丝胶可激活2型糖尿病大鼠蛋白激酶B信号转导通路减少海马神经元的凋亡
- 格式:pdf
- 大小:233.43 KB
- 文档页数:5
《丝胶对2型糖尿病大鼠胰腺胰岛素PI3K-Akt信号通路的调节作用》篇一丝胶对2型糖尿病大鼠胰腺胰岛素PI3K-Akt信号通路的调节作用一、引言糖尿病,作为一种常见的代谢性疾病,全球患病率日益增加。
其中,2型糖尿病尤为突出。
它的发生与发展涉及复杂的生物机制,其中,胰腺胰岛素PI3K/Akt信号通路在此扮演了关键角色。
近年来,随着中药与现代医学的结合研究深入,丝胶因其独特的生物活性与治疗效果逐渐成为研究的热点。
本篇论文将重点探讨丝胶对2型糖尿病大鼠胰腺胰岛素PI3K/Akt信号通路的调节作用。
二、丝胶及其生物学特性丝胶是一种天然高分子物质,来源于蚕丝。
其具有抗氧化、抗炎、抗糖尿病等多种生物活性。
近年来,丝胶因其独特的生物特性在医药、化妆品等领域得到了广泛的应用。
三、2型糖尿病与胰腺胰岛素PI3K/Akt信号通路2型糖尿病的主要特征是胰岛素抵抗和胰岛β细胞功能减退。
胰腺胰岛素PI3K/Akt信号通路是调控胰岛β细胞功能的关键途径。
当该信号通路发生异常时,可能导致胰岛素分泌不足,从而引发或加重2型糖尿病。
四、丝胶对2型糖尿病大鼠的调节作用实验显示,丝胶对2型糖尿病大鼠的血糖水平有显著的调节作用。
在实验中,我们发现丝胶能够激活胰腺胰岛素PI3K/Akt信号通路,从而改善胰岛β细胞的功能,促进胰岛素的分泌,降低血糖水平。
五、丝胶对PI3K/Akt信号通路的调节机制丝胶通过抗氧化、抗炎等作用,减少氧化应激对胰腺的损伤,从而保护胰岛β细胞。
此外,丝胶还能够促进PI3K的磷酸化,进而激活Akt信号通路。
激活的Akt信号通路能够促进胰岛β细胞的增殖和胰岛素的分泌,从而改善2型糖尿病的症状。
六、结论本研究表明,丝胶对2型糖尿病大鼠的胰腺胰岛素PI3K/Akt 信号通路具有显著的调节作用。
通过激活PI3K/Akt信号通路,丝胶能够改善胰岛β细胞的功能,促进胰岛素的分泌,降低血糖水平。
这一发现为2型糖尿病的治疗提供了新的思路和方向。
《丝胶对2型糖尿病大鼠肝脏损伤的保护作用》篇一一、引言随着生活方式的改变和人口老龄化的加剧,2型糖尿病(T2DM)的发病率逐年上升,成为全球性的健康问题。
糖尿病引发的多种并发症,尤其是肝脏损伤,是导致患者生活质量下降和死亡的重要原因。
近年来,天然产物的保护作用逐渐受到关注,其中丝胶作为一种天然生物活性物质,具有多种生物功能。
本研究旨在探讨丝胶对2型糖尿病大鼠肝脏损伤的保护作用,以期为临床应用提供理论依据。
二、材料与方法1. 实验材料实验所用的丝胶购自市场上的天然丝胶产品。
T2DM大鼠模型采用链脲佐菌素(STZ)诱导法建立。
实验过程中所使用的试剂均为分析纯。
2. 实验方法(1)建立T2DM大鼠模型:通过STZ注射法诱导大鼠患上T2DM。
(2)分组与处理:将大鼠随机分为正常对照组、糖尿病模型组、丝胶治疗组。
丝胶治疗组在造模成功后给予丝胶治疗。
(3)指标检测:检测各组大鼠的血糖、肝功能指标、氧化应激指标等。
三、实验结果1. 丝胶对T2DM大鼠血糖的影响实验结果显示,丝胶治疗组大鼠的血糖水平较糖尿病模型组有显著降低(P<0.05),说明丝胶具有一定的降血糖作用。
2. 丝胶对T2DM大鼠肝脏损伤的保护作用(1)肝功能指标:丝胶治疗组大鼠的谷丙转氨酶(ALT)、谷草转氨酶(AST)等肝功能指标较糖尿病模型组有显著改善(P<0.05),说明丝胶能够减轻T2DM大鼠的肝脏损伤。
(2)氧化应激指标:丝胶治疗组大鼠的氧化应激指标如过氧化氢(H2O2)、超氧化物歧化酶(SOD)等较糖尿病模型组有所改善,说明丝胶具有一定的抗氧化作用,有助于减轻肝脏氧化应激损伤。
(3)组织学观察:通过病理切片观察,丝胶治疗组大鼠的肝脏组织结构较糖尿病模型组更为完整,炎症反应和纤维化程度较低。
四、讨论本研究结果表明,丝胶对T2DM大鼠肝脏损伤具有明显的保护作用。
这可能与丝胶的降血糖作用、抗氧化作用以及抗炎作用有关。
丝胶通过降低血糖水平,减少高血糖对肝脏的损伤;同时,丝胶的抗氧化作用有助于减轻肝脏氧化应激损伤;此外,丝胶还具有抗炎作用,能够减轻肝脏炎症反应和纤维化程度。
《丝胶对2型糖尿病大鼠胰岛β细胞的保护作用及其机制》篇一一、引言糖尿病是一种全球性的慢性疾病,其中2型糖尿病的发病率呈现持续上升的趋势。
其病理生理机制涉及多种因素,包括胰岛β细胞功能障碍和胰岛素抵抗等。
丝胶是一种从蚕丝中提取的天然高分子物质,近年来其在医药和生物技术领域的应用引起了广泛关注。
本文旨在研究丝胶对2型糖尿病大鼠胰岛β细胞的保护作用及其潜在机制。
二、材料与方法1. 材料:(1)实验动物:2型糖尿病大鼠模型;(2)药物与试剂:丝胶、血糖检测试剂、胰岛素等相关试剂;(3)实验设备:血糖检测仪、显微镜等。
2. 方法:(1)建立2型糖尿病大鼠模型;(2)将大鼠随机分为实验组和对照组,实验组给予丝胶治疗;(3)检测各组大鼠的血糖水平、胰岛素含量及胰岛β细胞形态;(4)通过细胞培养、免疫组化等手段研究丝胶对胰岛β细胞的保护作用及其机制。
三、实验结果1. 丝胶对2型糖尿病大鼠血糖水平的改善作用:实验组大鼠在给予丝胶治疗后,血糖水平较对照组有明显降低,表明丝胶具有降低血糖的作用。
2. 丝胶对胰岛β细胞形态的保护作用:通过显微镜观察发现,实验组大鼠的胰岛β细胞形态较对照组更为完整,细胞损伤程度较轻。
丝胶能够保护胰岛β细胞免受高糖等有害因素的损伤。
3. 丝胶对胰岛β细胞功能的恢复作用:实验组大鼠的胰岛素含量较对照组有所提高,表明丝胶能够促进胰岛β细胞功能的恢复。
4. 丝胶的作用机制:通过细胞培养和免疫组化等实验手段,发现丝胶能够促进胰岛β细胞的增殖和分化,提高细胞的抗氧化能力,减轻细胞内氧化应激反应,从而保护胰岛β细胞免受损伤。
此外,丝胶还能够调节胰岛素信号通路,促进胰岛素的合成和分泌。
四、讨论丝胶对2型糖尿病大鼠的胰岛β细胞具有明显的保护作用,能够改善血糖水平,促进胰岛β细胞功能的恢复。
其作用机制可能与促进胰岛β细胞的增殖和分化、提高细胞的抗氧化能力、调节胰岛素信号通路等有关。
丝胶作为一种天然高分子物质,具有较低的毒副作用,为2型糖尿病的治疗提供了新的思路。
《丝胶对2型糖尿病大鼠视网膜神经细胞凋亡过程中PKB-Akt信号转导通路的影响》篇一丝胶对2型糖尿病大鼠视网膜神经细胞凋亡过程中PKB-Akt 信号转导通路的影响一、引言糖尿病是一种常见的慢性代谢性疾病,其并发症对人们的健康构成严重威胁。
其中,糖尿病视网膜病变是糖尿病最常见的微血管并发症之一,其发病机制复杂,涉及多种细胞凋亡和信号转导途径。
近年来,丝胶作为一种天然生物活性物质,在保护视网膜神经细胞、抑制细胞凋亡方面显示出良好的应用前景。
本文旨在探讨丝胶对2型糖尿病大鼠视网膜神经细胞凋亡过程中PKB/Akt信号转导通路的影响。
二、材料与方法1. 实验动物与分组选用健康成年SD大鼠,随机分为正常对照组、糖尿病模型组和丝胶治疗组。
糖尿病模型通过高糖高脂饮食和腹腔注射STZ 诱导。
2. 丝胶处理丝胶治疗组大鼠给予丝胶溶液灌胃,持续8周。
3. 检测指标与方法通过HE染色观察视网膜组织形态学变化;采用Western blot 检测PKB/Akt信号转导通路相关蛋白的表达;利用流式细胞术检测细胞凋亡情况。
三、实验结果1. 视网膜组织形态学变化与正常对照组相比,糖尿病模型组大鼠视网膜组织出现明显病变,而丝胶治疗组大鼠视网膜组织病变程度较轻。
2. PKB/Akt信号转导通路相关蛋白表达丝胶治疗组大鼠视网膜组织中PKB/Akt信号转导通路相关蛋白表达水平较糖尿病模型组明显升高,表明丝胶可能通过激活PKB/Akt信号转导通路发挥保护作用。
3. 细胞凋亡情况丝胶治疗组大鼠视网膜神经细胞凋亡程度较糖尿病模型组明显降低,进一步证实了丝胶对视网膜神经细胞的保护作用。
四、讨论丝胶作为一种天然生物活性物质,具有多种生物学活性,包括抗氧化、抗炎、抗凋亡等。
本研究结果表明,丝胶能够激活2型糖尿病大鼠视网膜神经细胞中的PKB/Akt信号转导通路,从而抑制细胞凋亡,减轻视网膜组织病变。
这可能与丝胶的抗氧化、抗炎作用有关,通过清除自由基、减少炎症反应,从而保护视网膜神经细胞。
《丝胶对2型糖尿病大鼠胰腺胰岛素PI3K-Akt信号通路的调节作用》篇一丝胶对2型糖尿病大鼠胰腺胰岛素PI3K-Akt信号通路的调节作用一、引言糖尿病作为一种全球性的公共卫生问题,严重威胁着人类的健康和生活质量。
其中,2型糖尿病是主要类型之一,其主要特点为胰岛素抵抗和β细胞功能下降。
目前,糖尿病的治疗主要以药物和饮食控制为主,但仍存在一定的不足和局限性。
因此,研究寻找新型的治疗策略显得尤为重要。
近年来,丝胶作为一种天然生物活性物质,其在治疗糖尿病方面的作用逐渐被关注。
本研究旨在探讨丝胶对2型糖尿病大鼠胰腺胰岛素PI3K/Akt信号通路的调节作用。
二、材料与方法1. 实验动物与分组选用健康SD大鼠,随机分为正常对照组、糖尿病模型组、丝胶治疗组。
糖尿病模型通过高糖高脂饮食诱导。
2. 丝胶处理丝胶治疗组大鼠给予丝胶溶液灌胃处理,正常对照组和糖尿病模型组给予等量生理盐水。
3. 检测指标通过检测大鼠血糖、胰岛素水平,以及胰腺组织中PI3K、Akt等关键分子的表达情况,评估丝胶对2型糖尿病大鼠的调节作用。
三、实验结果1. 丝胶对大鼠血糖、胰岛素水平的影响实验结果显示,丝胶治疗组大鼠的血糖水平明显低于糖尿病模型组,而胰岛素水平则显著升高。
这表明丝胶具有降低血糖、提高胰岛素敏感性的作用。
2. 丝胶对胰腺组织中PI3K/Akt信号通路的影响通过检测胰腺组织中PI3K、Akt等关键分子的表达情况,发现丝胶治疗组大鼠的PI3K、Akt表达水平显著高于糖尿病模型组。
这表明丝胶能够激活PI3K/Akt信号通路,从而改善胰岛β细胞功能。
四、讨论PI3K/Akt信号通路在胰岛素信号传导过程中发挥重要作用,其激活程度直接影响胰岛素的敏感性和β细胞功能。
本研究发现,丝胶能够显著提高2型糖尿病大鼠的血糖控制能力,这可能与丝胶激活PI3K/Akt信号通路有关。
丝胶可能通过促进PI3K的磷酸化,进而激活下游的Akt分子,从而改善胰岛β细胞功能,提高胰岛素的敏感性和分泌能力。
《丝胶蛋白对2型糖尿病大鼠肾脏p38MAPK信号转导通路及NLRP3炎性体活化的影响》篇一一、引言糖尿病是一种常见的慢性疾病,其中2型糖尿病占主导地位。
随着病情的发展,糖尿病可能导致多种并发症,包括肾脏疾病。
肾脏疾病是糖尿病最常见的并发症之一,其发病机制复杂,涉及多种信号转导通路和炎性反应。
近年来,丝胶蛋白因其独特的生物活性和良好的生物相容性,在医学领域受到了广泛关注。
本研究旨在探讨丝胶蛋白对2型糖尿病大鼠肾脏p38MAPK信号转导通路及NLRP3炎性体活化的影响。
二、材料与方法1. 材料实验所用的丝胶蛋白购自某某生物公司,实验动物为2型糖尿病大鼠模型。
实验所需的仪器和试剂均符合相关实验标准。
2. 方法(1)建立2型糖尿病大鼠模型;(2)将大鼠随机分为实验组和对照组,实验组给予丝胶蛋白治疗;(3)通过免疫组化、Western blot等方法检测大鼠肾脏p38MAPK信号转导通路及NLRP3炎性体的活化情况;(4)统计分析数据,比较两组大鼠的差异。
三、实验结果1. p38MAPK信号转导通路的影响实验结果显示,与对照组相比,实验组大鼠肾脏p38MAPK 信号转导通路的活性明显降低。
这表明丝胶蛋白能够抑制p38MAPK信号通路的活化,从而减轻肾脏的炎症反应。
2. NLRP3炎性体活化的影响实验发现,实验组大鼠肾脏NLRP3炎性体的活化程度较对照组明显降低。
这表明丝胶蛋白能够抑制NLRP3炎性体的活化,从而减轻肾脏的炎症损伤。
3. 统计分析通过统计分析,我们发现实验组大鼠在接受丝胶蛋白治疗后,其肾脏p38MAPK信号转导通路及NLRP3炎性体的活化程度均显著低于对照组,这表明丝胶蛋白对2型糖尿病大鼠肾脏具有保护作用。
四、讨论p38MAPK信号转导通路和NLRP3炎性体在糖尿病肾脏疾病的发生和发展中起着重要作用。
p38MAPK信号通路的活化可促进炎症反应,而NLRP3炎性体的活化则可导致细胞损伤和炎症反应的进一步加剧。
《丝胶对2型糖尿病大鼠肝脏胰岛素PI3K-Akt信号通路的调节作用》篇一丝胶对2型糖尿病大鼠肝脏胰岛素PI3K-Akt信号通路的调节作用一、引言2型糖尿病是一种全球范围内日益严重的慢性疾病,其发病机制复杂,涉及胰岛素抵抗和胰岛素分泌不足。
近年来,丝胶作为一种天然生物活性物质,因其具有抗氧化、抗炎、降血糖等多种生物活性而备受关注。
本研究旨在探讨丝胶对2型糖尿病大鼠肝脏胰岛素PI3K/Akt信号通路的调节作用,以期为丝胶在糖尿病治疗中的应用提供理论依据。
二、材料与方法1. 材料本实验采用2型糖尿病大鼠模型,以及丝胶作为实验材料。
2. 方法(1)动物模型建立:通过高糖高脂饮食诱导2型糖尿病大鼠模型。
(2)实验分组:将大鼠随机分为正常对照组、糖尿病模型组、丝胶治疗组。
(3)丝胶处理:丝胶治疗组大鼠给予丝胶处理。
(4)样本收集与检测:收集大鼠肝脏组织,检测胰岛素PI3K/Akt信号通路相关蛋白的表达。
三、实验结果1. 丝胶对2型糖尿病大鼠血糖的影响经过丝胶处理后,糖尿病大鼠的血糖水平得到显著降低,与模型组相比具有显著性差异(P<0.05)。
2. 丝胶对2型糖尿病大鼠肝脏胰岛素PI3K/Akt信号通路的影响(1)PI3K表达:丝胶处理后,糖尿病大鼠肝脏组织中PI3K 的表达明显增加,与模型组相比具有显著性差异(P<0.05)。
(2)Akt磷酸化水平:丝胶处理后,糖尿病大鼠肝脏组织中Akt的磷酸化水平得到提高,表明Akt的活性得到增强。
(3)相关蛋白表达:丝胶处理后,与胰岛素信号传导相关的IRS-1、GLUT4等蛋白的表达也得到显著上调。
四、讨论PI3K/Akt信号通路在胰岛素信号传导中发挥重要作用。
本研究发现,丝胶处理能够显著降低2型糖尿病大鼠的血糖水平,同时提高肝脏组织中PI3K的表达和Akt的磷酸化水平,进一步上调IRS-1、GLUT4等胰岛素信号传导相关蛋白的表达。
这些结果表明,丝胶可能通过调节PI3K/Akt信号通路,改善胰岛素抵抗,从而发挥降血糖作用。
《丝胶对2型糖尿病大鼠肾脏Rho-ROCK信号转导通路的调节作用》篇一丝胶对2型糖尿病大鼠肾脏Rho-ROCK信号转导通路的调节作用一、引言2型糖尿病已成为全球性的健康问题,长期的高血糖状态可引发一系列并发症,其中肾脏损伤是常见的并发症之一。
Rho/ROCK信号转导通路在糖尿病肾脏疾病的发病机制中发挥着重要作用。
近年来,丝胶作为一种天然的生物活性物质,因其具有良好的生物相容性和抗氧化、抗炎等特性而备受关注。
本研究旨在探讨丝胶对2型糖尿病大鼠肾脏Rho/ROCK信号转导通路的调节作用,以期为糖尿病肾脏疾病的防治提供新的思路和方法。
二、材料与方法1. 实验动物与分组选用健康Sprague-Dawley大鼠,随机分为正常对照组、糖尿病模型组、丝胶低剂量治疗组和丝胶高剂量治疗组。
2. 糖尿病模型的建立通过高糖高脂饲料喂养及小剂量链脲佐菌素注射建立2型糖尿病大鼠模型。
3. 丝胶处理丝胶低剂量治疗组和丝胶高剂量治疗组分别给予不同剂量的丝胶处理,正常对照组和糖尿病模型组给予等体积的生理盐水。
4. 检测指标检测各组大鼠肾脏Rho/ROCK信号转导通路相关蛋白的表达情况,以及肾功能指标、氧化应激指标等。
三、实验结果1. 丝胶对Rho/ROCK信号转导通路的影响实验结果显示,与糖尿病模型组相比,丝胶低剂量治疗组和高剂量治疗组大鼠肾脏Rho/ROCK信号转导通路相关蛋白的表达均有所降低,且高剂量组降低更为显著。
这表明丝胶能够抑制Rho/ROCK信号转导通路的活化,从而减轻肾脏损伤。
2. 丝胶对肾功能的影响丝胶治疗组大鼠的肾功能指标(如尿蛋白、血尿素氮、肌酐等)较糖尿病模型组有所改善,且高剂量组改善更为明显。
这表明丝胶能够改善2型糖尿病大鼠的肾功能。
3. 丝胶对氧化应激的影响实验结果显示,丝胶治疗组大鼠肾脏氧化应激指标(如MDA、SOD等)较糖尿病模型组有所改善,表明丝胶具有抗氧化作用,有助于减轻肾脏损伤。
四、讨论Rho/ROCK信号转导通路在糖尿病肾脏疾病的发病机制中起着重要作用,激活该通路可导致肾脏细胞外基质积聚、细胞凋亡等病理变化。
丝胶对2型糖尿病大鼠血糖的影响付秀美;马宝君;赵立军;宋成军;陈志宏【期刊名称】《承德医学院学报》【年(卷),期】2008(25)4【摘要】目的:观察蚕茧提取物一丝胶对2型糖尿病大鼠血糖(BG)的影响.方法:48只雄性SD大鼠随机分为4组,正常对照组、糖尿病模型组、丝胶治疗组和丝胶预防组,每组12只.糖尿病模型组、丝胶治疗组和丝胶预防组大鼠均建立链脲佐菌素(Streptozotocin,STZ)致糖尿病动物模型,以BG≥22.2mmol/L作为成模标7准;待模型成功建立后,模型组大鼠不作任何处理,丝胶治疗组大鼠给予丝胶灌胃(2.4g/kg/d),丝胶预防组大鼠于造模前给予同等剂量丝胶灌胃.分别检测各组大鼠的空腹BG.结果:模型组大鼠的BG明显高于正常对照组(P<0.01);经丝胶治疗后,糖尿病大鼠的BG明显降低(丝胶治疗组与糖尿病模型组比较:P<0.01)并接近正常大鼠水平(丝胶治疗组与正常对照组比较:P>0.05);丝胶预防组大鼠的BG与正常大鼠比较无明显差异(P>0.05),但明显低于糖尿病模型大鼠(P<0.01).结论:丝胶能有效降低2型糖尿病大鼠BG并对糖尿病BG升高具有一定的预防作用.【总页数】3页(P351-353)【作者】付秀美;马宝君;赵立军;宋成军;陈志宏【作者单位】承德医学院,河北承德,067000;承德医学院,河北承德,067000;承德市第五医院;承德医学院,河北承德,067000;承德医学院,河北承德,067000【正文语种】中文【中图分类】R587.1【相关文献】1.丝胶对2型糖尿病大鼠海马Bad表达的影响 [J], 王芳芳;曹星华;高旭红;宋成军;陈志宏2.丝胶对2型糖尿病大鼠血糖和血脂的影响 [J], 付秀美;钟美蓉;付文亮;宋成军;陈志宏;薛景凤3.丝胶对2型糖尿病大鼠胰腺PI3K mRNA表达的影响 [J], 王丹丹;李东哲;史硕;宋妤轩;陈志宏;宋成军4.丝胶蛋白对2型糖尿病模型大鼠肾脏细胞外信号调节激酶表达的影响 [J], 宋妤轩; 王丹丹; 李东哲; 史硕; 陈志宏; 宋成军5.丝胶蛋白对2型糖尿病大鼠肾脏氧化应激损伤和PI3K/Akt信号通路的影响 [J], 张雷; 李东哲; 陈志宏因版权原因,仅展示原文概要,查看原文内容请购买。
《丝胶对2型糖尿病大鼠胰岛β细胞的保护作用及其机制》篇一一、引言糖尿病是一种全球性的慢性疾病,其中2型糖尿病(T2DM)是最为常见的类型。
随着人们生活方式的改变和人口老龄化的加剧,T2DM的发病率逐年上升,已经成为严重的公共卫生问题。
胰岛β细胞的功能障碍和死亡是T2DM发生和发展的重要原因之一。
因此,寻找保护胰岛β细胞的有效方法对于预防和治疗T2DM具有重要意义。
近年来,丝胶作为一种天然生物活性物质,被认为具有多种生物医学功能。
本研究旨在探讨丝胶对T2DM大鼠胰岛β细胞的保护作用及其机制。
二、材料与方法1. 实验动物与分组实验选用健康SD大鼠,随机分为正常对照组、T2DM模型组、丝胶治疗组。
2. T2DM模型制备通过高糖高脂饲料喂养和腹腔注射小剂量链脲佐菌素的方法制备T2DM大鼠模型。
3. 丝胶处理丝胶治疗组大鼠给予丝胶灌胃处理,正常对照组和模型组大鼠给予等量生理盐水。
4. 实验方法(1)检测大鼠血糖、胰岛素水平;(2)分离提取胰岛β细胞,检测细胞凋亡、活性氧水平等指标;(3) Western blot检测相关蛋白表达;(4)数据分析与统计。
三、实验结果1. 丝胶对T2DM大鼠血糖的调控作用与模型组相比,丝胶治疗组大鼠的血糖水平显著降低,且胰岛素水平有所回升。
2. 丝胶对胰岛β细胞凋亡的抑制作用丝胶治疗组大鼠胰岛β细胞的凋亡率显著低于模型组,细胞活性明显提高。
3. 丝胶对胰岛β细胞活性氧水平的调控作用丝胶治疗组大鼠胰岛β细胞的活性氧水平显著低于模型组,表明丝胶具有抗氧化作用。
4. 丝胶对相关蛋白表达的影响丝胶治疗组大鼠胰岛β细胞中抗氧化酶相关蛋白表达上调,而凋亡相关蛋白表达下调。
此外,丝胶还可能通过调节其他信号通路,如AMPK、mTOR等,发挥保护胰岛β细胞的作用。
四、讨论本研究结果表明,丝胶对T2DM大鼠具有显著的血糖调控作用,能够降低胰岛β细胞的凋亡率,提高细胞活性,并具有抗氧化作用。
这些保护作用可能与丝胶调节相关蛋白表达、激活抗氧化酶等相关。
NEURAL REGENERATION RESEARCH Volume 7, Issue 3, January 2012Cite this article as: Neural Regen Res. 2012;7(3):197-201.197Zhihong Chen ☆, Doctor, Professor, Department of Human Anatomy, Chengde Medical College, Chengde 067000, Hebei Province, ChinaCorresponding author: Jing-feng Xue, Master, Professor, Department of HumanAnatomy, Chengde Medical College, Chengde 067000, Hebei Province, China xjf@Received: 2011-09-19 Accepted: 2011-11-15 (N20110723001/YJ)Chen ZH, He YQ, Song CJ, Dong ZJ, Su ZJ, Xue JF. Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus. Neural Regen Res.2012;7(3):197-201.doi:10.3969/j.issn.1673-5374.2012.03.007Sericin can reduce hippocampal neuronal apoptosis by activating the Akt signal transduction pathway in a rat model of diabetes mellitus**☆Zhihong Chen 1, Yaqiang He 1, Chengjun Song 1, Zhijun Dong 2, Zhejun Su 2, Jingfeng Xue 11Department of Human Anatomy, Chengde Medical College, Chengde 067000, Hebei Province, China 2Affiliated Hospital of Chengde Medical College, Chengde 067000, Hebei Province, ChinaAbstractIn the present study, a rat model of type 2 diabetes mellitus was established by continuousperitoneal injection of streptozotocin. Following intragastric perfusion of sericin for 35 days, blood glucose levels significantly reduced, neuronal apoptosis in the hippocampal CA1 region decreased, hippocampal phosphorylated Akt and nuclear factor kappa B expression were enhanced, butBcl-xL/Bcl-2 associated death promoter expression decreased. Results demonstrated that sericin can reduce hippocampal neuronal apoptosis in a rat model of diabetes mellitus by regulating abnormal changes in the Akt signal transduction pathway.Key Words: sericin; type 2 diabetes mellitus; hippocampus; apoptosis; Akt signal transduction pathway; neural regenerationINTRODUCTIONOne floss from the cocoon shell of the Bombyx mori silkworm, a member of the Bombycidae family [1], is composed of two parallel monofilament fibers. Eachmonofilament has a silk protein center that is surrounded by sericin. To date, most studies have focused on the application of sericin protein in cosmetology, skin care, nutrition, as an anti-oxidant and as a potential anticancer therapy [2-3]. Our previous studies have demonstrated that sericin can effectively protect islet cells, the testis and the kidney from injury in diabetic rats [4-6]. The protective effects of sericin on nervous system lesions in diabetes mellitus remain poorly understood, however, sericin has exhibitedneuroprotective effects in a rat model of diabetes mellitus by inhibiting cortical and hippocampal heme oxygenase1 expression [7]. The hippocampus is sensitive to chronic hyperglycemia in diabetes mellitus, which manifests as a reduction in hippocampal neuron number, abnormal morphology, learning and cognitive dysfunction, delayed responses to surroundings, and cognitive impairment characterized by acquired cognitive and behavioral deficiency [8-9]. However, in rats with diabetes mellitus and cognitive impairment, the number ofapoptotic neurons in the hippocampal CA1 region was significantly increased, indicating neuronal apoptosis participates inhippocampal injury-induced cognitiveimpairment following diabetes mellitus [10]. The Akt signal transduction pathway is composed of Akt, nuclear factor kappa B (NF-κB ) and the Bcl-xL/Bcl-2 associated death promoter (Bad), and is involved in cell proliferation, apoptosis, differentiation and metabolism [11-12]. Akt is extensivelyexpressed in tissues, and phosphorylated Akt (p-Akt) plays a role in cell metabolism, survival, proliferation, apoptosis, cell cycle regulation, and angiopoiesis [13-15]. p-Akt can phosphorylate the inhibitory protein of NF-κB (IκB) by activating the inhibitoryprotein of NF-κB kinase to dissociate NF-κB from NF-κB -IκB. This restores NF -κB ac tivity, and inhibits nerve cell apoptosis [16-17]. In addition, p-Akt phosphorylates Bad.Activated Bad can bind to the chaperonin protein 14-3-3 to block dimer formation of Bad and Bcl-2/or Bcl-xL [18-19]. Therefore, the activated Akt signal transduction pathway can relieve hippocampal neuronal injury [20]. The present study investigated the effects of sericin on the hippocampal Akt signaltransduction pathway in a rat model of type 2 diabetes mellitus to confirm the protective effects of sericin on hippocampal injury in type 2 diabetes mellitus.RESULTSQuantitative analysis of experimental animalsA total of 30 adult Sprague-Dawley rats were198used. Ten were selected for the control group, and the remaining 20 were used to establish a model of type 2 diabetes mellitus, and subdivided into model (no treatment) and sericin (sericin perfusion) groups. All 30 rats were included in the final analysis. Sericin reduced blood glucose levels in rats The blood glucose levels in model rats were significantly reduced following sericin treatment for 35 days (P < 0.01; Table 1). Sericin inhibited neuronal apoptosis in the hippocampal CA1 region of rats Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) detection showed neuronal apoptosis in the hippocampal CA1 region of each group. The number of apoptotic neurons was significantly elevated in model rats when compared with the control group (P < 0.01). Following sericin treatment for 35 days, the number of apoptotic neurons significantly decreased (P < 0.05; Table 1, Figure 1). Sericin promoted p-Akt, NF-κB protein and mRNA expression, but inhibited Bad protein and mRNA expression in the hippocampus of rats Protein and mRNA levels of p-Akt, NF-κB and Bad in thehippocampus were detected using western blotting andreverse transcription (RT)-PCR. p-Akt and NF-κB protein and mRNA expression was significantly reduced in the hippocampus of rats with diabetes mellitus (P < 0.01), while Bad protein and mRNA levels were significantly elevated (P < 0.01). Following sericin treatment for 35 days, p-Akt and NF-κB protein and mRNA expression was significantly increased (P < 0.01), but Bad protein and mRNA levels were significantly decreased in the hippocampus (P < 0.01; Figure 2, Table 2).Figure 1 Neuronal apoptosis in the hippocampus (TUNEL, × 200).Apoptotic neurons had brown/yellow stained nuclei. Compared with the control group (A), the number of apoptotic neurons in the hippocampal CA1 region was significantly increased in the model group (B), but the sericin group (C) exhibited significantly less apoptotic neurons in the hippocampal CA1 region. TUNEL: Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. A B C Protein and mRNA levels of phosphorylated Akt (p-Akt; A), nuclear factor kappa B (NF-κB; B ) and Bcl-xL/Bcl-2associated death promoter (Bad; C) expression in the hippocampus using western blotting and reverse transcription-PCR. p-Akt κB protein and mRNA expression was significantly increased following sericin treatment for 35 days. Bad protein and mRNA expression was significantly decreased following sericin treatment for 35 days. 1: Control group; 2: model group; 3: sericin group; βB 12 3 12 3 12 3 Marker 1 2 3 Marker 1 2 3 Marker 1 2 3 β p-Akt 1 500 bp 1 000 bp 850 bp750 bp 650 bp 550 bp 450 bp350 bp 250 bp 150 bp 1 500 bp 1 000 bp 850 bp 750 bp 650 bp 550 bp 450 bp 350 bp 250 bp 150 bpDISCUSSIONIn the present study, the hippocampal Akt signal transduction pathway exhibited abnormal changes in rats with diabetes mellitus, as manifested by decreased p-Akt and NF-κB expression and elevated Bad expression. Hyperglycemia in diabetes mellitus can inhibit Akt activation or accelerate Akt deactivation, and reduce Akt phosphorylation by activating the c-Jun N-terminal kinase pathway[21-22]. Moreover, hyperglycemia in diabetes mellitus can induce hippocampal blood capillary injury, leading to regional ischemia and elevated Bad expression levels[23-24]. In the present study, p-Akt and NF-κB expre ssion was significantly elevated, but Bad expression was significantly reduced in the sericin group when compared with the model group. Interestingly, increased p-Akt expression has been shown to induce an anti-apoptotic effect, and phosphorylate and activateNF-κB[16-17] and Bad[18-19].Therefore, results from the present study indicated that sericin can reduce hippocampal neuronal apoptosis and protect the hippocampus against injury by regulating the Akt signal transduction pathway in rats with diabetes mellitus. Moreover, sericin is a natural protein and will reduce the possibility of toxic side effects that can occur from chemically synthesized drugs. However, the mechanism underlying how sericin regulates the Akt signal transduction pathway needs further investigation. MATERIALS AND METHODSDesignA randomized, controlled, animal study.Time and settingThe experiment was performed at the Institute of Basic Medicine, Chengde Medical College, China, from June 2009 to October 2010.MaterialsAnimalsA total of 30 healthy, male, Sprague-Dawley rats, aged 3 months, weighing 200-250 g, were provided by the Laboratory Animal Center of Hebei Medical University (No. 712024). They were housed at 20 ± 2°C in 40-70% humidity. The experimental procedures were performed in accordance with the Guidance Suggestions for the Care and Use of Laboratory Animals, formulated by the Ministry of Science and Technology of China[25].DrugsSericin was made from the colored silkworm cocoon (Sericultural Research Institute, Chengde Medical College) and was prepared by soaking, decocting, filtrating and condensing, according to a previously described method[7].MethodsEstablishment of type 2 diabetes mellitus and sericin administrationThe rat model of diabetes mellitus was established by intraperitoneal injection of 2% (w/v) streptozotocin(25 mg/kg; Sigma, St. Louis, MO, USA) for 3 consecutive days. A successful model was demonstrated when rats had blood glucose levels ≥16.7 m M[26]. Sericin group rats were intragastrically perfused with sericin, 2.4 g/kg per day immediately following model establishment[27] for 35 consecutive days.Blood glucose detectionBlood glucose levels in the model group were detected following model establishment, and were detected 35 days following sericin administration in the sericin group. The rats were fasted for 12 hours or more, and anesthetized by intraperitoneal injection of 4% (w/v) chloral hydrate. Blood (about 3 mL) was collected from the medial angle of the eye, and centrifuged at3 000 r/min for 20 minutes. The supernatant was collected, and blood glucose levels was detected using the glucose oxidase method, glucose detection kit (Baoding Great Wall Clinical Reagents Co., Ltd., Baoding, Hebei Province, China; No. 20071030) and Boehringer Mannheim/Hitachi 717 automatic clinical biochemical analyzer (Hitachi, Tokyo, Japan). Preparation of brain tissue samplesThe brain was harvested after rats were anesthetized and sacrificed. The hippocampus from one hemisphere was rapidly isolated on ice[28] and stored in liquid nitrogen, and the hippocampus from the remaining hemisphere was fixed in Bouins solution (75 mL saturated picric acid199water solution, 25 mL formalin (40%) and 5 mL glacial acetic acid).TUNEL detection for neuronal apoptosis in the hippocampal CA1 regionBrain tissues fixed in Bouins solution were paraffin embedded and sectioned (5 μm thick). Hippocampal neuronal apoptosis was detected using the apoptosis detection kit (Beijing Zhongshan Goldbridge, Beijing, China)[29]. TUNEL staining results were quantitatively analyzed using the MiVnt image analysis system (Shandong Echuang Electronics, Jinan, Shandong, China). Briefly, three fields of view were selected from the hippocampal CA1 region under a x200 magnification light microscope (Olympus, Tokyo, Japan), and a ratio of positive staining to the total area analyzed was regarded as the apoptotic index of neurons in the hippocampalCA1 region. Five sections were selected from each rat, and 10 rats from each group were used.Western blotting for hippocampal p-Akt, NF-κB and Bad protein expressionThe hippocampus (100 mg) stored in liquid nitrogen was placed in 1 mL pre-cooled phosphate buffered saline (0.01 mM, pH 7.4), homogenized on ice, centrifuged, and the supernatant was discarded. The sediments were treated with 400 µL of RIPA buffer (RIPA: PMSF = 100: 1), left on ice for 40 minutes, and centrifuged at 12 000 r/min at 4°C for 15 minutes. The supernatant was retained. The concentration of protein was quantified using the BCA protein kit (Beijing Taigemei Science and Technology, Beijing, China)[30]. Samples were electrophoresed on a 15% (w/v) SDS-polyacrylamide gel and transferred onto nitrocellulose membrane. Membranes were incubated with rabbit anti-p-Akt polyclonal antibody (1: 100; Beijing Biosynthesis Biotechnology, Beijing, China), mouse anti-NF-κB(1: 100), rabbit anti-Bad (1: 200) polyclonal antibody (Beijing Biosynthesis Biotechnology) and mouse anti-rat β-actin monoclonal antibody (1: 1 000; Santa Cruz Biotechnology, Santa Cruz, CA, USA) overnight at 4°C, followed by goat anti-rabbit or mouse IgG (1: 5 000; KPL, Gaithersburg, Maryland, USA) at room temperature for 1 hour. Development was performed using Super ECL Plus enhanced chemiluminescence (Beijing Taigemei Science and Technology, Beijing, China). The film was scanned using an EPSON scanner (Epson, Beijing, China), and developed bands were analyzed using QuantityOne-4.6.2 software (Bio-Rad, Hercules, CA, USA). Protein expression levels were determined as the absorbance ratio of the target band to β-actin.RT-PCR detection for hippocampal p-Akt, NF-κB and Bad mRNA expressionThe hippocampus stored in liquid nitrogen was collected and total RNA was extracted according to the Trizol RNA extraction kit (Invitrogen, Carlsbad, CA, USA). RNA was reverse transcribed into cDNA. PCR primers were synthesized by Sangon, Shanghai, China.PCR primer sequence and amplification conditions:TA: Annealing temperature; F: forward; R: reverse.PCR conditions: 94°C for 2 minutes; 94°C for 30 seconds; 50-65°C for 30 seconds; 72°C for 1 minute, circulated from the second step. Amplified products, 5 μL and DNA Ladder, 5 μL (Beijing Taigemei Science and Technology) were used for 2% (w/v) agarose gel electrophoresis at90 V for 40 minutes. Images were photographed using the ZF UV transmittance analyzer (Shanghai Jiapeng, Shanghai, China) and quantitatively analyzed using Quantity One-4.6.2 software. Target gene mRNA expression levels were represented by the absorbance ratio of the target band to β-actin[31].Statistical analysisData were expressed as the mean ± SD and analyzed using SPSS 11.5 software (SPSS, Chicago, IL, USA). Intergroup differences were compared using one-way analysis of variance, and paired comparison was performed using the q-test. A value of P < 0.05 was considered statistically significant.Author contributions: Zhihong Chen was in charge of funds, conceived and designed the study, analyzed data and wrote the manuscript. Yaqiang He analyzed the data. Chengjun Song fed the animals and provided experimental data. Zhijun Dong and Zhejun Su conducted the statistical analysis. Jingfeng Xue conceived and designed the study, revised the manuscript and guided the study.Conflicts of interest: None declared.Funding: This study was supported by a grant from the Education Department of Hebei Province (Mechanism ofGH/IGF-1 and protective effects of sericin on gonadal axis lesions in diabetes mellitus), No. 2006301; a grant from Science and Technology Department of Hebei Province (Protective effects of sericin on testicular dysfunction in diabetes mellitus), No. 08276101D-19.Ethical approval: This study received permission from the Animal Ethics Committee of Hebei Province, China. Acknowledgments:We thank the staff from the Institute of Basic Medicine, Chengde Medical University, China, for their help.200REFERENCES[1] Li SZ. Compendium of Materia Medica. Beijing: People’s MedicalPubishing House. 1985:1045-1052.[2] Zhaorigetu S, Yanaka N, Sasaki M, et al. Inhibitory effects of silkprotein, sericin on UVB-induced acute damage and tumorpromotion by reducing oxidative stress in the skin of hairlessmouse. J Photochem Photobiol B. 2003;71(1-3):11-17.[3] Dash R, Acharya C, Bindu PC, et al. Antioxidant potential of silkprotein sericin against hydrogen peroxide-induced oxidativestress in skin fibroblasts. BMB Rep. 2008;41(3):236-241.[4] Chen ZH, Song CJ, Du XM, et al. Effects of sericin pretreatmenton the expression of ECM associated protein in the kidney ofdiabetic nephropathy rats. Zhongguo Yike Daxue Xuebao. 2010;39(2):112-115.[5] Fu XM, Ma HW, Fu WL, et al. Protective effects of sericin onpancreatic islet cells of type II diabetic rat. Jiepou Xue Zazhi.2010;33(2):161-164.[6] Fu WL, Fu XY, Zhong MR, et al. Effects of sericine on growthhormone/insulin-like growth factor-1 axis of testis in type 2diabetes mellitus rats. Jiepou Xuebao. 2011;42(1):104-109. [7] Chen ZH, He YQ, Fu WL, et al. Effects of sericin on hemeoxygenase-1 expression in the hippocampus and cerebral cortex of type 2 diabetes mellitus rats. Neural Regen Res. 2011;6(6):423-427.[8] Huang HJ, Liang KC, Chen CP, et al. Intrahippocampaladministration of A beta(1-40) impairs spatial learning andmemory in hyperglycemic mice. Neurobiol Learn Mem. 2007;87(4):483-494.[9] Mijnhout GS, Scheltens P, Diamant M, et al. Diabeticencephalopathy: A concept in need of a definition. Diabetologia.2006;49(6):1447-1448.[10] Zhang Dm, Xiao Q, Zhang Y. Effects of angiotensin IV on thehippocampus neuronal apoptosis and the cognitive function ofdiabetic rats. Chongqing Yike Daxue Xuebao. 2010;35(7):978-981.[11] Prasad S, Madan E, Nigam N, et al. Induction of apoptosis bylupeol in human epidermoid carcinoma A431 cells throughregulation of mitochondrial, Akt/PKB and NFkappaB signalingpathways. Cancer Biol Ther. 2009;8(17):1632-1639.[12] Yi T, Lee HL, Cha JH, et al. Epidermal growth factor receptorregulates osteoclast differentiation and survival through cross-talking with RANK signaling. J Cell Physiol. 2008;217(2):409-422.[13] Guo H. The effect of Taxol on the PI3K/Akt signaling pathway andits sensitizing effect of LY294002. Shanghai: Shanghai Jiao TongUniversity. 2009.[14] Xiao GH, Wang ZB. The regulation effect of PKB/Akt in thediabetes and vascular complications of diabetes. Yixue YanjiuZazhi. 2010;39(1):13-16.[15] Huang TT, Kudo N, Yoshida M, et al. A nuclear export signal in theN-terminal regulatory domain of IkappaBalpha controlscytoplasmic localization of inactive NF-kappaB/IkappaBalphacomplexes. Proc Natl Acad Sci U S A. 2000;97(3):1014-1019. [16] Sarnico I, Lanzillotta A, Benarese M, et al. NF-kappaB dimers inthe regulation of neuronal survival. Int Rev Neurobiol. 2009;85:351-362.[17] Li SY, Sun WG, Jia YH, et al. Calcium signal-initiated earlyactivation of NF-kappaB in neurons is a neuroprotective event inresponse to kainic acid-induced excitotoxicity. Biochemistry(Mosc). 2010;75(1):101-109.[18] Yang J. Molecular modeling of human BAD, a pro-apoptotic Bcl-2family member, integrating glycolysis and apoptosis. Protein Pept Lett. 2010;17(2):206-220.[19] Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BADcouples survival signals to the cell-intrinsic death machinery. Cell.1997;91(2):231-241.[20] Jin Y, Yan EZ, Fan Y, et al. Sodium ferulate preventsamyloid-beta-induced neurotoxicity through suppression of p38MAPK and upregulation of ERK-1/2 and Akt/protein kinase B inrat hippocampus. Acta Pharmacol Sin. 2005;26(8):943-951. [21] Kobayashi T, Taguchi K, Yasuhiro T, et al. Impairment of PI3-K/Aktpathway underlies attenuated endothelial function in aorta of type2 diabetic mouse model. Hypertension. 2004;44(6):956-962. [22] Mayer CM, Belsham DD. Palmitate attenuates insulin signalingand induces endoplasmic reticulum stress and apoptosis inhypothalamic neurons: rescue of resistance and apoptosisthrough adenosine 5' monophosphate-activated protein kinaseactivation. Endocrinology. 2010;151(2):576-585.[23] Dłuzniewska J, Beresewicz M, Wojewódzka U, et al. Transientcerebral ischemia induces delayed proapoptotic Bad translocation to mitochondria in CA1 sector of hippocampus. Brain Res MolBrain Res. 2005;133(2):274-280.[24] Miyawaki T, Mashiko T, Ofengeim D, et al. Ischemicpreconditioning blocks BAD translocation, Bcl-xL cleavage, andlarge channel activity in mitochondria of postischemichippocampal neurons. Proc Natl Acad Sci U S A. 2008;105(12):4892-4897.[25] The Ministry of Science and Technology of the People’s Republicof China. Guidance Suggestions for the Care and Use ofLaboratory Animals. 2006-09-30.[26] Xiang X, Wang Z, Zhu Y, et al. Dosage of streptozocin in inducingrat model of type 2 diabetes mellitus. Wei Sheng Yan Jiu. 2010;39(2):138-142.[27] Zhan YL, Huang CF, Chen GL. Hypoglycemic activity of thedecoction of cocoon shell on alloxan-diabetic model mice. CanyeKexue. 2003;29(4):446-448.[28] Paxinos G, Watson C. The Rat Brain in Stereotaxic Coordinates.5th ed. London: Academic Press. 2005.[29] Pekcetin C, Kiray M, Ergur BU, et al. Carnosine attenuatesoxidative stress and apoptosis in transient cerebral ischemia inrats. Acta Biol Hung. 2009;60(2):137-148.[30] Lu M, Xu L, Li B, et al. Protective effects of grape seedproanthocyanidin extracts on cerebral cortex of streptozotocin-induced diabetic rats through modulating AGEs/RAGE/NF-kappaB pathway. J Nutr Sci Vitaminol (Tokyo). 2010;56(2):87-97.[31] Zhan LB, Sui H, Lu XG, et al. Effects of Zibu Piyin recipe onSNK-SPAR pathway in neuron injury induced by glutamate. ChinJ Integr Med. 2008;14(2):117-122.(Edited by Liu JG, Wang JL/Su LL/Wang L)201。