∀∈,220x x a +->”,命题q :“x R ∃∈,使得2(1)10x a x +-+<”.试问p 是q 什么条件?【解析】因为命题p :“x R ∀∈,220x x a +->”所以△0<,440a +<,解得:(,1)a ∈-∞-因为命题:q x R ∃∈,使得2(1)10x a x +-+<,所以△0>,即2(1)40a -->,解得(a ∈-∞,1)(3-⋃,)+∞ 所以,p 是q 充分不必要条件.。