拉伸法测钢丝杨氏模量实验剖析
- 格式:pdf
- 大小:274.25 KB
- 文档页数:5
用拉伸法测钢丝杨氏模量――实验报告本实验使用拉伸法测定钢丝的杨氏模量。
实验过程包括测量原始尺寸和断裂强度,计算应力和应变,绘制应力-应变曲线,利用斜率计算杨氏模量。
一、实验原理1.杨氏模量:杨氏模量也称弹性模量,是研究力学学科中的一项重要物理量,它描述了物体在受力时,单位应力下的应变程度。
可以表示为弹性模量E,其计算公式为E=σ/ε,其中σ为应力,ε为单位应变。
2.拉伸法:拉伸法是测定材料弹性性质的常用方法之一。
先将试样加在拉伸机上,通过施加相应的拉力,使试样发生拉伸变形,然后测量试样在不同应变下的应力,绘制应力-应变曲线,以求得该材料的杨氏模量。
二、实验步骤1.准备实验设备,将钢丝放在拉伸机上。
2.用卡尺测量钢丝的初始长度、直径和断裂长度,记录数据。
3.用拉伸机分别在不同的拉力下进行拉伸,记录拉力和试样的应变。
4.计算每个密度下的应力,应力=拉力/试样横截面积。
5.计算每个密度下的应变,应变=延长长度/原始长度。
6.根据应力-应变曲线,计算杨氏模量。
三、实验数据试样长度:5m原始直径:2.5mm断裂长度:8m钢丝密度:7.85g/cm³拉伸试验数据如下:|拉力F(N)|延长长度L(mm)|试样直径D(mm)||:-:|:-:|:-:||0|0|2.5||50|2|2.5||100|4|2.6||150|6|2.7||200|8|2.8||250|10|2.9||300|12|3.0||350|14|3.1||400|16|3.2||450|18|3.3||500|20|3.4||550|22|3.5||600|24|3.6||650|26|3.7||700|28|3.8||750|30|3.9||800|32|4.0|四、实验计算1.计算实验数据中的横截面积试样横截面积=π*(D/2)²=π*(2.5/2)²=4.91mm² 2.计算每个密度下的应力应力=F/S=700/4.91=142.6N/mm²应变=L/L0=28/5000=0.00564.绘制应力-应变曲线通过计算得出的应力和应变数据,可以绘制出钢丝在拉伸试验中的应力-应变曲线如下:[示例图:应力-应变曲线]5.计算杨氏模量根据应力-应变曲线可以看出,线性部分的斜率即为杨氏模量,计算可得杨氏模量的值为:E=Δσ/Δε=(320-170)/(0.004-0.003)=69000N/mm²五、实验结论通过本次实验,我们使用拉伸法测定了钢丝的杨氏模量,并且得出了结论:杨氏模量为69.0×10⁹N/mm²。
拉伸法测杨氏模量实验报告思考题拉伸法测杨氏模量实验报告思考题引言:拉伸法测杨氏模量是一种常用的实验方法,用于测量材料在拉伸过程中的弹性性质。
通过实验,我们可以了解不同材料的强度和刚度,进而应用于工程设计和材料选择。
本文将围绕拉伸法测杨氏模量实验报告的思考题展开讨论,探索其中的深度和意义。
一、实验结果的分析和讨论在实验中,我们使用了拉伸试验机对不同材料的试样进行拉伸,记录了载荷和伸长量的数据。
通过这些数据,我们可以计算出每个试样的应力和应变,从而得到杨氏模量的数值。
然而,实验结果往往不会完全符合理论预期。
这可能是由于实验中存在的误差,如试样的几何形状、试验机的精度等因素所致。
因此,在分析和讨论实验结果时,我们需要考虑这些误差对结果的影响,并进行合理的修正和解释。
二、材料性质的影响因素除了误差的影响外,材料本身的性质也会对实验结果产生影响。
杨氏模量是描述材料刚度的重要参数,它受到材料的组成、结构和处理工艺等因素的影响。
例如,金属材料通常具有较高的杨氏模量,这是由于金属的晶体结构和金属键的强度所决定的。
而聚合物材料的杨氏模量较低,这是由于聚合物的分子结构和键的柔性导致的。
此外,材料的温度和湿度等环境条件也会对杨氏模量产生影响。
在高温下,材料的分子运动增加,导致杨氏模量降低。
而湿度的变化会影响材料的微观结构,进而影响杨氏模量的数值。
三、实验结果的应用和意义拉伸法测杨氏模量不仅仅是一种实验方法,更是一种重要的工程手段。
通过测量材料的杨氏模量,我们可以评估材料的强度和刚度,从而选择合适的材料用于工程设计。
例如,在建筑工程中,我们需要选择具有足够刚度和强度的材料来承受建筑物的荷载。
通过测量不同材料的杨氏模量,我们可以评估其适用性,并选择最合适的材料。
此外,杨氏模量的测量还可以用于材料的质量控制和质量检验。
通过测量材料的杨氏模量,我们可以判断材料的制备过程是否符合要求,并确保产品的质量。
结论:拉伸法测杨氏模量是一种重要的实验方法,通过测量材料在拉伸过程中的弹性性质,我们可以了解材料的强度和刚度。
用拉伸法测量金属丝的杨氏模量实验报告《用拉伸法测量金属丝的杨氏模量实验报告》
嘿,朋友们!今天我来给大家讲讲我做的这个超有趣的用拉伸法测量金属丝杨氏模量的实验!(就像我们要探索一个神秘的宝藏一样刺激!)
实验开始前,那根金属丝乖乖地躺在那儿,仿佛在等待着我们去揭开它的秘密呢。
(这不就像一个等待被唤醒的小战士嘛!)我和小伙伴们可兴奋了,都迫不及待地想开始。
我们小心地把金属丝安装在实验装置上,这过程就好像在给它打扮一样,得特别仔细。
(就跟给宝贝穿衣服一样不能马虎呀!)然后,慢慢给它施加拉力,看着它一点点被拉长,哇,那种感觉真奇妙!(这就像看着小树苗一点点长大一样神奇!)
在测量数据的时候,我们可是全神贯注,眼睛瞪得大大的,生怕错过一点。
(那认真的样子,就像侦探在寻找关键线索呢!)每一个数据都感觉好重要啊!“哎呀,这个数字读对了没?”我还时不时问小伙伴。
经过一番努力,终于测得了所有的数据。
这时候大家都特别有成就感。
(就像打了一场大胜仗一样开心!)
分析数据的时候,才发现这里面可藏着大学问呢。
就好像解开一道复杂的谜题一样。
(哎呀,原来这里面有这么多门道啊!)
这次实验,让我对杨氏模量有了更深刻的理解,也让我感受到了科学实验的魅力。
(真的太棒啦!)以后我还要多做这样的实验,探索更多的科学奥秘呢!(大家也快来试试呀!)。
用拉伸法测量钢丝的杨氏模量段心蕊 PB05000826 九号台一 实验目的:掌握利用光杠杆测定微小形变的方法,在数据处理中,采用逐差法和作图法得出测量结果,掌握这两种数据处理的方法。
二 实验原理:(1)在弹性限度内,材料的应力与应变之比为一常数,叫弹性模量。
条形物体沿纵向的弹性模量叫杨氏模量,用E 来表示,则L S FL L L S F E ∆=∆=/)//()/(杨氏模量是表征材料性质的一个物理量,仅与材料的结构、化学成分及其加工制造方法有关。
杨氏模量的大小标志了材料的刚性。
(2)由于一般伸长量ΔL 很小,故常采用光学放大法,将其放大,如用光杠杆测量ΔL 。
当杠杆支脚随被测物上升或下降微小距离ΔL 时,镜面法线转过一个θ角,而入射到望远镜的光线转过2θ角。
当θ很小时,D blL D b l L 2/2tan /tan =∆⇒⎭⎬⎫≈=∆=≈θθθ 其中l 为支脚尖到刀口的垂直距离(也叫光杠杆的臂长),D 为镜面到标尺的距离,b 为从望远镜中观察到的标尺移懂得距离。
从而得到 ()4/22d SSlbDLFE π==三实验仪器:光杠杆、砝码、望远镜、标尺、螺旋测微器、卷尺。
四实验内容:1调节仪器(1)调节放置光杠杆的平台与望远镜的相对位置,使光杠杆镜面法线与望远镜轴线大体重合。
(2)调节支架底脚螺丝,确保平台水平,调平台的上下位置,使管制器顶部与平台的上表面共面。
(3)光杠杆的调节,光杠杆和镜尺组是测量金属丝伸长量ΔL的关键部件。
光杠杆的镜面和刀口应平行。
使用时刀口放在平台的槽内,支脚放在管制器的槽内,刀口和支脚尖应共面。
(4)镜尺组的调节,调节望远镜、直尺和光杠杆三者之间的相对位置,使望远镜和反射镜处于同等高度,调节望远镜目镜视度圈,使目镜内分划板刻线(叉丝)清晰,用手轮调焦,使标尺像清晰。
2测量(1)砝码托的质量为m0,记录望远镜中标尺的读数r0作为钢丝的起始长度。
(2)在砝码托上逐次加500g砝码(可加到3500g),观察每增加500g时望远镜中标尺上的读数r i,然后再将砝码逐次减去,记下对应的读数,r i’取两组对应数据的平均值r。
拉伸法测金属丝的杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。
2、掌握光杠杆放大原理和测量微小长度变化的方法。
3、学会使用游标卡尺、螺旋测微器等测量长度的仪器。
4、学习数据处理和误差分析的方法。
二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。
假设一根粗细均匀的金属丝,长度为\(L\),横截面积为\(S\),在受到外力\(F\)作用下伸长了\(\Delta L\)。
根据胡克定律,在弹性限度内,应力\(F/S\)与应变\(\Delta L/L\)成正比,其比例系数即为杨氏模量\(E\),数学表达式为:\E =\frac{F}{S} \times \frac{L}{\Delta L}\在本实验中,外力\(F\)由砝码的重力提供,横截面积\(S\)可通过测量金属丝的直径\(d\)计算得到(\(S =\frac{\pid^2}{4}\)),金属丝的原长\(L\)用米尺测量,而微小伸长量\(\Delta L\)则采用光杠杆法测量。
光杠杆装置由光杠杆、望远镜和标尺组成。
光杠杆是一个带有三个尖足的平面镜,前两尖足放在平台的沟槽内,后尖足置于金属丝的测量端。
当金属丝伸长(或缩短)\(\Delta L\)时,光杠杆的后尖足随之升降\(\Delta L\),从而带动平面镜转动一个角度\(\theta\)。
从望远镜中可以看到标尺像的移动,设标尺像移动的距离为\(n\),光杠杆常数(即两前尖足到后尖足连线的垂直距离)为\(b\),望远镜到光杠杆平面镜的距离为\(D\),则有:\\tan\theta \approx \theta =\frac{n}{D}\\\tan 2\theta \approx 2\theta =\frac{\Delta L}{b}\由上述两式可得:\\Delta L =\frac{nb}{2D}\将\(\Delta L\)代入杨氏模量的表达式,可得:\E =\frac{8FLD}{\pi d^2 n b}\三、实验仪器1、杨氏模量测定仪:包括底座、立柱、金属丝、光杠杆、砝码等。
钢丝杨氏模量的测定实验报告篇一:用拉伸法测钢丝杨氏模量——实验报告用拉伸法测钢丝杨氏模量——实验报告杨氏弹性模量测定仪;光杠杆;望远镜及直尺;千分尺;游标卡尺;米尺;待测钢丝;砝码等。
【实验原理】1.杨氏弹性模量Y是材料在弹性限度内应力与应变的比值,即杨氏弹性模量反映了材料的刚度,是度量物体在弹性范围内受力时形变大小的因素之一,是表征材料机械特性的物理量之一。
2.光杠杆原理伸长量Δl比较小,不易测准,本实验利用了光杠杆的放大原理对Δl进行测量。
利用光杠杆装置后,杨氏弹性模量Y可表示为:式中,F是钢丝所受的力,l是钢丝的长度,L是镜面到标尺间的距离,d是钢丝的直径,b是光杠杆后足到两前足尖连线的垂直距离,Δn是望远镜中观察到的标尺刻度值的变化量。
3. 隔项逐差法隔项逐差法为了保持多次测量优越性而采用的数据处理方法。
使每个测量数据在平均值内都起到作用。
本实验将测量数据分为两组,每组4个,将两组对应的数据相减获得4个Δn,再将它们平均,由此求得的Δn 是F 增加4千克力时望远镜读数的平均差值。
【实验步骤】1.调整好杨氏模量测量仪,将光杠杆后足尖放在夹紧钢丝的夹具的小圆平台上,以确保钢丝因受力伸长时,光杠杆平面镜倾斜。
2.调整望远镜。
调节目镜,使叉丝位于目镜的焦平面上,此时能看到清晰的叉丝像;调整望远镜上下、左右、前后及物镜焦距,直到在望远镜中能看到清晰的直尺像。
3.在钢丝下加两个砝码,以使钢丝拉直。
记下此时望远镜中观察到的直尺刻度值,此即为n0 值。
逐个加砝码,每加1个,记下相应的直尺刻度值,直到n7,此时钢丝下已悬挂9个砝码,再加1个砝码,但不记数据,然后去掉这个砝码,记下望远镜中直尺刻度值,此为n7’,逐个减砝码,每减1个,记下相应的直尺刻度值,直到n0’。
4. 用米尺测量平面镜到直尺的距离L;将光杠杆三足印在纸上,用游标卡尺测出b;用米尺测量钢丝长度l;用千分尺在钢丝的上、中、下三部位测量钢丝的直径d,每部位纵、横各测一次。
金属丝杨氏模量的测定实验报告【实验目的】1.学会用拉伸法测量杨氏模量:2.掌握光杠杆法测量微小伸长量的原理:3.学会用逐差法处理实验数据;4.学会不确定度的计算方法,结果的正确表达:【疝仪器】YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、破码)钢卷尺(0-200cm,0.1)、游标K•尺(0-150mm,0.02)、螺旋测微器(0-150mm,0.01)【实验原理】在外力作用下,固体所发生的形状变化成为形变。
它可分为弹性形变和塑性形变两种。
本实验中,只研究金属统弹性形变,为此.应当控制外力的大小,以保证外力去掉后,物体能恢复原状。
最简单的形变是金属统受到外力后的伸长和缩短。
金属税长乙,截面积为S,沿长度方向施力F后,物体的伸长则在金属统的弹性限度内.有:FE=i~L我们把E称为杨氏弹性模量。
8FLD F 1 , — —m£ = _5_ = ^_ _ ,亶 X7^1 X •——---M L W _L真实测量时放大倍数为4倍,即E=2£[实验内容】<一>仪器调整1、 杨氏弹性模量测定仪底座调节水平:2、 平面镜镜面放置与测定仪平面垂直:3、 将望远镜放置在平面镜正前方1.5-2.0m 左右位置上:4、 粗调望远镜:将镜面中心、标尺零点、望远镜调节等高,望远镜的缺口、准星对准平面镜中心,并能在望远镜外看到尺子的像:5、 调节物镜焦距能看到尺子清晰的像.调节目镜焦距能清晰的看到叉统:6、 调节叉税在标尺±2"〃以内,并使得视差不超过半格。
〈二〉测量1、 记下无挂物时刻度尺的读数〃°:2、 依次挂上】00g 的虢码,8次,计下〃],〃2,〃3,〃4,〃5,〃6,〃7 :3、 依次取下 100g 的瑟码,8 次,计下 no 〃[ ,〃2 ,〃3 ,〃4,〃S ,〃6:4、 用米尺测量出金属税的长度L (两K •口之间的金属统)、镜面到尺子的距离。
一、实验目的1. 学习使用拉伸法测定钢丝的杨氏模量;2. 掌握光杠杆法测量微小伸长量的原理;3. 学会用逐差法处理实验数据;4. 学会计算不确定度,并正确表达实验结果。
二、实验原理杨氏模量(E)是材料在弹性限度内应力(σ)与应变(ε)的比值,即 E =σ/ε。
它是衡量材料刚度和抵抗形变能力的物理量。
本实验采用拉伸法测定钢丝的杨氏模量,利用光杠杆放大原理测量微小伸长量,通过计算得出杨氏模量。
三、实验仪器1. YWC-1杨氏弹性模量测量仪(包括望远镜、测量架、光杠杆、标尺、砝码)2. 钢卷尺(0-200cm,0.1cm)3. 千分尺(0-150mm,0.02mm)4. 游标卡尺(0-25mm,0.01mm)5. 米尺四、实验步骤1. 调整杨氏模量测量仪,确保平台水平。
2. 将光杠杆放置于平台上,旋松固定螺丝,移动杠杆使其前两锥形足尖放入平台的沟槽内,后锥形足尖放在管制器的槽中,再旋紧螺丝。
3. 调节平面镜的仰角,使镜面垂直,即光杠杆镜面法线与望远镜轴线大致重合。
4. 利用望远镜上的准星瞄准光杠杆平面镜中的标尺刻度,调节望远镜的焦距,使标尺清晰可见。
5. 在钢丝下端悬挂砝码,使钢丝产生微小伸长。
6. 观察望远镜中的标尺刻度变化,记录光杠杆后足到两前足尖连线的垂直距离b 和望远镜中观察到的标尺刻度值的变化量n。
7. 重复步骤5和6,进行多次测量,记录数据。
8. 使用逐差法处理实验数据,计算杨氏模量的平均值。
五、数据处理1. 根据公式 E = 2δlb/Slb,计算杨氏模量E,其中δ为砝码质量,l为钢丝长度,b为光杠杆后足到两前足尖连线的垂直距离,S为钢丝截面积。
2. 计算不确定度,根据公式ΔE = Δδ/2δ + Δl/l + Δb/b + ΔS/S,其中Δδ、Δl、Δb、ΔS分别为δ、l、b、S的不确定度。
3. 根据计算结果,分析实验误差来源,讨论实验结果与理论值的差异。
六、实验结果与分析1. 通过实验,我们测定了钢丝的杨氏模量,计算结果为 E =2.02×10^5 MPa。
拉伸法测量金属丝的杨氏模量实验报告《拉伸法测量金属丝的杨氏模量实验报告》
嘿,朋友们!今天我要来给你们讲讲我做的拉伸法测量金属丝杨氏模量的实验,那可真是一次超级有趣的体验啊!
实验开始前,我就像要去探险一样兴奋!我准备好了各种器材,那根金属丝就静静地躺在那里,好像在等着我去揭开它的秘密。
我心里想着:“这根小小的金属丝里到底藏着怎样的奥秘呢?”
然后我和小伙伴们一起动手啦!我们小心翼翼地把金属丝安装到实验装置上,就像在给一个小宝贝安家一样。
我还打趣地说:“嘿,可得轻点儿对它呀!”大家都笑了。
当我们开始施加拉力的时候,那种感觉就像是在和金属丝拔河一样。
它一开始还有点不情愿呢,不过慢慢地就开始伸长啦!看着它一点点变化,我心里那个激动啊,哎呀,真的很难形容!就好像看着一颗种子慢慢发芽长大。
在测量数据的过程中,我们可真是一丝不苟啊!每一个数值都像是宝贝一样,生怕记错了。
我和小伙伴还互相提醒:“嘿,你可看准了啊,别出差错!”这感觉就像是在完成一项超级重要的任务。
经过一番努力,终于得出了结果!哇,那种满足感简直爆棚!就好像我们征服了一座小山一样。
这次实验让我深刻地体会到了科学的魅力,它就像一个神秘的宝藏,等着我们去挖掘。
总之,这次实验真的是太棒了!你们也快去试试吧,绝对会让你们大开眼界的!。