高中数学选修1-1同步练习题库:圆锥曲线与方程(填空题:容易)
- 格式:docx
- 大小:408.24 KB
- 文档页数:28
高中数学学习材料鼎尚图文*整理制作第二章 圆锥曲线与方程同步练测(北师大版选修1-1)建议用时 实际用时满分 实际得分120分钟150分一、选择题(本题共12小题,每小题5分,共60分)1.已知椭圆2221x y a+=的一个焦点在抛物线24y x=的准线上,则椭圆的离心率为( )A.12 B.22 C.13D.332.方程213x y =-表示的曲线是( )A.双曲线B.椭圆C.双曲线的一部分D.椭圆的一部分3.已知方程22111x y k k-+-=表示双曲线,则k 的取值范围是( )A.11k -<<B.0k >C.0k ≥D.1k >或1k <-4.以椭圆221139x y +=的左焦点为焦点的抛物线的标准方程是( ) A. B. C. D.5.已知()P x,y 是中心在原点,焦距为10的双曲线上一点,且y x 的取值范围为3344⎛⎫- ⎪⎝⎭,,则该双曲线的方程是( )A.221916x y -=B.221916y x -= C.221169x y -= D.221169y x -= 6.已知定点551,,4,44M N 骣骣鼢珑鼢--珑鼢珑鼢桫桫,给出下列曲线方程:①;②223x y +=;③2212x y +=;④2212x y -=,在曲线上存在点满足||||MP NP =的所有曲线方程是( )A.①③B.②④C.①②③D.②③④ 7.已知椭圆22221(0)x y a b a b+=>>,直线交椭圆于两点,△的面积为(为原点),则函数( ) A.是奇函数 B.是偶函数C.既不是奇函数,也不是偶函数D.奇偶性与有关8.已知椭圆22221(0)x y a b a b+>>=的左焦点为F ,右顶点为A ,抛物线215()8y a c x =+与椭圆交于B ,C 两点,若四边形ABFC 是菱形,则椭圆的离心率是( ) A.158 B.415C.23D.129.已知双曲线22221x y a b -=的左焦点为,顶点为1,A ,是双曲线上任意一点,则分别以线段,为直径的两圆的位置关系为( )A.相交B.相切C.相离D.以上情况都有可能 10.已知方程22ax by ab +=和0ax by c ++=,其中0,,0ab a b c 构>,它们所表示的曲线可能是下列图象中的( )11.已知抛物线22(0)=y px p >上一点(1)M ,m (m >0)到其焦点的距离为5,双曲线221-=x y a的左顶点为,若双曲线的一条渐近线与直线平行,则实数的值是( )A .125B .19C .15D .1312.椭圆22221(0):x yM a b a b+=>>的左、右焦点分别为,为椭圆上任一点,且的最大值在上,其中,则椭圆的离心率的取值范围是( ) A .⎣⎡⎦⎤14,12 B .⎣⎡⎦⎤12,22 C .⎝⎛⎭⎫22,1 D .⎣⎡⎭⎫12,1 二、填空题(本题共4小题,每小题4分,共16分)13.已知椭圆221x y m n+=与双曲线2x p -2y q 1(,m =),,n p q +∈R 有共同的焦点,是椭圆和双曲线的一个交点,则12||||PF PF g. 14.双曲线的一条准线方程是,则的值为 .15.椭圆22162x y +=和双曲线2213x y -=的公共焦点为,,F F P 12是两曲线的一个交点,那么12cos F PF Ð的值是 .16.若过两点(,0)A a 和(0,)B a 的直线与抛物线y =x x 223--没有交点,则实数a 的取值范围是 .三、解答题(本题共6小题,共74分)17.(本小题满分12分)已知椭圆22221x y a b+=(a b>>0)经过点362M ,⎛⎫⎪⎝⎭,焦距为2,它的左、右顶点分别为121A ,A ,P 是该椭圆上的一个动点(非顶点),点2P 是点1P 关于x 轴的对称点,直线11A P 与22A P 相交于点E . (1)求该椭圆的标准方程;A BC D(2)求点E的轨迹方程.18.(本小题满分12分)已知抛物线方程为22=(0)y pxp>,直线l x y m:过抛物线的焦+=点且被抛物线截得的弦长为3,求p的值.19.(本小题满分12分)设双曲线:x y C a b22221-=(0a >,0)b >的离心率为,若右准线与两条渐近线相交于,P Q 两点,为右焦点,△为等边三 角形.(1)求双曲线离心率的值;(2)若双曲线被直线截得的弦长为22b e a ,求双曲线的方程.20.(本小题满分12分)已知抛物线、椭圆和双曲线都经过点(1,2)M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(1)求这三条曲线的方程.(2)已知动直线过点(,)P 30,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l ¢被以AP 为直径的圆截得的弦长为定值?若存在,求出l ¢的方程;若不存在,说明理由.21.(本小题满分12分)已知椭圆的中心为坐标原点,焦点在x 轴上,斜率为1且过椭圆右焦点的直线交椭圆于两点,OA OB +uu r uu u r与(3,1)=-a 共线. (1)求椭圆的离心率;(2)设为椭圆上任意一点,且OM λOA μOB uuu r uu r uu u r =+λμR (,)Î,证明22λμ+为定值.22.(本小题满分14分)设分别为椭圆:22221x y a b +=(0)a b >>的左、右两个焦点.(1)若椭圆上的点31,2A ⎛⎫⎪⎝⎭到两点的距离之和等于,求椭圆的方程和焦点坐标.(2)设点是(1)中所得椭圆上的动点,求线段的中点的轨迹方程.(3)已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线的斜率都存在时,记为,那么与之积是与点位置无关的定值. 试对双曲线22221x y a b -=写出类似的性质,并加以证明.第二章圆锥曲线与方程同步练测(北师大版选修1-1)答题纸得分:_________一、选择题题号1234567 8 9 10 11 12 答案二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.第二章 圆锥曲线与方程同步练测(北师大版选修1-1)答案一、选择题1.B 解析:由题意知抛物线24y x =的准线方程为1x =-,椭圆2221x y a+=的焦点为(0)c ±,.∵ 椭圆2221x y a+=的一个焦点在抛物线24y x =的准线上,∴ 1c -=-,即1c =.∴ 222112a b c =+=+=.解得2a =.∴ 1222c e a ===. 2.D 解析:方程可化为,故表示的曲线是椭圆的一部分.3.A 解析:由双曲线标准方程的形式可知若22111x y k k -+-=表示双曲线,则有1010k ,k +>⎧⎨->⎩或1010k ,k ,+<⎧⎨-<⎩∴ 11k -<<.4.D 解析:由椭圆的方程知,∴,∴ 抛物线的焦点为(-2,0),∴ 抛物线的标准方程是.5.C 解析:∵ 双曲线22221(0)x y a b a b -=>>的渐近线方程为by x a=±,∴ 动点()P x,y 与原点连线的斜率为y k x =且b b k ,a a ⎛⎫∈- ⎪⎝⎭. 由已知y x 的取值范围为33,44⎛⎫- ⎪⎝⎭,可得34b a =.① ∵ 双曲线的焦距为210c =,即c =5,∴ 22225a b c +==.②联解①②,可得43a ,b ==,∴ 双曲线的方程为221169x y -=.6.D 解析:要使这些曲线上存在点满足,需曲线与的垂直平分线相交.由题意知的中点坐标为302⎛⎫- ⎪⎝⎭,,直线的斜率为101452=, 所以线段的垂直平分线方程为322y x ⎛⎫=-+ ⎪⎝⎭.因为与322y x ⎛⎫=-+ ⎪⎝⎭的斜率相同,所以两直线平行,故两直线无交点,①不符合题意.将与322y x ⎛⎫=-+ ⎪⎝⎭联立,消去,得,,可知②中的曲线与的垂直平分线有交点,②符合题意.将2212x y +=与322y x ⎛⎫=-+ ⎪⎝⎭联立,消去,得,,可知③中的曲线与的垂直平分线有交点,③符合题意. 将2212x y -=与322y x ⎛⎫=-+ ⎪⎝⎭联立,消去,得,,可知④中的曲线与的垂直平分线有交点,④符合题意. 7.B 解析:是直线与椭圆22221x y a b+=相交所得的△的面积,由椭圆的对称性可知 ,所以是偶函数.8.D 解析:∵ 椭圆22221(0)x y a b a b +>>=的左焦点为F ,右顶点为A ,∴ (0),(0)F c,A a,-.∵ 抛物线215()8y a c x =+与椭圆交于B,C 两点,∴ B,C 两点关于x 轴对称,可设(),()B m,n C m,n -.∵ 四边形ABFC 是菱形,∴ 1()2m a c =-. 将()B m,n 代入抛物线方程,得2215115()()8216•n a c a c b =+-=.∴ 115(),24B a c b ⎛⎫- ⎪ ⎪⎝⎭.将其代入椭圆方程,得2222151()421b a c a b ⎛⎫⎡⎤ ⎪-⎢⎥⎣⎦⎝⎭+=,即221()1416a c •a -=. 化简、整理,得24830e e -+=,解得12e =312e ⎛⎫=> ⎪⎝⎭舍去9.B 解析:设的中点为1O ,若在双曲线左支上,则()21111112222PF PF P O a a O F ==+=+,即圆心距为两圆半径之和,此时两圆外切;若在双曲线右支上,同理可求得1112a O PF O =-,此时两圆内切,所以两圆的位置关系为相切.10.B 解析:方程可化成221x y b a+=,可化成a c y x b b =--.对于A ,由双曲线可知:,,∴ 0 >ab-,即直线的斜率应大于0,故错; 对于C ,由椭圆可知:,,∴ 0<ab-,即直线的斜率应小于0,故错;同理错.所以选B .11.B 解析:依题意知152p+=,所以,所以,所以,点的坐标为 又,所以直线的斜率为41a +.由题意得411a a=+,解得19a =.12.B 解析:设,,,则,,.又可看作点到原点的距离的平方,所以,所以=.由题意知222223≤=-≤c b a c c ,即21142 ≤≤e ,则1222≤≤e .二、填空题13. 解析:因为椭圆221x y m n+=与双曲线221x y p q -=有共同的焦点12,F F , 所以其焦点位于轴上.由椭圆及双曲线的对称性不妨设在双曲线的右支上,左、右焦点分别为12,F F ,由椭圆以及双曲线的定义可得, , 由①②,得,.所以.14.43- 解析:由题意可知双曲线的焦点在轴上,所以.双曲线方程可化为22121y x m m-=--, 因此22a m =-,21b m =-,23c m=-.因为准线方程是,所以,即23m m -=-,解得43m =-. 15.13 解析:由题意知,,联立方程得22221,621,3x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩解得229,21.2x y ⎧=⎪⎪⎨⎪=⎪⎩取点坐标为322,22⎛⎫ ⎪ ⎪⎝⎭,则13222,22PF ⎛⎫=--- ⎪ ⎪⎝⎭,23222,22PF ⎛⎫=-- ⎪ ⎪⎝⎭. ∴ 11222221323212222213||||321321222222•cos ∠PF PF F PF PF PF ⎛⎫⎛⎫--⨯-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭===⎛⎫⎛⎫--+⨯-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 16.134∞,⎛⎫--⎪⎝⎭解析:过两点的直线方程为,将其与抛物线方程联立并消去,得.因为直线与抛物线没有交点,所以方程无解,即,解得134a <-. 三、解答题 17.解:(1)由题意得22c =,即1c =,∴ 12(10)(10)F ,,F ,-.∵ 椭圆22221(0)x y a b a b +>>=经过点362M ,⎛⎫ ⎪⎝⎭,∴ 122MF MF a +==6,∴ 3a =,∴ 2228b a c =-=.∴ 所求椭圆的标准方程为22198x y +=.(2)12(30),(30)A ,A ,-,设11121111(),(,),(03)P x ,y P x y x x -≠,<,则11A P 的方程为1133y x y x ++=.① 22A P 的方程为1133y x y x ---=.②①×②,得22221199y x y x ---=.③ ∵ 点111()P x ,y 在椭圆22198x y +=上,∴ 2211198x y +=,即22118(9)9x y -=. 代入③,得22198x y -=.由111211()()P x ,y ,P x ,y -是椭圆上的非顶点,知3x ≠±,∴ 点()E x,y 的轨迹方程为221(3)98x y x -≠±=.18.解:由直线l 过抛物线的焦点02p F ,⎛⎫⎪⎝⎭,得直线l 的方程为2p x y +=.由222,,p x y y px ⎧+=⎪⎨⎪=⎩消去,得2220y py p +-=. 由题意得2221212(2)40,2,p p y y p y y p ∆=+>+=-=-.设直线与抛物线交于1122(,),(,)A x y B x y ,1212122(4)22p pAB x x p y y p p y y p =++=-+-+=-+=. ,∴ 解得34p =. 19.解:(1)双曲线的右准线的方程为2a c ,两条渐近线方程为by x a=?.所以两交点坐标为2a ab P c c 骣÷ç÷ç÷ç÷ç桫,,2a ab Q c c 骣÷ç÷ç-÷ç÷ç桫,. 设直线与轴的交点为,因为△为等边三角形,则有3||||2MF PQ =, 所以232a ab abc c c c 骣÷ç÷-=+ç÷ç÷桫×,即223c a abc c-=, 解得3b a =,.所以2ce a==. (2)由(1)得双曲线的方程为222213x y a a -=.把3y ax a =+代入得2222(3)2360a x a x a -++=.依题意得42221230(2430)a a a ,a ,∆=-->⎧-≠⎪⎨⎪⎩所以26a <,且23a ¹. 所以双曲线被直线截得的弦长2222221212121212()()(1)()(1)[()4]d x x y y a x x a x x x x =-+-=+-=++-4222221224(3)(1)(3)a a a a a --=+-g .因为2212b e d a a ==,所以2422227212144(1)(3)a a a a a -=+-×, 整理,得4213771020a a -+=,解得22a =或25113a =. 所以双曲线的方程为22126x y -=或221313151153x y -=.20.解:(1)设抛物线方程为22(0)y px p =>,将(1,2)M 代入方程得2p =,所以抛物线方程为24y x =,则抛物线的焦点坐标为.由题意知椭圆、双曲线的焦点为F F ()()121,0,1,0,-所以.对于椭圆,a MF MF ()()2222122112112222=+=+++-+=+,所以a 12=+,a ()2212322=+=+,所以222222b a c =-=+,所以椭圆方程为221322222x y +=++.对于双曲线,122222a MF MF ¢=-=-,所以21a ¢=-,2322a ¢=-,所以222222b c a ⅱ?=-=-,所以双曲线方程为221322222x y -=--.(2)设AP 的中点为C ,l ¢的方程为x m =,以AP 为直径的圆交l ¢于,D E 两点,DE 的中点为.H令()11,,A x y 则113,22x y 骣+÷ç÷ç÷ç÷ç桫C ,所以DC AP x y ()221111322==-+,x CH m x m ,()11312322+=-=-+ 所以DH DC CH x y x m m x m m [()()()22222221111113]2323.44轾=-=-+--+=--+犏臌 当m 2=时,2462DH =-+=为定值,所以222DE DH ==为定值,此时l ¢的方程为2x =.21.(1)解:设椭圆方程为22221(0),(,0),x y a b F c a b+=>>22221(0),(,0),x y a b F c a b +=>>则直线的方程为,y x c =-代入22221x y a b +=,消去并整理,得a b x a cx a c a b 22222222()20+-+-=.令1122(,),(,),A x y B x y 则22222121222222,.a c a c a b x x x x a b a b -+==++由1212(,),(3,1),OA OB x x y y OA OB +=++=-+a 与a 共线,得12123()()0.y y x x +++= 又1122,,y x c y x c =-=-所以12123(2)()0,x x c x x +-++=所以1232c x x +=, 即22223,2a c ca b =+所以223.a b =所以226,3a c ab =-=故离心率6.3c e a ==(2)证明:由(1)知223a b =,所以椭圆22221x y ab+=可化为22233x y b +=.设(,),OM x y =uuur由已知得1122(,)(,)(,)x y λx y μx y =+,所以因为点(,)M x y 在椭圆上,所以2221212()3()3λx μx λy μy b +++=,即λx y μx y λμx x y y b 222222*********(3)(3)2(3)3+++++=. ①由(1)知222212331,,222x x c a c b c +===,所以2222212223.8a c ab x xc a b -==+ 所以1212121233()()x x y y x x x c x c +=+--2121243()3x x x x c c =-++22239322c c c =-+0.= 又222222112233,33x y b x y b +=+=,代入①得22 1.λμ+=故22λμ+为定值1.22.解:(1)椭圆的焦点在轴上,由椭圆上的点到两点的距离之和是4,得,即.又点312A ⎛⎫ ⎪⎝⎭,在椭圆上,因此22231212b ⎛⎫⎪⎝⎭+=,解得,于是. 所以椭圆的方程为22143x y +=,焦点,.(2)设椭圆上的动点,则线段的中点满足111,22x yx y -+==, 即,.因此22(21)(2)=143x y ++,即2214123y x ⎛⎫++= ⎪⎝⎭为所求的轨迹方程. (3)类似的性质为:若是双曲线22221x y a b -=上关于原点对称的两个点,点是双曲线上任意一点,当直线的斜率都存在时,记为,那么与之积是与点位置无关的定值. 证明如下:设点的坐标为,则点的坐标为,其中22221m n a b -=.又设点的坐标为,由,PM PN y n y n k k x m x m-+==-+,得•y n y n y n x m x m x m 2222-+-=-+-. 将22222222,b b y x b n a a =-=代入得22b a .。
2.2 双曲线(1)A 级 基础巩固一、选择题1.已知M (-2,0)、N (2,0),|PM |-|PN |=4,则动点P 的轨迹是导学号 03624438( C )A .双曲线B .双曲线左支C .一条射线D .双曲线右支[解析]∵|PM |-|PN |=|MN |=4,∴动点P 的轨迹是一条射线. 2.双曲线3x 2-4y 2=-12的焦点坐标为导学号 03624439( D ) A .(±5,0) B .(0,±5) C .(±7,0)D .(0,±7)[解析] 双曲线3x 2-4y 2=-12化为标准方程为y 23-x 24=1,∴a 2=3,b 2=4,c 2=a 2+b 2=7,∴c =7,又∵焦点在y 轴上,故选D .3.已知方程x 21+k -y 21-k =1表示双曲线,则k 的取值X 围是导学号 03624440( A )A .-1<k <1B .k >0C .k ≥0D .k >1或k <-1[解析] 由题意得(1+k )(1-k )>0,∴(k -1)(k +1)<0,∴-1<k <1.4.(2016·某某某某高二检测)已知双曲线2mx 2-my =4的一个焦点为(0,6),则m 的值为导学号 03624441( B )A .1B .-1C .73D .-73[解析] 将双曲线方程化为x 22m-y 24m=1.因为一个焦点是(0,6),所以焦点在y 轴上,所以c =6,a 2=-4m ,b 2=-2m ,所以a 2+b 2=-4m -2m =-6k=c 2=6.所以m =-1.5.双曲线x 210-y 22=1的焦距为导学号 03624442( D )A .3 2B .4 2C .3 3D .4 3[解析] 由双曲线的标准方程,知a 2=10,b 2=2,则c 2=a 2+b 2=10+2=12,因此2c =43,故选D .6.(2015·某某理)若双曲线E :x 29-y 216=1的左、右焦点分别为F 1、F 2,点P 在双曲线E 上,且|PF 1|=3,则|PF 2|等于导学号 03624443( B )A .11B .9C .5D .3[解析] 由题,|||PF 1|-|PF 2|=2a =6, 即||3-|PF 2|=2a =6,解得|PF 2|=9. 二、填空题7.已知双曲线C :x 29-y 216=1的左、右焦点分别为F 1、F 2,P 为C 右支上的一点,且|PF 2|=|F 1F 2|,则△PF 1F 2的面积等于__48__.导学号 03624444[解析] 依题意得|PF 2|=|F 1F 2|=10,由双曲线的定义得|PF 1|-|PF 2|=6,∴|PF 1|=16.∴S △PF 1F 2=12×16×102-1622=48.8.已知双曲线x 225-y 29=1的两个焦点分别为F 1、F 2,若双曲线上的点P 到点F 1的距离为12,则点P 到点F 2的距离为__2或22__.导学号 03624445[解析] 设F 1为左焦点,F 2为右焦点,当点P 在双曲线左支上时,|PF 2|-|PF 1|=10,|PF 2|=22;当点P 在双曲线右支上时, |PF 1|-|PF 2|=10,|PF 2|=2. 三、解答题9.求满足下列条件的双曲线的标准方程.导学号 03624446 (1)焦点在x 轴上,c =6且经过点(-5,2); (2)过P (3,154)和Q (-163,5)两点.[解析] (1)设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0),由题意得⎩⎪⎨⎪⎧25a 2-4b2=1a 2+b 2=6,解之得a 2=5,b 2=1, 故所求双曲线方程为x 25-y 2=1.(2)设双曲线方程为Ax 2+By 2=1(AB <0),由题意得 ⎩⎪⎨⎪⎧9A +22516B =12569A +25B =1,解之得⎩⎪⎨⎪⎧A =-116B =19.∴所求双曲线方程为y 29-x 216=1.B 级 素养提升一、选择题1.已知双曲线中心在原点,一个焦点为F 1(-5,0),点P 在该双曲线上,线段PF 1的中点坐标为(0,2),则双曲线的方程是导学号 03624447( B )A .x 24-y 2=1B .x 2-y 24=1C .x 22-y 23=1D .x 23-y 22=1[解析] 由条件知P (5,4)在双曲线x 2a 2-y 2b2=1上,∴5a 2-16b2=1,又a2+b 2=5,∴⎩⎪⎨⎪⎧a 2=1b 2=4,故选B .2.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为导学号 03624448( D )A .13B .12C .23D .32[解析] 因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D .3.已知m 、n 为两个不相等的非零实数,则方程mx -y +n =0与nx 2+my 2=mn 所表示的曲线可能是导学号 03624449( C )[解析] 把直线方程和曲线方程分别化为y =mx +n ,x 2m +y 2n=1.根据图形中直线的位置,判定斜率m 和截距n 的正负,从而断定曲线的形状.4.已知双曲线的左、右焦点分别为F 1、F 2,过F 1的直线与双曲线的左支交于A 、B 两点,线段AB 的长为5,若2a =8,那么△ABF 2的周长是导学号 03624450( D )A .16B .18C .21D .26[解析] |AF 2|-|AF 1|=2a =8,|BF 2|-|BF 1|=2a =8, ∴|AF 2|+|BF 2|-(|AF 1|+|BF 1|)=16, ∴|AF 2|+|BF 2|=16+5=21,∴△ABF 2的周长为|AF 2|+|BF 2|+|AB |=21+5=26. 5.若方程x 2m -1+y 2m 2-4=3表示焦点在y 轴上的双曲线,则m 的取值X 围是导学号 03624451( C )A .(-∞,1)B .(2,+∞)C .(-∞,-2)D .(-2,1)[解析] 由题意,方程可化为y 2m 2-4-x 21-m=3,∴⎩⎪⎨⎪⎧m 2-4>01-m >0,解得m <-2.故选C .二、填空题6.(2016·某某某某高二检测)设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,有一个交点的坐标为(15,4),则此双曲线的方程为y 24-x 25=1 .导学号 03624452[解析] 解法一:椭圆x 227+y 236=1的焦点坐标是(0,±3),根据双曲线的定义,知2a=|152+12-152+72|=4,故a =2.又b 2=c 2-a 2=5,故所求双曲线的方程为y 24-x 25=1. 解法二:椭圆x 227+y 236=1的焦点坐标是(0,±3).设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),则a 2+b 2=9,16a 2-15b 2=1,解得a 2=4,b 2=5.故所求双曲线的方程为y 24-x 25=1.解法三:设双曲线方程为x 227-λ+y 236-λ=1(27<λ<36),由于双曲线过点(15,4),故1527-λ+1636-λ=1,解得λ1=32,λ2=0(舍去).故所求双曲线方程为y 24-x 25=1. 7.已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则|PF 1|·|PF 2|等于__4__.导学号 03624453[解析] 在△PF 1F 2中,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos60°=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 即(22)2=22+|PF 1|·|PF 2|, 解得|PF 1|·|PF 2|=4. 三、解答题8.已知双曲线方程为2x 2-y 2=k ,焦距为6,求k 的值.导学号 03624454 [解析] 由题意知c =3,若焦点在x 轴上,则方程可化为x 2k 2-y 2k =1,∴k 2+k =32,即k =6.若焦点在y 轴上,则方程可化为y 2-k -x 2-k2=1.∴-k +(-k2)=32,即k =-6.综上,k 的值为6或-6.C 级 能力提高1.双曲线8kx 2-ky 2=8的一个焦点坐标为(0,3),则k 的值为__-1__.导学号 03624455[解析] 将双曲线的方程化为x 21k-y 28k=1,因为双曲线的一个焦点坐标是(0,3), 所以焦点在y 轴上,且c =3. 所以a 2=-8k ,b 2=-1k.所以-8k -1k=9,解得k =-1.2.当0°≤α≤180°时,方程x 2cos α+y 2sin α=1表示的曲线如何变化?导学号 03624456[解析] (1)当α=0°时,方程为x 2=1,它表示两条平行直线x =±1. (2)当0°<α<90°时,方程为x 21cos α+y 21sin α=1. ①当0°<α<45°时,0<1cos α<1sin α,它表示焦点在y 轴上的椭圆.②当α=45°时,它表示圆x 2+y 2= 2.③当45<α<90°时,1cos α>1sin α>0,它表示焦点在x 轴上的椭圆.(3)当α=90°时,方程为y 2=1,它表示两条平行直线y =±1. (4)当90°<α<180°时,方程为y 21sin α-x 21-cos α=1,它表示焦点在y 轴上的双曲线.(5)当α=180°时,方程为x 2=-1,它不表示任何曲线.。
一、选择题1.已知斜率为16的直线l 与双曲线22221(0,0)x y C a b a b-=>>:相交于B 、D 两点,且BD 的中点为(1,3)M ,则C 的离心率为( )A .2B C .3 D 2.平面α内有一条直线m ,过平面α外一点P 作直线n 与m 所成角为6π,则直线n 与平面α交点的轨迹是( ) A .直线B .抛物线C .椭圆D .双曲线3.平面直角坐标系xOy 中,直线:(2)(0)l y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若2FA FB =,则点A 到y 轴的距离为( ) A .3B .4C .5D .64.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .65.过抛物线24y x =的焦点作两条相互垂直的弦AB ,CD ,且AB CD AB CD λ+=⋅,则λ的值为( )A .12B .14C .18D .1166.已知1F ,2F 是双曲线()222210,0x y a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线的左、右两支分别交于点A ,B ,若2ABF 为等边三角形,则该双曲线的渐近线的斜率为( )A .BC .D .7.顶点在原点,经过点(),且以坐标轴为轴的抛物线的标准方程是( )A .2y =或212=-x y B .2y =-或212=-x yC .2y =或212x y =D .2y =-或212x y =8.已知椭圆()222210x y a b a b+=>>上一点A 关于原点的对称点为点B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且,124ππα⎛⎫∈ ⎪⎝⎭,则该椭圆的离心率e 的取值范围是( )A .12,23⎛⎫⎪⎝⎭B .26,23⎛⎫ ⎪ ⎪⎝⎭C .222,23⎛⎫⎪ ⎪⎝⎭D .332,3⎛⎫⎪ ⎪⎝⎭9.已知1F ,2F 是离心率为13的椭圆22221(0)x y a b a b+=>>的焦点,M 是椭圆上第一象限的点,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则( ) A .12S SB .122S S =C .1232S S =D .1243S S =10.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A 227+ B .273+ C .53D .211.设1F 、2F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共点,且1PF <2PF ,线段1PF 垂直平分线经过2F ,若1C 和2C 的离心率分别为1e 、2e ,则129e e +的最小值( )A .2B .4C .6D .812.已知抛物线2:4C y x =,过点()1,0A -作C 的两条切线,切点分别为B 、D ,则过点A 、B 、D 的圆截y 轴所得弦长为( ) A .3B .2C .43D .42二、填空题13.已知中心在原点,对称轴为坐标轴的椭圆,其中一个焦点坐标为()2,0F ,椭圆被直线:3l y x =+所截得的弦的中点横坐标为2-,则此椭圆的标准方程为______.14.已知双曲线22:143x y C -=的左、右焦点分别12,F F ,P 为双曲线上异于顶点的点,以1PF ,2PF 为直径的圆与直线l 分别相切于A ,B 两点,则12cos ,AB F F <>=___________.15.已知ABC 中,()1,0B -、()1,0C ,1k 、2k 分别是直线AB 和AC 的斜率.关于点A 有如下四个命题:①若A 是双曲线2212y x -=上的点,则122k k ⋅=;②若122k k ⋅=-,则A 是椭圆2212x y +=上的点;③若121k k ,则A 是圆221x y +=上的点;④若2AB AC =,则A 点的轨迹是圆. 其中所有真命题的序号是__________.16.已知椭圆22:12x C y +=的左焦点为F ,椭圆外一点(0,)(1)P t t >,直线PF 交椭圆于A 、B 两点,过P 作椭圆C 的切线,切点为E ,若23||4||||PE PA PB =⋅,则t =____________.17.设P 是双曲线22:13y x Γ-=上任意一点,Q 与P 关于x 轴对称,1F 、2F 分别为双曲线的左、右焦点,若有121PF PF ⋅≥,则1F P 与2F Q 夹角的取值范围是__________.18.若实数x ,y 10=,则+________.19.已知双曲线2222:1(0,0)y x C a b a b-=>>,直线x b =与C 的两条渐近线分别交于A ,B 两点,过A 作圆222:(2)M x b y b ++=的切线,D 为其中一个切点若||||AD AB =,则C 的离心率为__________.20.设A 、B 是双曲线22221(0,0)x y a b a b-=>>的左、右顶点,F 是右焦点,M 是双曲线上异于A 、B 的动点,过点B 作x 轴的垂线与直线MA 交于点P ,若直线OP 与BM 的斜率之积为4,则双曲线的离心率为_________.三、解答题21.已知抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4. (1)求抛物线C 的方程;(2)过点F 且斜率为1的直线l 与C 交于A ,B 两点,O 为坐标原点,求OAB 的面积. 22.在平面直角坐标系xOy 中,已知两点()1,0M -,()1,0N ,动点Q 到点M 的距离为,线段NQ 的垂直平分线交线段MQ 于点K ,设点K 的轨迹为曲线E .(1)求曲线E 的方程;(2)已知点()2,0P ,设直线l :10x my +-=与曲线E 交于A ,B 两点,求证:OPA OPB ∠=∠.23.已知椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,长轴长为22,离心率为22. (1)求椭圆C 的方程.(2)若过点1F 的两条弦,弦AB 、弦CD ,互相垂直,求四边形ACBD 的面积的最小值.24.已知抛物线28y x =的焦点为F ,且A 是抛物线上一点. (1)若4AF =求点A 的坐标;(2)直线l :y x m =+与抛物线交于两个不同的点P ,Q ,若OP OQ ⊥,求实数m 的值. 25.荷兰数学家舒腾(F.van Shooten ,1615-1660)设计了一种画椭圆的工具,如图1所示,两根等长的带槽的直杆AC 和BF 的一端各用钉子固定在点A 和B 上(但分别可以绕钉子转动),4AC BF ==,另一端用铰链与杆FC 连接,2FC AB ==,AC 和BF 的交点为E ,转动整个工具,交点E 形成的轨迹为椭圆Γ.以线段AB 中点O 为原点,AB 所在的直线为x 轴建立如图2的平面直角坐标系.(1)求椭圆Γ的标准方程;(2)经过B 点的直线l 交椭圆Γ于不同的两点M N 、,设点P 为椭圆的右顶点,当PNM △的面积为27时,求直线l 的方程. 26.已知椭圆2222:1(0)x y C a b a b+=>>的长轴长为4,焦距为23P 为椭圆C 上一动点,且直线,AP BP 的斜率之积为14-.(1)求椭圆C 的标准方程;(2)设,A B 分别是椭圆C 的左右顶点,若点,M N 是C 上不同于,A B 的两点,且满//,//AP OM BP ON ,求证:MON △的面积为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设()()1122,,B x y D x y 、,用“点差法”表示出a 、b 的关系,即可求出离心率 【详解】设()()1122,,B x y D x y 、,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩, 两式作差得:22221212220x x y y a b---=, 整理得:()()()()2121221212y y y y b a x x x x +-=+-BD 的中点为(1,3)M ,且直线l 的斜率为16 ,代入有:22611262b a =⨯=即22212c a a -=,解得6ce a . 故选:D 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.2.D解析:D 【分析】过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系,设出坐标,分别表示出直线AB 与PM 的方向向量,利用夹角公式即可得出. 【详解】解:过点P 作PO α⊥,以点O 为坐标原点,OP 为z 轴,以定直线m 为y 轴,建立如图所示的空间直角坐标系.不妨设1OP =,30PBO ∠=︒,3OB ∴=. 则(0P ,0,1),(0,3,0)B .设点(Q x ,y ,0),则(,,1)PQ x y =-,取直线m 的方向向量为(0,1,0)u =. 直线AB 与PQ 所成的角为30, 22||3cos30||||1PQ u PQ u x y ∴︒===++, 化为2213y x -=,即为点Q 的轨迹.故选:D .【点睛】熟练掌握通过建立如图所示的空间直角坐标系利用异面直线的夹角公式求得轨迹的方法是解题的关键.3.B解析:B 【分析】根据题意画出图形,抛物线的准线为':2l x =-,直线:(2)(0)l y k x k =+>恒过定点(2,0)P -,过,A B 分别作'AM l ⊥于M ,'BN l ⊥于N ,根据抛物线的定义和已知条件可得点B 为AP 的中点,进而可得点B 的横坐标为1,则26AM BN ==从 而可求出答案 【详解】解:设抛物线2:8C y x =的准线为':2l x =-,直线:(2)(0)l y k x k =+>恒过定点(2,0)P -,如图过,A B 分别作'AM l ⊥于M ,'BN l ⊥于N , 因为2FA FB =,所以2AM BN =, 所以点B 为AP 的中点,连接OB ,则12OB AF =, 所以OB BF =,所以点B 的横坐标为1, 所以26AM BN ==, 所以点A 到y 轴的距离为4, 故选:B【点睛】关键点点睛:此题考查直线与抛物线的位置关系,考查抛物线的定义的应用,解题的关键是根据题意画出图形,灵活运用抛物线的定义,考查计算能力,属于中档题4.C解析:C 【分析】设E 是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-+≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.5.B解析:B 【分析】首先设直线AB 的方程为1x ty =+, 与抛物线方程联立分别求AB 和CD ,分别计算AB CD +和AB CD ,再求λ的值.【详解】24y x =的焦点为()1,0,设AB 的直线方程为1x ty =+,CD 的直线方程为11x y t=-+,由214x ty y x=+⎧⎨=⎩得2440y ty --=,设()11,A x y ,()22,B x y , 则124y y t +=,124y y =-,则()()22212121441AB t y y y y t =++-=+,同理2141CD t ⎛⎫=+⎪⎝⎭,22142AB CD t t ⎛⎫+=++ ⎪⎝⎭ 221162AB CD t t ⎛⎫⋅=++ ⎪⎝⎭, 故14λ=. 故选:B 【点睛】关键点点睛:本题的关键是利用弦长公式求AB ,并且利用AB CD ⊥,将t 换成1t-求CD . 6.C【分析】利用双曲线的定义可求得12AF a =,24AF a =,利用余弦定理可求得ca的值,利用公式21⎛⎫=- ⎪⎝⎭b c a a 可求得该双曲线的渐近线的斜率. 【详解】2ABF 为等边三角形,22AB AF BF ∴==,且260ABF ∠=︒,由双曲线的定义可得121212||BF AB AF a B AF F BF =+-==-,212AF AF a -=,24AF a ∴=,在12AF F △中12AF a =,24AF a =,12120F AF ∠=,由余弦定理可得2212121222cos12027F F c AF AF AF AF a ==+-⋅︒=,即7c a =,所以22222216b b c a c a a a a -⎛⎫===-= ⎪⎝⎭. 因此,该双曲线的渐近线的斜率为6±. 故选:C.【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)定义法:直接利用a ,b ,求得比值,则焦点在x 轴时渐近线by x a=±,焦点在y 轴时渐近线ay x b=±; (2)构造齐次式,利用已知条件,结合222+=a b c ,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写渐近线即可.7.D【分析】设出抛物线方程为22y mx =或22x ny =,代入点的坐标求出参数值可得.【详解】设抛物线方程为22y mx =,则262(3)m =⋅-,63m =-,方程为2123y x =-, 或设方程为22x ny =,则2(3)26n -=⨯,14n =,方程为212x y =. 所以抛物线方程为2123y x =-或212x y =. 故选:D . 【点睛】关键点点睛:抛物线的标准方程有四种形式,在不确定焦点位置(或开口方向时),需要分类讨论.象本题在抛物线过一点的坐标,则需要考虑焦点在x 轴和y 轴两种情况,焦点在x 轴上时可以直接设方程为2y mx =,代入点的坐标求出参数值,不必考虑焦点是在x轴正半轴还是在负半轴,焦点在y 轴也类似求解.8.B解析:B 【分析】由题意设椭圆的左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形,再根据椭圆的定义化简得22cos 2sin a c c =+αα,得到离心率关于α的函数表达式,再利用辅助角公式和三角函数的单调性求得离心率的范围. 【详解】由题意椭圆22221x y a b+=()00a b >>,上一点A 关于原点的对称点为点B ,F 为其右焦点,设左焦点为N ,连接AN ,BN ,因为AF ⊥BF ,所以四边形AFBN 为长方形.根据椭圆的定义:2AF AN a +=,由题∠ABF =α,则∠ANF =α, 所以22cos 2sin a c c αα+=,利用2112sin cos 4c e a πααα===+⎛⎫+ ⎪⎝⎭, ∵,124ππα⎛⎫∈ ⎪⎝⎭,∴342πππα<+<14πα<<⎛⎫+ ⎪⎝⎭e 的取值范围是⎝⎭,故选B . 【点睛】本题主要考查了椭圆的离心率的取值范围问题,其中解答中合理利用椭圆的定义和题设条件,得到22cos 2sin a c c =+αα,再利用三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于中档试题.9.D解析:D 【分析】设12MF F △的面积为S ,内切圆半径为r ,则可得4Sr c=,从而可得1121122244S SF F r c S c ==⋅⋅=,再由G 是12MF F △的重心,可得11222213323MOF MF F SS S S ==⨯=,进而可得结果 【详解】解:由于椭圆的离心率为13,所以13c a =,即3a c =,设12MF F △的面积为S ,内切圆半径为r ,则121211()(22)422S MF MF F F r a c r cr =++=+=,所以4Sr c=, 所以1121122244S S F F r c S c ==⋅⋅=, 因为G 是12MF F △的重心, 所以11222213323MOF MF F S S S S ==⨯=, 所以1234S S =,即1243S S =, 故选:D【点睛】关键点点睛:此题考查椭圆的性质的应用,解题的关键是设12MF F △的面积为S ,内切圆半径为r ,然后求出4Sr c=,进而可表示出1S ,2S ,从而可得结果,属于中档题 10.A解析:A 【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率. 【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54b y xc a c =++,化简得3(54)30bx a c y bc -++=, 又直线FP 与圆222x y a +=相切,a =,345bc a a c=+人,变形为4293440160e e e ---=,22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去). 故选:A . 【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.11.D解析:D 【分析】设椭圆和双曲线的方程,由题意可得2122PF F F c ==,再利用椭圆和双曲线的定义分别求出1PF ,即可得122a a c +=,计算12112e e +=,()121212111992e e e e e e ⎛⎫+=++ ⎪⎝⎭展开后利用基本不等式即可求最值. 【详解】设椭圆1C 的方程为2222111x y a b +=,则222111c a b =-,设双曲线2C 的方程为2222221x y a b -=,则222222c a b =+,因为椭圆1C 和双曲线2C 的焦点相同,所以2212c c =,设12c c c ==即22221122a b a b -=+,因为P 是椭圆1C 和双曲线2C 的一个公共点, 所以1212+=PF PF a ,2122PF PF a -=,因为线段1PF 垂直平分线经过2F ,所以2122PF F F c ==,所以1122PF a c =-,且1222PF c a =-, 所以122222a c c a -=-,可得122a a c +=, 所以11c e a =,22c e a =,所以1212121122a a a a ce e c c c c++=+===, 所以()211212121291111991022e e e e e e e e e e ⎛⎫⎛⎫+=++=++ ⎪ ⎪⎝⎭⎝⎭()11101023822⎛≥+=+⨯= ⎝, 当且仅当21129e e e e =,即213e e =时等号成立, 故选:D. 【点睛】关键点点睛:本题解题的关键点是利用已知条件得出122a a c +=,进而可得12112e e +=, 再利用基本不等式可求最值.12.A解析:A 【分析】设出直线方程,与抛物线方程联立,由判别式为零解出B 、D 两点的坐标,进而得出过点A 、B 、D 的圆的方程,求出弦长即可. 【详解】设过点()1,0A -的直线方程为1x my =-,联立214x my y x=-⎧⎨=⎩,可得2440y my -+=,由216160m ∆=-=,解得1m =±即2440y y ±+=,2y =±,不妨设()()1,2,1,2B D -,则BD 的中垂线方程为0y =,即圆心在x 轴上又()1,0A -,且点()1,0到点A 、B 、D 的距离都相等,则圆心坐标为()1,0,半径为2 圆的方程为()2214x y -+=,令0x =,解得y =即圆被y轴所截得的弦长为故选:A 【点睛】关键点点睛:本题考查直线与抛物线的位置关系,考查圆的方程以及直线与圆的位置关系,解决本题的关键点是根据直线与抛物线相切,求出切点的坐标,进而得出圆的方程,求出弦长,考查学生逻辑思维能力和计算能力,属于中档题.二、填空题13.【分析】设椭圆方程为代入直线方程整理就后应用韦达定理结合弦中点横坐标求得关系再由可得得椭圆方程【详解】设椭圆方程为由得所以由题意又所以椭圆方程为故答案为:【点睛】方法点睛:本题考查求椭圆的标准方程解解析:22184x y +=【分析】设椭圆方程为22221(0)x y a b a b+=>>,代入直线方程整理就后应用韦达定理结合弦中点横坐标求得,a b 关系,再由2c =可得,a b 得椭圆方程.【详解】设椭圆方程为22221(0)x ya b a b +=>>,由222213x y a b y x ⎧+=⎪⎨⎪=+⎩,得2222222()690a b x a x a a b +++-=,所以212226a x x a b +=-+,由题意222622a a b-=-⨯+,222a b =, 又2c =,所以22224a b b c -===,28a =,椭圆方程为22184x y +=.故答案为:22184x y +=.【点睛】方法点睛:本题考查求椭圆的标准方程.解题方法是韦达定理.由直线方程与椭圆方程联立方程组,消元后应用韦达定理可得出弦中点坐标,从而得出,a b 的关系.然后结论半焦距c 可求解.14.【分析】求得双曲线的设运用双曲线的定义和三角形的中位线定理可得由相切的性质判断四边形为直角梯形过作垂足为运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义计算可得所求值【详解】解【分析】求得双曲线的a , c ,设1PF m =,2PF n =,运用双曲线的定义和三角形的中位线定理可得MN ,由相切的性质判断四边形ABNM 为直角梯形,过N 作NQ AM ⊥,垂足为Q ,运用直角三角形的勾股定理和向量的夹角的定义和直角三角形的余弦函数的定义,计算可得所求值. 【详解】解:因为双曲线22:143x y C -=,所以2a =,c ==依题意画出如下图形,设1PF ,2PF 的中点分别为M ,N ,过点N 作NQ AM ⊥交AM 于点Q ,连接MN ,所以1212MN F F ==,设1PF m =,2PF n =,则24m n a -==所以11122AM PF m ==,21122BN PF n ==,所以()122MQ AM BN m n =-=-=,在Rt MNQ 中NQ =,因为//NQ BA ,所以MNQ ∠为12,AB F F 的夹角,所以12cos ,7QN AB F F MN <>===故答案为:7【点睛】本题考查双曲线的定义、方程和性质,以及直线和圆相切的性质,考查直角三角形的勾股定理和锐角三角函数的定义、向量的夹角的概念,考查方程思想和化简运算能力和推理能力.15.①③【分析】设点可得出结合斜率公式可判断A 选项的正误;求出动点的轨迹方程可判断②的正误;根据求出点的轨迹方程可判断③的正误;由求出点的轨迹方程可判断④的正误【详解】设动点的坐标为对于①由于点是双曲线解析:①③ 【分析】设点(),A x y ,可得出2212y x =+,结合斜率公式可判断A 选项的正误;求出动点A 的轨迹方程,可判断②的正误;根据121k k ,求出点A 的轨迹方程,可判断③的正误;由2AB AC =求出点A 的轨迹方程,可判断④的正误. 【详解】设动点A 的坐标为(),A x y .对于①,由于点A 是双曲线2212y x -=上的点,则2212y x =+,所以,22122221112y y y y k k y x x x =⋅===+--,①正确;对于②,21222111y y y k k x x x =⋅==-+--,化简可得2212y x +=,②错误;对于③,21221111y y y k k x x x =⋅==-+--,化简可得221x y +=,③正确;对于④,由2AB AC ==化简可得2251639x y ⎛⎫-+= ⎪⎝⎭, 当点A 为圆2251639x y ⎛⎫-+= ⎪⎝⎭与x 轴的交点时,A 、B 、C 三点无法构成三角形,④错误.故答案为:①③. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程;(2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.16.【分析】设交点由两点得直线方程由直线方程与椭圆方程联立消去后应用韦达定理得可计算代入在上半椭圆用函数解析式表示出上半椭圆并求导数设切点为求出切线方程切点坐标可用表示从而求得代入已知等式后求得值【详解【分析】设交点1122(,),(,)A x y B x y ,由两点得直线PF 方程,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,可计算PA PB ,代入1212,x x x x +,P 在上半椭圆,用函数解析式表示出上半椭圆,并求导数,设切点为11(,)x y ,求出切线方程,切点坐标可用t 表示,从而求得2PE ,代入已知等式后求得t 值. 【详解】由题意(1,0)F -,直线AB 方程为00(1)t y x t tx t -=+=+--,设1122(,),(,)A x y B x y ,由2212y tx t x y =+⎧⎪⎨+=⎪⎩,得2222(12)4220t x t x t +++-=,2122412t x x t +=-+,21222212t x x t-=+, ∵,PA PB 同向,∴11221212(,)(,)()()PA PB PA PB x y t x y t x x y t y t =⋅=-⋅-=+--22211221222(1)(1)(,)(,)(1)21t t x tx x tx t x x t +-⋅=+=+, 设11(,)E x y ,过E 点的切线方程为11()y y k x x -=-,1t >,切点E 在x轴上方,由y =2xy y '==-,∴112PE xk y =-,切线方程为1111()2x y y x x y -=--,化简得1122x x y y +=, 直线过(0,)P t ,则122y t =,11y t =,由椭圆方程得21222x t=-, 222211221()2()PE x y t t t t=+-=-+-, ∵23||4||||PE PA PB =⋅,∴22222218(1)(1)32()21t t t t t t +-⎡⎤-+-=⎢⎥+⎣⎦,化简得223t =,∵1t >,∴t =故答案为:2. 【点睛】 关键点点睛:本题考查直线与椭圆相交、相切问题,解题方法是设而不求的思想方程,即设交点1122(,),(,)x y x y ,由直线方程与椭圆方程联立,消去后应用韦达定理得1212,x x x x +,然后计算PA PB ,设切点坐标,用导数求出切线斜率,得切线方程,代入坐标(0,)t 可求得切点坐标(用t 表示),求出2PE ,再结合已知条件求出结果.17.【分析】设由求出的取值范围再由平面向量的数量积计算出与夹角的余弦的取值范围从而得夹角的范围【详解】设则又双曲线中即∴又即代入上式得设与夹角为则∵∴∴∵∴故答案为:【点睛】关键点点睛:本题考查依托双曲解析:25,arccos 37ππ⎛⎤⎥⎝⎦- 【分析】设00(,)P x y ,由121PF PF ⋅≥求出20x 的取值范围,再由平面向量的数量积计算出1F P 与2F Q 夹角的余弦的取值范围,从而得夹角的范围.【详解】设00(,)P x y ,则00(,)Q x y -,又双曲线22:13y x Γ-=中2c ==,即12(2,0),(2,0)F F -,∴2212000000(2,)(2,)41PF PF x y x y x y ⋅=---⋅--=-+≥, 又220013y x -=,即220033=-y x ,代入上式得204341x --≥,202x ≥.100(2,)F P x y =+,200(2,)F Q x y =--,2212004F P F Q x y ⋅=--, 设1F P 与2F Q 夹角为θ,则2222221212cos (F P F Q F P F Qθ⋅====∵202x ≥,∴cos θ20202141x x +=--,2200222000132211322414122(41)x x x x x -++==+---, 20417x -≥,203302(41)14x <≤-,201135222(41)7x <+≤-, ∴51cos 72θ-≤<-,∵[0,]θπ∈,∴25arccos 37πθπ<≤-. 故答案为:25,arccos 37ππ⎛⎤ ⎥⎝⎦-.【点睛】关键点点睛:本题考查依托双曲线求平面向量夹角的取值范围.解题方法是设00(,)P x y ,利用P 点满足的条件求出0x 的范围,然后求出向量夹角的余弦值,余弦值的范围,从而得出角的范围.18.【分析】由已知条件得出点P 在以为焦点以为长轴长的椭圆上再由两点的距离公式得出表示点到点的距离之和再根据椭圆的定义将问题转化为求的范围根据两点的距离公式可求得范围【详解】设点则由椭圆的定义得点P 在以为 解析:[10-+【分析】由已知条件得出点P 在以()()120303F F -,,,为焦点,以10为长轴长的椭圆上,再由两+(),P x y 到点()()11,00,3A F ,的距离之和,再根据椭圆的定义将问题转化为求210+d PA PF =-的范围,根据两点的距离公式可求得范围. 【详解】设点(),P x y ,则由椭圆的定义得点P 在以()()120303F F -,,,为焦点,以10为长轴长的椭圆上,所在椭圆的方程为:22+11625x y =,(),P x y 到点()()11,00,3A F ,的距离之和,即1+d PA PF =,由椭圆的定义得12+210PF PF a ==,所以1210PFPF =-,所以()122++1010+d PA PF PA PF PA PF ==-=-,而222AF PA PF AF -≤-≤,又2AF ==,所以21010+d PA PF ≤=-≤,[10-+,故答案为:[10-+. 【点睛】关键点点睛:本题考查根式的最值和范围求解问题,解决的关键在于利用椭圆的定义得出动点的轨迹,将问题转化为求两线段的距离之差的范围.19.【分析】将代入C 的渐近线方程可得点坐标利用两点间的距离根式可求导根据勾股定理可得再由可得代入即可【详解】将代入C 的渐近线方程得则不妨假设半径为因为是圆的切线所以即则因为所以即故故答案为:【点睛】本题解析:4【分析】将x b =代入C 的渐近线方程可得A 点坐标,利用两点间的距离根式可求导||AM .根据勾股定理可得||AD ,再由||||AD AB =可得2238b a =,代入e =即可. 【详解】将x b =代入C 的渐近线方程ay x b=±,得y a =±,则||2AB a =. 不妨假设(),A b a , (2,0)M b -,半径为b DM =, 222||(2)AM b b a =++,因为AD 是圆的切线,所以222||AD DMAM +=,即则22222||(2)8AD b b a b b a =++-=+.因为||||AD AB =,所以2282b a a +=,即2238b a =,故222214b e a =+=. 故答案为:224.【点睛】本题考查双曲线的简单的几何性质,考查直线与圆的位置关系,关键点是用,,b a c 表示||||AD AB =,考查了学生分析问题、解决问题的能力及计算能力.20.【分析】设代入双曲线方程变形为再根据MPA 共线利用斜率相等求得点P 然后再直线与的斜率之积为4得到ab 的关系求解【详解】设则即设又且MPA 共线所以解得则的斜率为的斜率为又直线与的斜率之积为4所以即所以 3【分析】设(),M m n ,代入双曲线方程变形为22222n b m a a=-,再根据M ,P ,A 共线,利用斜率相等,求得点P ,然后再直线OP 与BM 的斜率之积为4,得到a ,b 的关系求解. 【详解】设(),M m n ,则22221m n a b -=,即22222n b m a a =-,设(),P a t ,又(),0A a -,且M ,P ,A 共线, 所以2n tm a a=+, 解得2ant m a=+, 则OP 的斜率为2nm a+, BM 的斜率为nm a-, 又直线OP 与BM 的斜率之积为4,所以22222224a n b m a ==-,即222b a=,所以c e a ===【点睛】本题主要考查双曲线的离心率的求法以及点的双曲线上和斜率公式的应用,还考查了运算求解的能力,属于中档题.三、解答题21.(1)28x y =;(2) 【分析】(1)由题中条件,根据抛物线的定义,得到242p+=,求出p ,即可得出抛物线方程; (2)先由(1)得到焦点坐标,得出直线l 的方程,设()11,A x y ,()22,B x y ,联立直线与抛物线方程,结合韦达定理,以及抛物线的焦点弦公式,求出弦长AB ,再由点到直线距离公式,以及三角形面积公式,即可求出结果. 【详解】(1)因为抛物线2:2(0)C x py p =>上一点(),2P m 到其焦点F 的距离为4,所以242p+=,解得4p =, 所以抛物线C 的方程为28x y =; (2)由(1)可得,()0,2F ;则过点F 且斜率为1的直线l 的方程为:2y x =+,即20x y -+=, 设()11,A x y ,()22,B x y , 由228y x x y=+⎧⎨=⎩消去x ,整理得21240y y -+=, 则1212y y +=,因此1212416AB AF BF y y p =+=++=+=,又点O 到直线20x y -+=的距离为d ==,所以OAB 的面积为12OABS AB d ==. 【点睛】 思路点睛:求解圆锥曲线中三角形的面积问题时,一般需要联立直线与曲线方程,结合韦达定理,弦长公式,以及三角形面积公式,即可得出三角形的面积.22.(1)2212x y +=;(2)证明见解析.【分析】(1)利用中垂线的性质可得KN KQ =,从而得到2KM KN QM MN +==>=,利用椭圆的定义进行分析求解即可;(2)根据点P 的位置,确定OPA ∠,OPB ∠都是锐角,然后联立直线与椭圆的方程,得到韦达定理,再将问题转化为求证两个角的正切值相等,代入化简求解,即可证明. 【详解】(1)∵线段NQ 的垂直平分线交MQ 于点K ,∴||||KN KQ =,∴||||||||||2||KM KN KM KQ MQ MN +=+==>= ∴点K 的轨迹是以原点为中心,以,M N 为焦点的椭圆.设椭圆方程为22221(0)x y a b a b+=>>,则a =1c =,1b =,所以曲线E 的方程为2212x y +=(2)由221210x y x my ⎧+=⎪⎨⎪+-=⎩消去x 可得()222210m y my +--=.设()11,A x y ,()22,B x y ,则12222m y y m +=+,12212y y m =-+. 易知PA ,PB 的斜率存在,则()()121212121212122221111PA PB y y y y y y my y k k x x my my my my +++=+=+=-------++,又因为121222222022m my y my y m m ++=-=++ 所以0PA PB k k +=,所以OPA OPB ∠=∠. 【点睛】方法点睛:解答直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.23.(1)2212x y +=;(2)169.【分析】(1)利用椭圆的长轴长以及离心率求解,a c ,得到b ,即可得到椭圆方程; (2)①当1l x ⊥,2//l x 时,求解四边形的面积;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-,分别联立椭圆方程,利用韦达定理以及弦长公式,转化求解四边形的面积,利用基本不等式求解最小值即可. 【详解】(1)得11a b c ⎧=⎪=⎨⎪=⎩,∴椭圆C 的标准方程为2212x y +=;(2)①当1l x ⊥,2//l x 时,22122222b S a b a=⋅⋅⋅==;②当1l ,2l 斜率存在时,设1l :1x my =-,2l :11x y m=-, 联立22112x my x y =-⎧⎪⎨+=⎪⎩得()222210m y my +--=, ∴12222m y y m +=+,12212y y m -=+,∴AB ==)2212m m +=+,同理)22221111122m m CD m m⎫+⎪+⎝⎭==++, ∴()()()()()()()222222222222281414111162292212212212m m m S AB CD m m m m m m +++=⋅=⋅=≥=++++⎛⎫+++ ⎪⎝⎭.当且仅当22221m m +=+即21m =即1m =±时等号成立, 故四边形ACBD 的面积的最小值169. 【点睛】方法点睛:该题考查的是有关椭圆方程的求法,直线与椭圆的综合题,解题方法如下: (1)根据题中所给的条件,建立等量关系,求得,a b 的值,得到椭圆方程;(2)对直线的斜率存在与否进行讨论,根据题意利用适当的形式写出直线的方程,分别与椭圆方程联立,求得弦长,根据四边形面积公式求得四边形的面积,利用基本不等式求得最值,与特殊情况比较,得到结果.24.(1)点A 的坐标为()()2,4,2,4-;(2)8-. 【分析】(1)由4AF =根据焦半径公式求出点A 的横坐标,再代入抛物线方程求得纵坐标;(2)由28y x m y x=+⎧⎨=⎩得22(28)0x m x m +-+=,利用韦达定理,结合向量垂直的坐标表示,列方程可求实数m 的值. 【详解】(1)设()00,A x y ,042p AF x =+=,22p=,02x ∴=所以20082164y y =⨯=⇒=±,∴点A 的坐标为()()2,4,2,4-.(2)由28y x m y x=+⎧⎨=⎩得22(28)0x m x m +-+=,设()11,P x y ,()22,Q x y ,则1282x x m +=-,212x x m =,121228y y x x m ∴+=++=,()()()2121212128y y x m x m x x m x x m m =++=+++=,又OP OQ ⊥,0OP OQ ∴⋅=,2121280x x y y m m ∴+=+=,0m ∴=或8m =-,经检验,当0m =时,直线与抛物线交点中有一点与原点O 重合:不符合题意,当8m =-时,2(24)4640∆=--⨯>,符合题意. 综上,实数m 的值为8-. 【点睛】方法点睛:解决直线与抛物线的位置关系的相关问题,其常规思路是先把直线方程与抛物线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.25.(1)22143x y +=;(2)1x y =±+.【分析】(1)设椭圆Γ的标准方程为22221x y a b+=,连接AF ,由AFB AFC ≌,得到ABE FCE △≌△,再利用椭圆定义求解.(2)设直线l 的方程为:1x my =+,联立221143x my x y =+⎧⎪⎨+=⎪⎩,结合韦达定理得到12y y -,然后由PNM △的面积为7求解. 【详解】 (1)如图所示:由题意可设椭圆Γ的标准方程为22221x y a b+=,连接AF ,可得AFB AFC ≌,所以,,4ABE FCE EF AE EA EB EF EB FB =+=+==≌,由椭圆定义可知:2,1a c ==,3b =所以椭圆Γ的方程为22143x y +=.(2)由题意知,(1,0)B ,设直线l 的方程为:1x my =+,设()()1122,,,M x y N x y ,联立221143x my x y =+⎧⎪⎨+=⎪⎩,消去x 得:()2234690m y my ++-=,可知212212134m y y m +-=+, 2122111234PMNm Sy y m +∴=⨯-⨯=+. 226162347m m +∴=+, 解得1m =±,所以直线l 的方程为1x y =±+. 【点睛】方法点睛:1、解决直线与曲线的位置关系的相关问题,往往先把直线方程与曲线方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单.2、解决直线与曲线的弦长时,往往设直线与曲线的交点坐标为A (x 1,y 1),B (x 2,y 2),则()()2121222121221(1)(1)44AB k x x x x y y y y k ⎡⎤⎡⎤=+=+⎣⎦-⋅+-⋅⎣+⎦k 为直线斜。
一、选择题1.直线3y x 与曲线2||194y x x -=的公共点的个数是( ) A .1 B .2 C .3 D .42.直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点,则k 的取值有( )个 A .1 B .2 C .3 D .43.抛物线:24y x =的过焦点的弦的中点的轨迹方程为( )A .21y x =-B .212y x =-C .22(1)y x =-D .221y x =- 4.在正方体1111ABCD A B C D -中,点P 是侧面11BCC B 内一点,且点P 满足到平面11ABB A 的距离等于到点1C 的距离,则点P 的轨迹是( )A .一条线段B .圆的一部分C .椭圆的一部分D .抛物线的一部分5.已知1F ,2F 是离心率为13的椭圆22221(0)x y a b a b+=>>的焦点,M 是椭圆上第一象限的点,若I 是12MF F △的内心,G 是12MF F △的重心,记12IF F △与1GF M △的面积分别为1S ,2S ,则( )A .12S SB .122S S =C .1232S S =D .1243S S =6.已知椭圆22:11612x y C +=的左焦点为F ,点P 是椭圆C 上的动点,点Q 是圆()22:21T x y -+=上的动点,则PFPQ 的最小值是( )A .12B .27C .23D 7.已知过双曲线()2222:1,0x y C a b a b-=>的左焦点F 作圆222x y a +=的切线FT ,交双曲线右支于点P ,点P 到x 轴的距离恰好为34b ,则双曲线离心率为( )A .273+B .273+C .53D .28.已知双曲线C :22221x y a b-=(0a >,0b >)的左右焦点分别为1F ,2F ,过1F 的直线交双曲线左支于P ,交渐近线b y x a=于点Q ,点Q 在第一象限,且12FQ F Q ⊥,若12PQ PF =,则双曲线的离心率为( )A 110+B .1222+C 51D 31 9.如果直线1y kx =-与双曲线224x y -=只有一个交点,则符合条件的直线有( ) A .1条 B .2条 C .3条 D .4条10.过抛物线24y x =的焦点的直线与抛物线交于A ,B 两点,若AB 的中点的纵坐标为2,则AB 等于( )A .4B .6C .8D .1011.已知12,F F 是椭圆1C 和双曲线2C 的公共焦点,P 是它们的一个公共交点,且1223F PF π∠=,若椭圆1C 离心率记为1e ,双曲线2C 离心率记为2e ,则222127e e +的最小值为( )A .25B .100C .9D .36 12.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( ) A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件二、填空题13.已知F 是双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,O 为坐标原点,过F 的直线与C 的两条渐近线的交点分别为,M N ,若0OM MF ⋅=,||MN b =,则C 的离心率为________.14.过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,且点A 为线段PB 的中点,则直线l 的斜率为___________.15.在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b-=>>的右支与焦点为F 的抛物线()220x py p =>交于A 、B 两点,若4AF BF OF +=,则该双曲线的渐近线方程为___________.16.知直线m 过抛物线()220y px p =>的焦点F ,且交抛物线于A 、B 两点,交其准线l 于点C .若6AF =,2CB BF =,则p =____________17.点P 为椭圆C 上一动点,过点P 作以椭圆短轴为直径的圆的两条切线,切点分别为M ,N ,若60MPN ∠=︒,则椭圆C 的离心率的取值范围是______.18.已知中心在坐标原点的椭圆E 的右焦点与抛物线2:4C y x =的焦点重合,椭圆E 与抛物线C 的准线交于A 、B 两点.若3AB =,则椭圆E 的短轴长为__________.19.如图所示,已知M ,N 为双曲线22221(0,0)x y a b a b-=>>上关于原点对称的两点,点M 与点Q 关于x 轴对称,2516ME MQ =,直线NE 交双曲线右支于点P ,若2NMP π∠=,则e =_____________.20.已知抛物线C : y 2=2px (p >0),直线l :y = 2x + b 经过抛物线C 的焦点,且与C 相交于A 、B 两点.若|AB | = 5,则p = ___.三、解答题21.已知点22,M ⎭在椭圆2222:1(0)x y C a b a b +=>>上,且点M 到C 的左,右焦点的距离之和为4.(1)求C 的方程;(2)设O 为坐标原点,若C 的弦AB 的中点在线段OM (不含端点,O M )上,求OA OB ⋅的取值范围.22.已知椭圆C :22221(0)x y a b a b+=>>的离心率为12,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上. (1)求C 的方程;(2)若椭圆C 的左右焦点分别为12,F F ,过点1F 的直线l 与C 交于A 、B 两点,12AF F △与12BF F △的面积分别为12,S S ,122S S =,求直线l 的斜率.23.已知直线:1l y kx =+过抛物线()2:20E x py p =>的焦点,且与抛物线E 交于A 、B 两点,点M 为AB 中点.(1)求抛物线E 的方程;(2)以AB 为直径的圆与x 轴交于C 、D 两点,求MCD △面积取得最小值时直线l 的方程.24.椭圆()2222:10x y C a b a b+=>>过点31,2⎛⎫- ⎪⎝⎭,离心率为12,左、右焦点分别为1F 、2F ,过2F 的直线l 交椭圆于A 、B 两点.(1)求椭圆C 的方程;(2)当1F AB 的面积为12611时,求直线l 的斜率. 25.如图,已知抛物线21:2C y x =直线2y kx =+交抛物线C 于A ,B 两点,O 为坐标原点.(1)证明:OA OB ⊥;(2)设抛物线C 在点A 处的切线为1l ,在点B 处的切线为2l ,证明:1l 与2l 的交点M 在一定直线上.26.已知椭圆2222:1(0)x y C a b a b +=>>的焦点在圆223x y +=3 (1)求椭圆C 的方程;(2)过原点O 的直线l 与椭圆C 交于,A B 两点,F 为右焦点,若FA 垂直于AB ,求直线l 的斜率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】由于已知曲线函数中含有绝对值符号, 将x 以0为分界进行分类讨论,当x ≥0时,曲线为焦点在y 轴上的双曲线,当x <0时,曲线为焦点在y 轴上的椭圆,进而在坐标系中作出直线与曲线的图像,从而可得出交点个数.【详解】当0x ≥时,曲线2194x x y -=的方程为22194y x -= 当0x <时,曲线2194x x y -=的方程为22194y x +=, ∴曲线2194x x y -=的图象如图,在同一坐标系中作出直线3yx 的图象, 可得直线与曲线交点个数为3个.故选:C【点晴】 本题讨论曲线类型再利用数形结合法求交点个数是解题的关键.2.D解析:D【分析】将直线方程与双曲线的方程联立,得出关于x 的方程,根据直线与双曲线只有一个公共点,求出对应的k 值,即可得解.【详解】联立22341169y kx k x y =-+⎧⎪⎨-=⎪⎩, 消去y 并整理得()()()2221693243164390k x k k x k ⎡⎤-+-+-+=⎣⎦,由于直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点, 所以,21690k -=或()()()222216903243641694390k k k k k ⎧-≠⎪⎨⎡⎤⎡⎤∆=----+=⎪⎣⎦⎣⎦⎩, 解得34k =±或2724250k k +-=, 对于方程2724250k k +-=,判别式为22447250'∆=+⨯⨯>,方程2724250k k +-=有两个不等的实数解. 显然34k =±不满足方程2724250k k +-=. 综上所述,k 的取值有4个.故选:D.【点睛】方法点睛:将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.3.C解析:C【分析】设出过焦点的直线方程,与抛物线方程联立求出两根之和,可得中点的坐标,消去参数可得中点的轨迹方程.【详解】由抛物线的方程可得焦点(1,0)F ,可得过焦点的直线的斜率不为0,设直线方程为:1x my =+,设直线与抛物线的交点1(A x ,1)y ,2(B x ,2)y ,设AB 的中点(,)P x y ,联立直线与抛物线的方程可得:2440y my --=,124y y m +=,21212()242x x m y y m +=++=+,所以可得2212x m y m⎧=+⎨=⎩,消去m 可得P 的轨迹方程:222y x =-, 故选:C .【点睛】方法点睛:求轨迹方程的常见方法有:1、定义法;2、待定系数法;3、直接求轨迹法;4、反求法;5、参数方程法等等.4.D解析:D【分析】由题意画出图形,可知点P 到直线BC 的距离与点P 到点1C 的距离相等,所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线.【详解】如图,点P 是侧面11BCC B 内的一动点,点P 到直线1BB 的距离即为点P 到面11ABB A 的距离,因为点P 到直线BC 的距离与点P 到点1C 的距离相等,所以点P 的轨迹为以1C 为焦点,以1BB 为准线的抛物线,故选:D .【点睛】方法点睛:求动点的轨迹方法之定义法:将动点轨迹化归为某一基本轨迹(圆,椭圆,双曲线,抛物线等),然后利用基本轨迹的定义,直接写出方程.5.D解析:D【分析】设12MF F △的面积为S ,内切圆半径为r ,则可得4S r c=,从而可得1121122244S S F F r c S c ==⋅⋅=,再由G 是12MF F △的重心,可得11222213323MOF MF F S S S S ==⨯=,进而可得结果 【详解】解:由于椭圆的离心率为13,所以13c a =,即3a c =, 设12MF F △的面积为S ,内切圆半径为r ,则121211()(22)422S MF MF F F r a c r cr =++=+=, 所以4S r c=, 所以1121122244S S F F r c S c ==⋅⋅=, 因为G 是12MF F △的重心,所以11222213323MOF MF F S S S S ==⨯=, 所以1234S S =,即1243S S =, 故选:D【点睛】关键点点睛:此题考查椭圆的性质的应用,解题的关键是设12MF F △的面积为S ,内切圆半径为r ,然后求出4S r c =,进而可表示出1S ,2S ,从而可得结果,属于中档题 6.B 解析:B【分析】 作出图形,利用椭圆的定义以及圆的几何性质可求得PF PQ 的最小值.【详解】如下图所示: 在椭圆22:11612x y C +=中,4a =,23b =222c a b -, 圆心()2,0T 为椭圆C 的右焦点,由椭圆定义可得28PF PT a +==,8PF PT ∴=-,由椭圆的几何性质可得a c PT a c -≤≤+,即26PT ≤≤, 由圆的几何性质可得1PQ PT QT PT ≤+=+,所以,899211111617PF PFPTPQ PT PT PT -≥==-≥-=++++. 故选:B.【点睛】关键点点睛:解本题的关键在于以下几点:(1)问题中出现了焦点,一般利用相应圆锥曲线的定义,本题中注意到2PF PT a +=,进而可将PF 用PT 表示;(2)利用圆的几何性质得出PT r PQ PT r -≤≤+,可求得PQ 的取值范围; (3)利用椭圆的几何性质得出焦半径的取值范围:a c PT a c -≤≤+.7.A解析:A【分析】由P 点到x 轴距离(即纵坐标)求出其横坐标,写出直线FP 的方程,然后由原点到切线的距离等于半径可得,,a b c 的等式,变形后可得离心率.【详解】如图P 在第一象限,因为点P 到x 轴的距离恰好为34b ,即34P y b =,代入双曲线方程得229116P x a -=,解得54P x a =,所以53,44P a b ⎛⎫ ⎪⎝⎭, (,0)F c -,直线FP 方程为34()54by x c a c =++,化简得3(54)30bx a c y bc -++=, 又直线FP 与圆222x y a +=相切,a =,345bc a a c =+人,变形为4293440160e e e ---=, 22(342)(348)0e e e e ++--=,因为1e >,所以23420e e ++>,所以23480e e --=,e =去).故选:A .【点睛】思路点睛:本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的齐次等式,本题中由点P 到x 轴的距离恰好为34b ,得出P 点坐标,从而可得直线FP 方程,由圆心到切线的距离等于半径可得所要关系式,从而转化为离心率e 的方程,解之可得.8.A解析:A【分析】由12FQ F Q ⊥得出OQ c =,求出Q 点坐标为(,)a b ,利用12PQ PF =表示出P 点坐标,代入双曲线方程得关于,,a b c 的等式,变形后可求得e .【详解】∵12FQ F Q ⊥,O 是12F F 中点,∴OQ c =, 设(,)Q x y (0,0x y >>),则222y b x a x y c⎧=⎪⎨⎪+=⎩,又222a b v +=,故解得x a y b =⎧⎨=⎩,即(,)Q a b ,12PQ PF =,则12QP PF =,(,)2(,)P P P P x a y b c x y --=---,解得233P P a c x b y -⎧=⎪⎪⎨⎪=⎪⎩, 又P 在双曲线上,∴2222(2)199a c b a b --=,解得e =舍去). 故选:A .【点睛】关键点点睛:本题考查求双曲线的离心率,解题关键是找到关于,a c 的齐次式,本题利用P 在双曲线上列式,由12FQ F Q ⊥得(,)Q a b ,由12PQ PF =表示出P 点坐标,代入双曲线方程即可求解.9.D解析:D【分析】直线方程与双曲线方程联立方程组,由方程组只有一解确定.【详解】由2214y kx x y =-⎧⎨-=⎩,得22(1)250k x kx -+-=, 若210k -=,即1k =±, 1k =时,52x =,方程组只有一解;1k =-时,52x =-,方程组只有一解; 210k -≠时,22420(1)0k k ∆=+-=,k = 方程组只有一解,即直线与双曲线只有一个交点.因此这样的直线有4条.故选:D .【点睛】关键点点睛:直线与曲线的交点问题,可能通过解方程组确定,直线与曲线方程组成的方程组的解的个数就是它们交点的个数.这是代数方法.也可从几何角度考虑,如本题直线与双曲线相切的有两条,与渐近线平行的有两条共4条直线与双曲线只有一个交点. 10.C【分析】先根据抛物线的定义将焦点弦长问题转化为中点到准线距离的两倍,进而用中点横坐标表示,设直线AB 的方程为:1x my =+(m 为常数),与抛物线方程联立消去x ,得到关于y 的一元二次方程,利用中点公式和韦达定理求得m 的值,进而得到中点的横坐标,从而求得线段AB 的长度. 【详解】抛物线24y x =的焦点坐标F (1,0),准线方程:1l x =-,设AB 的中点为M ,过A ,B ,M 作准线l 的垂线,垂足分别为C ,D ,N ,则MN 为梯形ABDC 的中位线,()02|21AB AF BF AC BD MN x ∴=+=+==+,∵直线AB 过抛物线的焦点F ,∴可设直线AB 的方程为:1x my =+(m 为常数), 代入抛物线的方程消去x 并整理得:2440y my --=, 设A ,B 的纵坐标分别为12,y y ,线段AB 中点()00,M x y , 则120222y y y m +===,1m ∴=, ∴直线AB 的方程为1x y =+,001213x y ∴=+=+=,()2318AB ∴=+=,故选:C.【点睛】本题考查抛物线的焦点弦长问题,涉及抛物线的定义,方程,线段中点坐标公式,直线与抛物线的交点问题,属中档题,关键是灵活使用抛物线的定义,将焦点弦长问题转化为中点坐标问题,注意直线方程的设法:过点(a ,0),斜率不为零的直线方程可以设为x =my +a 的形式,不仅避免了讨论,而且方程组消元化简时更为简洁.11.A解析:A 【分析】由椭圆与双曲线的定义得记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=,用余弦定理得出,m n 的关系,代入和与差后得12,e e 的关系式,然后用基本不等式求得最小值.记12,PF m PF n ==,则2m n a +=(椭圆长轴长),2x y a '-=(双曲线的实轴长),又由余弦定理得2224m n mn c ++=, 所以22231()()444m n m n c ++-=,即22234a a c '+=,变形为2212314e e +=,所以22222212121222221222273131127()(27)(82)2544e e e e e e e e e e +=++=++≥,当且仅当22122222273e e e e =,即213e e =时等号成立. 故选:A . 【点睛】关键点点睛:本题考查椭圆与双曲线的离心率,解题关键是掌握两个轴线的定义,在椭圆中,122MF MF a +=,在双曲线中122MFMF a '-=,不能混淆. 12.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<, 记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.二、填空题13.2【分析】首先根据可得可计算结合可得是等腰三角形且再由渐进线的斜率可计算出点坐标即可求出点坐标利用结合可得之间的关系即可求解【详解】因为所以即所以为点到渐近线的距离所以可得点为的中点又因为所以所以设解析:2 【分析】首先根据0OM MF ⋅=可得⊥OM MF ,可计算MF b =,结合||MN b =可得OFN △是等腰三角形,且ON c =,再由渐进线的斜率可计算出点N 坐标,即可求出点M 坐标,利用OM a =结合222b c a =-可得,a c 之间的关系,即可求解. 【详解】因为0OM MF ⋅=,所以OM MF ⊥,即⊥OM MF 所以MF 为点(),0F c 到渐近线0bx ay -=的距离,22bcMF b cb a ===+, 所以MF MN b ==,可得点M 为NF 的中点, 又因为⊥OM MF ,所以ON OF c ==, 所以222OM c b a =-=,设双曲线的左焦点为1F ,1FON θ∠=,(),N x y 则()tan tan tan bFON FON aθπ=-∠=-∠=, 因为222c a b =+,所以cos acθ=,sin b c θ=所以cos a x ON c a c θ=-=-⋅=-,sin by ON c b cθ==⋅=, 所以(),N a b -,因为M 为NF 中点,所以,22a M c b -⎛⎫⎪⎝⎭, 222222c a b OM a -⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 将222b c a =-代入整理可得:()22224c a c a a -+-= 即222240c ac a --=,所以220e e --=,可得()()210e e -+=, 解得:2e =或1e =-(舍), 故答案为:2 【点睛】方法点睛:求椭圆离心率的方法: (1)直接利用公式c e a=;(2)利用变形公式e =; (3)根据条件列出关于,a c 的齐次式,两边同时除以2a ,化为关于离心率的方程即可求解.14.【分析】由题意可知直线的斜率存在且为正数可设直线的方程为设点将直线的方程与抛物线的方程联立列出韦达定理可得出代入韦达定理求出的值即可得出直线的斜率为【详解】由于过点的直线与抛物线相交于两点若在第一象解析:3【分析】由题意可知,直线l 的斜率存在且为正数,可设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,将直线l 的方程与抛物线C 的方程联立,列出韦达定理,可得出212y y =,代入韦达定理求出m 的值,即可得出直线l 的斜率为1m. 【详解】由于过点()2,0P -的直线l 与抛物线2:8C y x =相交于A 、B 两点,若A 、B 在第一象限,所以,直线l 的斜率存在且为正数,设直线l 的方程为()20x my m =->,设点()11,A x y 、()22,B x y ,联立228x my y x=-⎧⎨=⎩,可得28160y my -+=,264640m ∆=->,0m >,解得1m .由韦达定理可得128y y m +=,1216y y =,由于点A 为线段PB 的中点,则212y y =,12183m y y y ∴=+=,183m y ∴=, 22121816223m y y y ⎛⎫===⨯ ⎪⎝⎭,可得298m =,0m >,解得4m =, 因此,直线l的斜率为13k m ===.故答案为:3. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.15.【分析】设点利用抛物线的定义得出可计算得出再利用点差法可得出可求出的值由此可得出双曲线的渐近线方程【详解】设点由抛物线的定义可得由可得直线的斜率为由两式作差得即所以可得因此该双曲线的渐近线方程为故答解析:2y x =±【分析】设点()11,A x y 、()22,B x y ,利用抛物线的定义得出12y y p +=,可计算得出122ABx x k p +=,再利用点差法可得出2121222AB x x x x b k a p p++=⋅=,可求出b a 的值,由此可得出双曲线的渐近线方程. 【详解】设点()11,A x y 、()22,B x y ,由抛物线的定义可得12p AF y =+,22pBF y =+, 2pOF =,由4AF BF OF +=可得122y y p p ++=,12y y p ∴+=, 直线AB 的斜率为221212121212222ABx x y y x x p p k x x x x p--+===--,由22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式作差得22221212220x x y y a b ---=, 即()()()()1212121222x x x x y y y y a b -+-+=,所以,22121212122212122ABy y x x x x x x b b k x x a y y a p p -+++==⋅=⋅=-+,2212b a ∴=,可得b a =,因此,该双曲线的渐近线方程为2y x =±.故答案为:2y x =±. 【点睛】方法点睛:求双曲线的渐近线方程的方法:(1)定义法:直接利用a 、b 求得比值,则焦点在x 轴上时,渐近线方程为b y x a=±,焦点在y 轴上时,渐近线方程为ay x b=±; (2)构造齐次式:利用已知条件结合222a b c =+,构建b a 的关系式(或先构建ca的关系式),再根据焦点位置写出渐近线方程即可.16.3【分析】过作准线的垂线垂足分别为过作的垂线垂足为根据结合抛物线的定义可得据此求出再根据抛物线的定义可求出【详解】如图:过作准线的垂线垂足分别为过作的垂线垂足为因为所以因为所以所以所以在直角三角形中解析:3 【分析】过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,根据2CB BF =结合抛物线的定义可得30DFA MCB ∠=∠=,据此求出||3AD =,再根据抛物线的定义可求出p . 【详解】如图:过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,因为2CB BF =,所以||2||CB BF =, 因为||||BF BM =,所以||2||CB BM =, 所以30MCB ∠=,所以30DFA ∠=,在直角三角形ADF 中,因为||6AF =,所以||3AD =, 因为||||6AN AF ==,且||||3AN AD p p =+=+, 所以63p =+,所以3p =. 故答案为:3 【点睛】关键点点睛:利用抛物线的定义求解是解题关键.17.【分析】根据题意找到abc 的关系求出离心率的范围【详解】设椭圆的中心为因为所以所以所以椭圆上的点到原点距离最远的是长轴端点所以即所以离心率所以故答案为:【点睛】求椭圆(双曲线)离心率的一般思路:根据解析:32⎫⎪⎢⎪⎣⎭【分析】根据题意,找到a 、b 、c 的关系,求出离心率的范围 【详解】设椭圆的中心为O ,因为60MPN ∠=︒,所以60POM ∠=︒,所以||2||OP OM =,所以2OP b =,椭圆上的点到原点距离最远的是长轴端点,所以2a b ≥,即12b a ≤,2222211,,44b ac a a -∴≤∴≤ 所以离心率22213112c b e a a ⎫⎛==-≥-= ⎪⎝⎭3⎫∈⎪⎪⎣⎭e .故答案为:⎫⎪⎪⎣⎭【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.18.【分析】先求解出抛物线的的焦点则椭圆的右焦点可知再设出椭圆的方程并将方程中变形为的表示形式根据求解出的值则椭圆的短轴的大小可求【详解】因为抛物线的焦点为所以椭圆的右焦点为设椭圆方程所以所以椭圆方程为解析:【分析】先求解出抛物线的的焦点,则椭圆的右焦点可知,再设出椭圆的方程并将方程中2a 变形为21b +的表示形式,根据3AB =求解出2b 的值,则椭圆的短轴2b 的大小可求.【详解】因为抛物线2:4C y x =的焦点为()1,0,所以椭圆的右焦点为()1,0,设椭圆方程()222210x y a b a b+=>>, 所以221a b =+,所以椭圆方程为222211x y b b+=+,又抛物线的准线方程为1x =-,所以222111y b b ⎛⎫=- ⎪+⎝⎭,所以2y =又因为3AB =23=,所以23b =,所以2b =故答案为: 【点睛】关键点点睛:解答本题的关键是通过抛物线的焦点化简椭圆的方程并结合弦AB 的长度进行相关计算,从而完成短轴长度的求解.19.【分析】设利用点差法得到即可求出离心率;【详解】解:设则由得从而有又所以又由从而得到所以所以故答案为:【点睛】双曲线的离心率是双曲线最重要的几何性质求双曲线的离心率(或离心率的取值范围)常见有两种方解析:54【分析】设()()1122,,,M x y P x y 利用点差法得到22PM PN b k k a⋅=,即可求出离心率; 【详解】解:设()()1122,,,M x y P x y ,则()()1111,,,N x y Q x y ---.由2516ME MQ =,得1117,8E x y ⎛⎫- ⎪⎝⎭,从而有11119,16MN PN EN y y k k k x x ===-,又1190,MN y NMP k x ∠==,所以11MP x k y =-, 又由()()()()22112212121212222222221111x y a b x x x x y y y y a b x y a b ⎧-=⎪⎪⇒+-=+-⎨⎪-=⎪⎩, 从而得到22PM PNb k k a⋅=所以211211991616PM PN x y b k k y x a ⎛⎫⋅=-⋅-== ⎪⎝⎭,所以54e ==.故答案为:54【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法: ①求出a ,c ,代入公式c e a=; ②只需要根据一个条件得到关于a ,b ,c 的齐次式,结合b 2=c 2-a 2转化为a ,c 的齐次式,然后等式(不等式)两边分别除以a 或a 2转化为关于e 的方程(不等式),解方程(不等式)即可得e (e 的取值范围).20.2【分析】法1:首先利用直线过焦点得再利用直线与抛物线方程联立利用根与系数的关系表示计算求得;法2:由已知求得的值再利用弦长公式求的值【详解】法1:由题意知直线即直线经过抛物线的焦点即直线的方程为设解析:2 【分析】法1:首先利用直线过焦点,得b p =-,再利用直线与抛物线方程联立,利用根与系数的关系表示12AB x x p =++,计算求得p ;法2:由已知tan 2θ=,求得sin θ的值,再利用弦长公式22sin pAB θ=,求p 的值. 【详解】法1:由题意知,直线:2l y x b =+,即22b y x ⎛⎫=+⎪⎝⎭.直线l 经过抛物线()2:20C y px p =>的焦点,22b p∴-=,即b p =-.∴直线l 的方程为2y x p =-. 设()11,A x y 、()22,B x y ,联立222y x p y px=-⎧⎨=⎩,消去y 整理可得22460x px p -+=,由韦达定理得1232p x x +=,又5AB =,12552x p p x ∴++==,则2p =.法2:设直线的切斜角为θ,则tan 2k θ==,得sin θ=,∴22225sin p pAB θ===,得2p =.故答案为:2 【点睛】结论点睛:当直线过抛物线的焦点时,与抛物线交于,A B 两点,AB 称为焦点弦长,有如下的性质:直线与抛物线交于()()1122,,,A x y B x y ,①221212,4p y y p x x =-=;②12AB x x p =++;③11AF BF +为定值2p ;④弦长22sin p AB θ= (θ为直线AB 的倾斜角);⑤以AB 为直径的圆与准线相切;⑥焦点F 对,A B 在准线上射影的张角为90.三、解答题21.(1)2214x y +=;(2)861,540⎛⎫- ⎪⎝⎭.【分析】(1)本小题根据已知条件直接求出2a =,1b =,再求出椭圆方程即可.(2)本小题先设A 、B 两点,再将OA OB ⋅转化为只含m 的表达式,最后根据m 的范围确定OA OB ⋅的范围,即可解题. 【详解】解:(1)∵点2M ⎭在椭圆C :22221x y a b +=(0a b >>)上,∴222112a b+=,又∵24a =, ∴ 2a =,1b =.∴椭圆C 的方程:2214x y +=;(2)设点A 、B 的坐标为11(,)A x y ,22(,)B x y ,则AB 中点1212,22x x y y ++⎛⎫⎪⎝⎭在线段OM 上,且12OM k =,则12122()x x y y +=+, 又221112x y +=,222212x y +=,两式相减得()()()()1212121202x x x x y y y y -++-+=, 易知120x x -≠,120y y +≠,所以()1212121212y y x x x x y y -+=-=--+,则1AB k =-. 设AB 方程为y x m =-+,代入2214xy +=并整理得2258440x mx m -+-=.由216(5)0m ∆=->解得25m <,又由(12425x x m +=∈,则04m <<. 由韦达定理得1285m x x +=,2124(1)5m x x -⋅=,故OA OB ⋅1212x x y y =+()()1212x x x m x m =+-+-+ ()212122x x m x x m =-++ ()22281855m m m -=-+285m =-又∵. 04m <<∴OA OB ⋅的取值范围是861,540⎛⎫- ⎪⎝⎭.【点睛】解决直线与椭圆的综合问题时,要注意:(1)注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件;(2)强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22.(1)22143x y +=;(2). 【分析】(1)由已知条件可得12c e a ==,将点31,2P ⎛⎫⎪⎝⎭代入椭圆的方程结合222a b c =+即可求得,,a b c 的值,进而可得椭圆C 的方程;(2)设:1l x ty =-,设11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得关于y 的一元二次方程,由韦达定理可得12y y +,12y y ,利用122S S =可得122y y =-,即可解出k 的值,进而可求出直线l 的斜率. 【详解】(1)由题意可得:22222121914c a a b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩得2243a b ⎧=⎨=⎩,故C 的方程为22143x y +=.(2)1(1,0)F -,显然l 与y 轴不垂直,故可设:1l x ty =-,设11(,)A x y ,22(,)B x y ,由221143x ty x y =-⎧⎪⎨+=⎪⎩消去x 得22(34)690t y ty +--=,则122634t y y t +=+,122934y y t -=+, 由122S S =得122y y =-, 所以122262034ty y y t +=+=+,可得22634t y t -=+, 由122934y y t -=+可得2229234y t --=+, 消去2y 可得()222236923434t t t --⨯=++ ,整理可得:245t =t =:1l x y =-,所以直线l:)1y x =+, 所以直线l的斜率为. 【点睛】关键点点睛:本题解题的关键是由面积之比得出纵坐标122y y =-,联立直线与椭圆的方程消去x 可得关于y 的一元二次方程,由韦达定理可得12y y +,12y y ,可求t 的值,注意求直线的斜率.23.(1)24x y =;(2)1y =. 【分析】(1)求出抛物线E 的焦点坐标,将焦点坐标代入直线l 的方程,求出p 的值,即可求得抛物线E 的方程;(2)设点()11,A x y 、()22,B x y ,联立直线l 与抛物线E 的方程,求出点M 的坐标,求出点M 到CD 的距离以及CD ,可得出MCD △的面积的表达式,利用函数的单调性可求得MCD △面积的最小值,进而可求得对应的直线l 的方程. 【详解】(1)抛物线2:2E x py =的焦点为0,2p ⎛⎫ ⎪⎝⎭,则0,2p ⎛⎫⎪⎝⎭在:1l y kx =+上,12p ∴=,2p ∴=,所以,抛物线E 的方程为24x y =; (2)设()11,A x y 、()22,B x y ,由241x y y kx ⎧=⎨=+⎩得2440x kx --=,所以,212121616044k x x k x x ⎧∆=+>⎪+=⎨⎪=-⎩,则AB 中点()22,21Mk k +,()21241AB x k =-==+,所以,以AB 为直径的圆M 的半径()221r k=+,M 到CD 的距离221d k=+,CD ==((221221212MCD S k k ∴=⨯⨯+=+△,令()20k t t =≥,则(21MCDSt =+[)0,+∞单调递增.当0t =时,即0k =时,MCD Sl 的方程为1y =.【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.24.(1)22143x y +=;(2或【分析】(1)根据已知条件可得出关于a 、b 、c 的方程组,解出2a 、2b 的值,由此可得出椭圆C 的标准方程;(2)由题意可知,直线l 的斜率存在,设直线l 的方程为()1y k x =-,设点()11,A x y 、()22,B x y ,将直线l 的方程与椭圆C 的方程联立,列出韦达定理,利用三角形的面积公式可得出1F AB 的面积关于k 的等式,解出k 的值即可得解.【详解】解:(1)因为椭圆过()2222:10x y C a b a b+=>>点31,2⎛⎫- ⎪⎝⎭,221914a b ∴+=.①又因为椭圆C 的离心率为12,所以12c a =,②,由题意可得22191412a b c a c ⎧+=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得24a =,23b =.∴椭圆C 的方程为22143x y +=;(2)由题意可知,直线l 的斜率存在,设直线l 的方程为()1y k x =-, 设点()11,A x y 、()22,B x y ,由22143y kx k x y =-⎧⎪⎨+=⎪⎩得()22224384120k x k x k +-+-=,则()2224310k ∆=⨯+>,且2122843k x x k +=+,212241243k x x k -=+,112121212F ABSy y F F k x x k ∴=-⋅=⋅-=11k ===, 即422523540k k --=,解得22k =或22725k =-(舍去),所以k =∴或.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.25.(1)证明见解析;(2)证明见解析. 【分析】(1)设211,12A x x ⎛⎫ ⎪⎝⎭,222,12B x x ⎛⎫ ⎪⎝⎭,联立直线与抛物线方程,消元、列出韦达定理,即可得到0OA OB ⋅=,从而得证;(2)对函数求导,利用导数的几何意义求出过点A 、B 的切线1l 、1l 的方程,即可得到12122y x x ==-,即可得证; 【详解】 解:(1)设211,12A x x ⎛⎫ ⎪⎝⎭,222,12B x x ⎛⎫ ⎪⎝⎭, 把2y kx =+代入212y x =,得2240x kx --=. 由韦达定理得122x x k +=,124x x =-.()22211221212111,,0224OA OB x x x x x x x x ⎛⎫⎛⎫∴⋅=⋅=+= ⎪ ⎪⎝⎭⎝⎭. 所以OA OB ⊥ (2)212y x =,y x '∴=, 故经过点211,12A x x ⎛⎫ ⎪⎝⎭的切线1l 的方程为:()211112y x x x x -=-, 即21112y x x x =-,①同理,经过点222,12B x x ⎛⎫ ⎪⎝⎭的切线2l 的方程为:22212y x x x =-,②21x x ⨯-⨯①②,得12122y x x ==-. 即点M 在直线:2l y =-上. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.26.(1) 2214x y +=;(2) 2±【分析】(1)由焦点在圆上解得c =2a =,2221b a c =-=,方程可求;(2)因为FA 垂直于AB 可知点A 为椭圆与圆的交点,联立方程求得坐标,则直线斜率可求.【详解】解:(1)椭圆2222:1(0)x yC a ba b+=>>的焦点在圆223x y+=上,所以203c+=,即c=,因为cea==得2a=,2221b a c=-=,故椭圆方程为2214xy+=(2)因为FA垂直于AB ,即点A既在椭圆上又在以OF为直径的圆上,所以22221434xyx y⎧+=⎪⎪⎨⎛⎪-+=⎪⎝⎭⎩解得3xy⎧=⎪⎪⎨⎪=⎪⎩所以33A⎛±⎝⎭故AlAykx==所以直线l的斜率为2±.【点睛】关键点点晴:本题的关键在于求出点A的坐标点.。
一、选择题1.已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A 、B 两点,F 为抛物线C 的焦点.若4FA FB =,则k =( )A .45B .15 C .23D .222.已知椭圆22221(0)x y C a b a b+=>>:的左、右焦点分别为1F ,2F ,过2F 直线与椭圆C 交于M ,N 两点,设线段1NF 的中点D ,若10MD NF ⋅=,且12//MF DF ,则椭圆C 的离心率为( ) A .13B .3 C .12D .2 3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点()0,11A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( ) A .11B .5C .52D .64.过抛物线22y px =焦点(1,0)F 的直线l 与抛物线交于,A B 两点,且(1)AF mFB m =>,25||4AB =,则m =( ) A .2B .3C .4D .55.直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点,则k 的取值有( )个A .1B .2C .3D .46.设抛物线C :24y x =的焦点为F ,过F 的直线与C 于,A B 两点,O 为坐标原点.若3AF =,则AOB 的面积为( )A .2BC .2D .7.已知椭圆()2222:10x y C a b a b+=>>的左右焦点分别是F 1,F 2,过右焦点F 2且斜率为的直线与椭圆相交于A ,B 两点,若满足223AF F B =,则椭圆的离心率为( )A .35B .12C .2D 8.设1F 、2F 是双曲线()2222:10,0x yC a b a b-=>>的左、右焦点,P 是双曲线C 右支上一点.若126PF PF a +=,且122PF F S =△,则双曲线C 的渐近线方程是( )A 0y ±=B .0x ±=C 20y ±=D .20x =9.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12F F ,,点M 在双曲线C 的渐近线上,若212211221cos 12cos ,3MF F MF F F MF MF F ∠+=∠∠=∠,则双曲线C 的离心率为( )A .BC .D .210.已知圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,动圆M 与圆1C ,圆2C 均相切,P 是12MC C 的内心,且12123PMC PMC PC C SSS+=,则a 的值为( )A .9B .11C .17D .1911.斜率为14的直线l 与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,且l 过C 的左焦点,线段AB 的中点为()2,1M -,C 的右焦点为F ,则AFB △的周长为( )A .7B .7C .7D .712.“04a <<”是“方程2214x y a a+=-表示为椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件二、填空题13.若A 、B 、C 是三个雷达观察哨,A 在B 的正东,两地相距6km ,C 在A 的北偏东30°,两地相距4km ,在某一时刻,B 观察哨发现某种信号,测得该信号的传播速度为1km /s ,4s 后A 、C 两个观察哨同时发现该信号,在如图所示的平面直角坐标系中,指出发出了这种信号的点P 的坐标___________.14.设F 是抛物线2:2C y x =的焦点,A 、B 是抛物线C 上两个不同的点,若直线AB 恰好经过焦点F ,则4AF BF +的最小值为_______.15.过双曲线22221(0,0)x y a b a b-=>>的右顶点且斜率为3的直线,与双曲线的左右两支分别相交,则此双曲线的离心率的取值范围是___________.(用区间表示)16.知直线m 过抛物线()220y px p =>的焦点F ,且交抛物线于A 、B 两点,交其准线l于点C .若6AF =,2CB BF =,则p =____________ 17.已知抛物线218y x =的焦点为F ,过F 的直线l 与抛物线交于A 、B 两点,抛物线的准线与y 轴交于点M ,当AMAF最大时,弦AB 长度是___________. 18.在“中国花灯之乡”——广东省兴宁市,流传600多年的兴宁花灯历史文化积淀浓厚,集艺术性、观赏性、民俗性于一体,扎花灯是中国一门传统手艺,逢年过节时常常在大街小巷看到各式各样的美丽花灯,一大批中小学生花灯爱好者积极参与制作花灯.现有一个花灯,它外围轮廓是由两个形状完全相同的抛物线绕着其对称轴旋转而来(如图),花灯的下顶点为A ,上顶点为B ,8AB =分米,在它的内部放有一个半径为1分米的球形灯泡,球心C 在轴AB 上,且2AC =分米.已知球形灯泡的球心C 到四周轮廓上的点的最短距离是在下顶点A 处取到,建立适当的坐标系可得其中一支抛物线的方程为2(0)y ax a =>,则实数a 的取值范围是_______19.设双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,点P 在C 的右支上,O 为坐标原点,若存在点P ,使PF OF =,且1cos 4OFP ∠=,则双曲线的离心率为___________.20.如图,两个离心率相等的椭圆1Γ与椭圆2Γ,焦点均在x 轴上A ,B 分别为椭圆2Γ的右顶点和上顶点,过A ,B 分别作椭圆1Γ的切线AC ,BD ,若AC 与BD 的斜率之积为57-,则椭圆1Γ的离心率为__________.三、解答题21.已知抛物线C :y 2=2px (p >0)的焦点为F ,过点F 的直线l 与抛物线C 交于A ,B 两点,当l ⊥x 轴时,|AB |=4, (1)求p 的值;(2)若|AF |=2|BF |,求直线l 的方程.22.在平面直角坐标系xOy 中,已知直线y x =被抛物线2:2(0)C y px p =>截得的弦长为2l 与抛物线C 相交于点M ,N ,点()1,2A ,且直线AM ,AN 的斜率之和为4.(1)求抛物线C 的方程;(2)求证:直线l 过定点,并求出定点坐标.23.(1)已知等轴双曲线22221(0,0)y x a b a b-=>>的上顶点到一条渐近线的距离为1,求此双曲线的方程;(2)已知抛物线24y x =的焦点为F ,设过焦点F 且倾斜角为45︒的直线l 交抛物线于A ,B 两点,求线段AB 的长.24.已知椭圆2222:1(0)x y E a b a b +=>>的左,右顶点分别为,A B ,离心率e =E 上任意一点M 到两个焦点1F ,2F 的距离之积的最大值为4.(1)求椭圆E 的方程;(2)已知点P 为直线l :4x =上的任意一点,直线PA 、PB 与椭圆E 分别交于两点C 、D (不同于A 、B 两点),求证:直线CD 经过定点,并求出该定点的坐标,25.已知椭圆C :22221x y a b +=(0a b >>) 2.(1)求椭圆C 的标准方程;(2)过点(1,0)P 的直线l 与椭圆C 交于A ,B 两点若ABO 的面积为35(O 为坐标原点),求直线l 的方程.26.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,过左顶点与上顶点的直线与圆2243x y +=相切. (1)求椭圆C 的方程﹔ (2)已知斜率为k 的直线l 在y 轴上的截距为()0m m b <<,l 与椭圆交于,A B 两点,是否存在实数k 使得2OA OB k k k ⋅=成立?若存在,求出k 的值,若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,将直线AB 的方程与抛物线C 的方程联立,列出韦达定理,由4FA FB =可得出124y y =,代入韦达定理求出正数m 的值,即可求得k 的值.【详解】设10m k=>,设点()11,A x y 、()22,B x y ,则直线AB 的方程可表示为2x my =-,联立228x my y x=-⎧⎨=⎩,整理得28160y my -+=,264640m ∆=->,0m >,解得1m .由韦达定理可得128y y m +=,1216y y =,由4FA FB =得()12242x x +=+,即124my my =,124y y ∴=,12258y y y m ∴+==,可得285m y =,则22122844165m y y y ⎛⎫==⨯= ⎪⎝⎭, 0m >,解得54m =,因此,145k m ==. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.2.B解析:B 【分析】由10MD NF ⋅=得1MD NF ⊥,结合D 是中点,得等腰三角形,由平行线可得2F 是MN 中点,从而MN x ⊥轴,利用勾股定理可得,a c 的关系得离心率. 【详解】因为10MD NF ⋅=,所以1MD NF ⊥,又D 是1NF 中点,所以1MF MN =,因为12//MF DF ,所以2F 是MN 中点,则22MF NF =,因此MN x ⊥轴, 设2MF m =,则12MF m =,1232MF MF m a +==,23am =, 在12MF F △中,由勾股定理得22242()()(2)33m m c +=,变形可得3c e a ==. 故选:B . 【点睛】关键点点睛::本题考查求椭圆的离心率,解题关键是确定,,a b c 的等式.解题方法是由向量的数量积得出垂直后,根据三角形的性质得1MF N 的性质(实质上它是等边三角形),特别是MN x ⊥轴,然后结合椭圆定义利用勾股定理可得.3.C解析:C 【分析】设E 是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.C解析:C由焦点得2p =,设直线代入抛物线方程结合韦达定理以及已知条件利用弦长公式求得参数值. 【详解】∵焦点(1,0),2F p ∴=,抛物线方程式为24y x =.设直线l 的方程为1(0)x y λλ=+>,代入抛物线方程,得2440y y λ--=.设()()1122,,,A x y B x y ,由韦达定理得124y y =-. 由AF mFB =,得12y my =-.解得21y y ==-21y y ==121,x m x m ∴==.12125||2,44AB x x p m m m ∴=++=++=∴=. 故选:C . 【点晴】方法点晴:解直线与圆锥曲线位置问题时,通常使用设而不求思想,结合韦达定理运算求解相关参数.5.D解析:D 【分析】将直线方程与双曲线的方程联立,得出关于x 的方程,根据直线与双曲线只有一个公共点,求出对应的k 值,即可得解. 【详解】联立22341169y kx k x y =-+⎧⎪⎨-=⎪⎩,消去y 并整理得()()()2221693243164390k x k k x k ⎡⎤-+-+-+=⎣⎦,由于直线34y kx k =-+与双曲线221169x y -=有且只有一个公共点, 所以,21690k -=或()()()222216903243641694390k k k k k ⎧-≠⎪⎨⎡⎤⎡⎤∆=----+=⎪⎣⎦⎣⎦⎩, 解得34k =±或2724250k k +-=, 对于方程2724250k k +-=,判别式为22447250'∆=+⨯⨯>,方程2724250k k +-=有两个不等的实数解.显然34k =±不满足方程2724250k k +-=. 综上所述,k 的取值有4个.【点睛】方法点睛:将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.6.C解析:C 【分析】根据抛物线的定义和性质,可以求出A 的坐标,再求出直线AB 的方程,可求出点B 的坐标,最后利用三角形的面积公式加以计算,即可得到AOB 的面积. 【详解】抛物线24y x =的焦点为(1,0)F ,准线方程为1x =-, 不妨设A 在第一象限,设1(A x ,1)y 、2(B x ,2)y ,||3AF =,所以A 到准线1x =-的距离为3,113x ∴+=,解得12x =,1y ∴=,∴直线AB=∴直线AB的方程为1)y x =-,由241)y x y x ⎧=⎪⎨=-⎪⎩,整理可得22520x x -+=, 解得12x =,212x = 当212x =时,2y = 因此AOB 的面积为:121111||||||||112222AOBAOFBOFSSSOF y OFy =+=+=⨯⨯⨯. 故选:C. 【点睛】方法点睛:与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.7.D解析:D 【分析】 首先设直线2x y c =+,与椭圆方程联立,得到根与系数的关系,同时由条件可得123y y =-,与根与系数的关系联立消元可得22213242a b c +=,求得椭圆的离心率. 【详解】设直线方程为2x y c =+,设()11,A x y ,()22,B x y ,与椭圆方程联立得22224102a b y cy b ⎛⎫++-= ⎪⎝⎭,12222y y a b+=+4122212b y y a b =-+ ① 223AF F B =,()()1122,3,c x y x c y ∴--=-, 得123y y =- ②,由①②联立可得,22213242a bc +=即22222323c a b a c =+=-,得2243c a =,椭圆的离心率c e a ==. 故选:D 【点睛】方法点睛:本题考查直线与椭圆的位置关系的综合问题,考查学生的转化和计算能力,属于中档题型,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.8.A解析:A 【分析】利用双曲线的定义、余弦定理以及三角形的面积公式可求得123F PF π∠=,利用双曲线的定义以及126PF PF a +=可求得14PF a =,22PF a =,再利用余弦定理可得出ba的值,由此可求得双曲线C 的渐近线方程. 【详解】设12F PF θ∠=,由双曲线的定义可得122PF PF a -=, 在12PF F △中,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即()()()22212121212222cos 421cos c PF PF PF PF PF PF a PF PF θθ=-+⋅-⋅=+⋅-,所以,222122221cos 1cos c a b PF PF θθ-⋅==--,1222221222sin cos1sin 22sin 21cos tan112sin 22PF F b b b S PF PF θθθθθθθ⋅=⋅====-⎛⎫-- ⎪⎝⎭△,tan2θ∴=0θπ<<,可得022θπ<<,26θπ∴=,所以,3πθ=,由已知可得121226PF PF a PF PF a ⎧-=⎪⎨+=⎪⎩,解得1242PF aPF a ⎧=⎪⎨=⎪⎩,由余弦定理可得2221212122cos F F PF PF PF PF θ=+-⋅,即222221416416122c a a a a =+-⨯=,则223c a =,即2223a b a +=,b ∴=, 因此,双曲线C的渐近线方程为by x a=±=0y ±=. 故选:A. 【点睛】思路点睛:求解双曲线的渐近线的常用思路:(1)转化已知条件,得到a 、b 、c 中任意两个量的等量关系;(2)若得到a 、b 的等量关系,则渐近线方程可得;若已知a 、c 或b 、c 之间的等量关系,结合222+=a b c 可求得ba的值,则渐近线方程可求. 9.D解析:D 【分析】根据角的关系计算出12216030MF F MF F ∠=︒∠=︒,,从而求出渐近线方程为y =,得到ba=. 【详解】因为21221cos 12cos MF F MF F ∠+=∠,故1221cos cos 2MF F MF F ∠=∠,即12212MF F MF F ∠=∠,而12213F MF MF F ∠=∠,故12216030MF F MF F ∠=︒∠=︒,,则三角形1MF O 为等边三角形,故双曲线C的渐近线方程为y =,则2e ==,故选D .【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.10.C解析:C 【分析】先判断出圆1C 与2C 内含,根据条件可得动圆M 与圆1C ,圆2C 均相切,从而得出121216MC MC a C C +=+>=,即动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,又设12MC C 的内切圆的半径为r ' ,由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯,从而得出答案. 【详解】由圆2221:(3)(7)C x y a a ++=>和222:(3)1C x y -+=,可得圆1C 的圆心()13,0C -,半径为1r a =,圆2C 的圆心()23,0C ,半径为21r = 由121261C C a r r =<-=-所以圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切. 所以动圆M 与圆1C 内切,与圆2C 外切,设动圆M 的半径为R 则11MC r R a R =-=-,221MC r R R =+=+ 所以121216MC MC a C C +=+>=所以动点M 的轨迹是以12,C C 为焦点,长轴为1a +的椭圆,设其方程为22221(0)x y m n m n+=>> 所以12a m +=,设22c m n =-,则3c = 由P 是12MC C 的内心,设12MC C 的内切圆的半径为r ' 由12123PMC PMC PC C SSS+=,有12121113222MC r MC r C C r ''+⨯=⨯⨯⨯'⨯ 即1212318MC MC C C +==,又由椭圆的定义可得121MC MC a +=+ 所以118a +=,则17a = 故选:C 【点睛】本题考查圆与圆的位置关系,考查根据圆与圆的相切求动圆圆心的轨迹,考查椭圆的定义的应用,解答本题的关键的由条件得出圆1C 与2C 内含,由动圆M 与圆1C ,圆2C 均相切,进一步由条件得出121216MC MC a C C +=+>=,即得出动点M 的轨迹,属于中档题.11.C解析:C 【分析】由已知得直线l 的方程可得c ,设()11,A x y ()22,B x y 代入椭圆的方程做差可得22ba18=,然后利用222b c a =-可得2a ,再利用椭圆定义可得答案. 【详解】易得直线l 的方程为113(2)1442y x x =++=+, 当0y =时,6x =-,所以6c =,设()11,A x y ,()22,B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,则22222121220x x y y a b --+=, 整理得222212121222212121y y y y y y b a x x x x x x -+-=-=-⋅-+-2221136448a a--=-⨯==,解得a =,则FAB的周长为4a =. 故选:C. 【点睛】本题考查了椭圆的定义、直线和椭圆的位置关系,在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,同时,还可以降低解题的运算量,优化解题过程,这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.12.C解析:C 【分析】根据方程2214x y a a +=-表示椭圆求出实数a 的取值范围,然后利用集合的包含关系可判断出“04a <<”是“方程2214x y a a+=-表示椭圆”的条件.【详解】若方程2214x y a a+=-表示椭圆,则0404a a a a >⎧⎪->⎨⎪≠-⎩,解得02a <<或24a <<,记为{}02,24A a a a =<<<<或, 又记{}04B a a =<<,AB则“04a <<”是“方程2214x y a a+=-表示椭圆”的必要不充分条件.故选:C. 【点睛】关键点点睛:本题的关键是求出方程为椭圆的充分必要条件.二、填空题13.【分析】转化条件为点在线段的垂直平分线上再结合双曲线的定义可得点在以、为焦点的双曲线的左支上联立方程即可得解【详解】由题意点即则线段的中点为直线的斜率所以线段的垂直平分线的斜率所以线段的垂直平分线的解析:(-【分析】转化条件为点P 在线段AC 的垂直平分线上,再结合双曲线的定义可得点P 在以A 、B 为焦点的双曲线的左支上,联立方程即可得解. 【详解】由题意,点()3,0A ,()3,0B -,()34cos60,4sin 60C +即(5,C , 则线段AC的中点为(,直线AC的斜率AC k ==, 所以线段AC的垂直平分线的斜率k =, 所以线段AC的垂直平分线的方程为)4y x =-即y x =+, 设(),P x y ,由PA PC =可得点P 在线段AC 的垂直平分线上,又46PA PB AB -=<=,所以点P 在以A 、B 为焦点的双曲线的左支上,该双曲线的方程为()221245x y x -=≤-,所以221452x y x y x ⎧-=⎪⎪⎪≤-⎨⎪⎪=+⎪⎩,解得8x y =-⎧⎪⎨=⎪⎩. 所以点P的坐标为(-.故答案为:(-. 【点睛】 关键点点睛:解决本题的关键是对条件的转化,转化条件为点P 为线段AC 的垂直平分线与双曲线左支的交点,运算即可得解.14.【分析】设点设直线的方程为联立直线与抛物线的方程列出韦达定理推导出利用基本不等式可求得的最小值【详解】若直线与轴重合则直线与抛物线只有一个交点不合乎题意易知抛物线的焦点为准线方程为设点设直线的方程为解析:92【分析】设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+,联立直线AB 与抛物线C 的方程,列出韦达定理,推导出112AF BF+=,利用基本不等式可求得4AF BF +的最小值. 【详解】若直线AB 与x 轴重合,则直线AB 与抛物线C 只有一个交点,不合乎题意.易知抛物线C 的焦点为1,02F ⎛⎫ ⎪⎝⎭,准线方程为12x =-,设点()11,A x y 、()22,B x y ,设直线AB 的方程为12x my =+, 联立2122x my y x⎧=+⎪⎨⎪=⎩,整理可得2210y my --=,2440m ∆=+>,由韦达定理可得122y y m +=,121y y =-,()()()12121212211111*********m y y AF BF my my my my x x +++=+=+=++++++()()21222212122222121m y y m m y y m y y m m +++===+++-++, ()4111144522AF BF AF BF AF BF AF BF BF AF ⎛⎫⎛⎫∴+=++=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭19522⎛≥+= ⎝,当且仅当2AF BF =时,等号成立,因此,4AF BF +的最小值为92. 故答案为:92. 【点睛】结论点睛:过抛物线的焦点F 的直线与抛物线交于A 、B 两点,则112AF BF p+=. 15.【分析】根据题意构建渐近线的斜率与3的不等关系再利用求得离心率范围即可【详解】过右焦点与渐近线平行的直线与双曲线有一个交点且一条渐近线的斜率为若斜率为的直线与双曲线的左右两支分别相交则则离心率故答案解析:)+∞【分析】根据题意构建渐近线的斜率与3的不等关系,再利用e =求得离心率范围即可. 【详解】过右焦点与渐近线平行的直线与双曲线有一个交点,且一条渐近线的斜率为b a, 若斜率为3的直线与双曲线的左右两支分别相交,则3ba>,则离心率c e a ===>.故答案为:)+∞.【点睛】求双曲线离心率常见方法:(1)直接法:由a ,c 直接计算离心率ce a=; (2)构建齐次式:利用已知条件和双曲线的几何关系构建关于a ,b ,c 的方程和不等式,利用222b c a =-和ce a=转化成关于e 的方程和不等式,通过解方程和不等式即求得离心率的值或取值范围.16.3【分析】过作准线的垂线垂足分别为过作的垂线垂足为根据结合抛物线的定义可得据此求出再根据抛物线的定义可求出【详解】如图:过作准线的垂线垂足分别为过作的垂线垂足为因为所以因为所以所以所以在直角三角形中解析:3 【分析】过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,根据2CB BF =结合抛物线的定义可得30DFA MCB ∠=∠=,据此求出||3AD =,再根据抛物线的定义可求出p . 【详解】如图:过A 、B 作准线l 的垂线,垂足分别为,N M ,过F 作AN 的垂线,垂足为D ,因为2CB BF =,所以||2||CB BF =, 因为||||BF BM =,所以||2||CB BM =, 所以30MCB ∠=,所以30DFA ∠=,在直角三角形ADF 中,因为||6AF =,所以||3AD =, 因为||||6AN AF ==,且||||3AN AD p p =+=+, 所以63p =+,所以3p =. 故答案为:3 【点睛】关键点点睛:利用抛物线的定义求解是解题关键.17.【分析】作出图形过点作垂直于抛物线的准线于点可得出可知当取最小值时即直线与抛物线相切时最大可求出直线的斜率求出点的坐标利用对称性可求得点的坐标抛物线的焦点弦长公式进而可求得弦的长度【详解】设点为第一 解析:8【分析】作出图形,过点A 作AE 垂直于抛物线218y x =的准线于点E ,可得出1sin AM AF AME=∠,可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AM AF 最大,可求出直线AM 的斜率,求出点A 的坐标,利用对称性可求得点B 的坐标,抛物线的焦点弦长公式,进而可求得弦AB 的长度. 【详解】设点A 为第一象限内的点,过点A 作AE 垂直于抛物线218y x =的准线于点E ,如下图所示:由抛物线的定义可得AE AF =,则1sin AM AM AF AE AME==∠, 可知当AME ∠取最小值时,即直线AM 与抛物线相切时,AMAF最大, 抛物线218y x =的焦点为()0,2F ,易知点()0,2M -. 当直线AM 与抛物线218y x =相切时,直线AM 的斜率存在, 设直线AM 的方程为2y kx =-,联立228y kx x y=-⎧⎨=⎩,消去y 得28160x kx -+=,264640k ∆=-=,因为点A 在第一象限,则0k >,解得1k =,方程为28160x x -+=,解得4x =,此时,228x y ==,即点()4,2A ,此时AB y ⊥轴,由对称性可得()4,2B -, 因此,448AB =+=. 故答案为:8 【点睛】方法点睛:有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12AB x x p =++或12AB y y p =++,若不过焦点,则必须用一般弦长公式.18.【分析】设出抛物线上任意一点的坐标根据两点间的距离公式求得球心到四周轮廓上的点的距离根据最短距离是在下顶点处取到结合二次函数的性质求得的取值范围【详解】建立如图所示直角坐标系其中为坐标原点得抛物线方解析:10,4⎛⎤⎥⎝⎦【分析】设出抛物线上任意一点的坐标,根据两点间的距离公式求得球心C 到四周轮廓上的点的距离,根据最短距离是在下顶点A 处取到,结合二次函数的性质,求得a 的取值范围. 【详解】建立如图所示直角坐标系,其中A 为坐标原点,得抛物线方程2(0)y axa =>,(0,2)C ,设抛物线上任一点的坐标为200(,)x ax ,由两点距离公式得()22224200002(14)4=+-=+-+d x ax a x a x ,令20(0)=≥t x t ,则22(14)4(0)=+-+≥y a t a t t 的开口向上,对称轴为2412-=a t a, 当对称轴24102a a-≤时,在0t =处取得最小值,此时d 的最小值为4=2=d , 当对称轴24102a a->时,最小值在对称轴处取得,即d 的最小值小于2,不符合题意. 故由24102a a -≤,解得10,4a ⎛⎤∈ ⎥⎝⎦.故答案为:10,4⎛⎤ ⎥⎝⎦【点睛】关于平面图形或者空间几何体中一些边长或者距离的最值计算一般转化为函数问题,可以通过二次函数、反比例函数的性质求解最值,或者有时可以利用基本不等式,较难的问题则需要通过导数判断单调性从而求出最值.19.2【分析】在焦点三角形中由余弦定理求得关系再求离心率【详解】设双曲线的左焦点为在中由余弦定理得故答案为:2【点晴】求离心率的关键是得的关系本题是由余弦定理得出解析:2 【分析】在焦点三角形中由余弦定理求得,a c 关系,再求离心率.【详解】设双曲线的左焦点为E ,在EFP △中,2EF c =,2PF c PE a c ==+,,1cos 4EFP ∠=. 由余弦定理()222421cos 224c c c a EFP c c +-+∠==⋅⋅ ,得2c e a ==. 故答案为:2 【点晴】求离心率的关键是得,,a b c 的关系,本题是由余弦定理得出.20.【分析】由已知设圆的方程为椭圆的方程为再设出直线AC 的方程为直线BD 的方程为分别与椭圆的方程为联立整理由直线与椭圆相切的条件求得斜率再由已知得由此可求得椭圆的离心率【详解】因为两个椭圆与椭圆的离心率解析:7【分析】由已知设圆1Γ的方程为()()2222+1x y ma mb =,椭圆2Γ的方程为2222+1x y a b =,再设出直线AC 的方程为()1y k x ma =-,直线BD 的方程为2+y k x mb =,分别与椭圆2Γ的方程为2222+1x y a b =联立整理,由直线与椭圆相切的条件0∆=,求得斜率,再由已知得2257b a =,由此可求得椭圆的离心率. 【详解】因为两个椭圆1Γ与椭圆2Γ的离心率相等,所以设椭圆1Γ的方程为()()2222+1x y ma mb =,椭圆2Γ的方程为2222+1x y a b=,设直线AC 的方程为()1y k x ma =-,与椭圆2Γ的方程为2222+1x y a b=联立整理得:()()23422212222211+2+0b mk a x a k xm a a k b --=,因为直线AC 与椭圆2Γ相切,则()()()2222222213241142+0a k m m aa kb a b k --=-=∆,整理化简得()212221k a m b =-,设直线BD 的方程为2+y k x mb =,与椭圆2Γ的方程为2222+1x y a b=联立整理得:()()222222222222+2+0b mk a b a k xm a a x b b --=,因为直线BD 与椭圆2Γ相切,则()()()22222222222242+0a k mk a b m a a b b b -=--=∆,整理化简得()222221m kab -=,又AC 与BD 的斜率之积为57-,所以()()222212222221571mk k a b b a m -⎛⎫⋅=⋅=- ⎪-⎝⎭,整理得2257b a =,所以22222521177c b e a a ==-=-=, 所以椭圆1Γ的离心率为7,故答案为:7. 【点睛】关键点点睛:解决直线与椭圆的位置关系的问题,关键在于联立直线与椭圆的方程,运用方程的根的判别式的正负,满足直线与椭圆相交,相切,相离.三、解答题21.(1)2;(2)y =(x ﹣1). 【分析】(1)根据题意可得F (2p ,0),当l ⊥x 轴时,直线l 的方程为x =2p,与抛物线联立得A ,B 坐标,再计算|AB |=2p =4,即可得出答案.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立直线l 与抛物线的方程可得的关于x 的一元二次方程,由韦达定理可得x 1+x 2,x 1x 2,再结合|AF |=2|BF |与焦半径公式可得x 1=2x 2+1,进而解得x 2,x 1,故由x 1+x 2=2224k k +=52,解得k ,进而可得答案. 【详解】解:(1)根据题意可得F (2p,0), 当l ⊥x 轴时,直线l 的方程为x =2p , 联立直线l 与抛物线y 2=2px ,得y 2=2p ×2p , 解得y =±p ,所以A (2p ,p ),B (2p,﹣p ), 所以|AB |=2p =4,所以p =2.(2)设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),联立24(1)y x y k x ⎧=⎨=-⎩,得k 2x 2﹣(2k 2+4)x +k 2=0,所以∆=(2k 2+4)2﹣4k 4=16k 2+16>0,所以x 1+x 2=2224k k+,x 1x 2=1, 因为|AF |=2|BF |,根据焦半径公式可得|AF |=x 1+1=2(x 2+1)=2|BF |,即x 1=2x 2+1, 所以(2x 2+1)x 2=1,即222x +x 2﹣1=0,解得x 2=12或x 2=﹣1(舍), 所以x 1=2x 2+1=2,所以x 1+x 2=2224k k+=52,即k 2=8,解得k =,所以直线l 的方程为:y =(x ﹣1). 【点睛】关键点点睛:本题考查求抛物线的方程,考查抛物线的焦点弦性质.解题方法是设直线l 的方程为y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2),利用抛物线的定义结合已知条件得出12,x x 的关系,而直线方程代入抛物线方程后应用韦达定理得1212,x x x x +,由刚才的关系可求先得12,x x ,再求得直线斜率k .这里仍然利用了设而不求的思想方法. 22.(1)24y x =;(2)直线l 过定点,定点坐标为()0,1-,证明见解析. 【分析】(1)联立直线方程和抛物线方程,求出交点的坐标后利用弦长公式可求p 的值,从而可求抛物线的方程.(2)设直线l 的方程为x my b =+,联立直线方程和抛物线方程,消去x 后利用韦达定理化简斜率之和,从而可得b m =,故可求定点坐标.我们也可以设211,4y M y ⎛⎫⎪ ⎪⎝⎭,222,4y N y ⎛⎫⎪⎝⎭,用坐标表示斜率之和,再用该两点的坐标表示直线l ,化简后可得直线过定点. 【详解】 (1)由2,2,y x y px =⎧⎨=⎩解得10x =,22x p =,因为直线y x =被抛物线()2:20C y px p =>截得的弦长为0p -=,0p >,解得2p =, 所以抛物线C 的方程为24y x =.(2)法一: 设直线l 的方程为x my b =+,()11,M x y ,()22,N x y , 由2,4,x my b y x =+⎧⎨=⎩得2440y my b --=, 所以124y y m +=,124y y b =-,因为点()1,2A ,且直线AM ,AN 的斜率之和为4,所以121222411y y x x --+=--,而2114y x =,2224y x =,化简得12120y y y y ++=, 所以440m b -=,即b m =, 所以直线l 的方程为()1x m y =+, 所以直线l 过定点,定点坐标为()0,1-.法二: 设211,4y M y ⎛⎫ ⎪ ⎪⎝⎭,222,4y N y ⎛⎫ ⎪⎝⎭, 因为点()1,2A ,且直线AM ,AN 的斜率之和为4,所以1222122241144y y y y --+=--,即12120y y y y ++=, ①当210y y +≠时,直线l 的方程为221112221444y yy y y x y y ⎛⎫--=- ⎪⎝⎭-即2141y x y y =--, 所以直线l 过定点,定点坐标为()0,1-;②当210y y +=时,120y y =,所以120y y ==,不满足题意. 所以直线l 过定点,定点坐标为()0,1-. 【点睛】方法点睛:. 直线与抛物线的位置关系中的定点、定值、最值问题,一般可通过联立方程组并消元得到关于x 或y 的一元二次方程,再把要求解的目标代数式化为关于两个的交点横坐标或纵坐标的关系式,该关系中含有1212,x x x x +或1212,y y y y +,最后利用韦达定理把关系式转化为若干变量的方程(或函数),从而可求定点、定值、最值问题,也可以设出交点坐标,用交点坐标表示目标代数式,从而解决定点、定值、最值问题.23.(1)22122y x -=;(2)8.【分析】(1)由等轴双曲线的一条渐近线方程为0y x +=,再由点到直线距离公式求解即可; (2)求得直线方程代入抛物线,结合焦点弦长求解即可. 【详解】(1)由等轴双曲线的一条渐近线方程为0y x +=,且顶点(0,)a 到渐近线的距离为1,可得1a b =⎧=,解得a b ⎧=⎪⎨=⎪⎩22122y x -=(2)抛物线24y x =的焦点为(1,0)F直线l 的方程为0tan 45(1)y x -=︒⋅-,即1y x =-. 与抛物线方程联立,得214y x y x =-⎧⎨=⎩, 消y ,整理得2610x x -+=,设其两根为1x ,2x ,且126x x +=. 由抛物线的定义可知,12||628AB x x p =++=+=. 所以,线段AB 的长是8. 【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.24.(1)2214x y +=;(2)证明见解析,()1,0.【分析】(1)利用椭圆的定义可得12|||2|MF MF a =+,根据基本不等式求出2a =,再由离心率求出c =222a b c =+即可求解.(2)当点C 是椭圆上顶点时,求出()4,3P ,进而求出点83,55D ⎛⎫- ⎪⎝⎭,写出直线CD 的方程,得出直线CD 经过定点()1,0N ,设l 上任意点()4,P m ,设(),C C C x y ,(),y D D D x ,写出直线PA 的方程,将直线与椭圆联立,求出2221826,99m m C m m ⎛⎫- ⎪++⎝⎭,同。
一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。
高中数学选修1-1第二章圆锥曲线与方程-单元测试-及答案高中数学选修1-1第二章圆锥曲线与方程 单元测试一、选择题(每小题5分,共60分) 1.椭圆122=+my x的焦点在y 轴上,长轴长是短轴长的两倍,则m 的值为( )A .41B .21C .2D .4 2.过抛物线xy 42=的焦点作直线l 交抛物线于A 、B 两点,若线段AB 中点的横坐标为3,则||AB 等于( ) A .10 B .8 C .6D .43.若直线y =kx +2与双曲线622=-y x的右支交于不同的两点,则k 的取值范围是( )A .315(-,)315 B .0(,)315 C .315(-,)0D .315(-,)1-4.(理)已知抛物线xy 42=上两个动点B 、C 和点A (1,2)且∠BAC =90°,则动直线BC 必过定点( )A .(2,5)B .(-2,5)C .(5,-2) D .(5,2) (文)过抛物线)0(22>=p px y的焦点作直线交抛物线于1(x P ,)1y 、2(x Q ,)2y 两点,若px x 321=+,则||PQ 等于( ) A .4p B .5p C .6pD .8p5.已知两点)45,4(),45,1(--N M ,给出下列曲线方程:①0124=-+y x ;②322=+y x;③1222=+y x ;④1222=-y x .在曲线上存在点P 满足|MP|=|NP|的所有曲线方程是( )(A )①③ (B )②④ (C )①②③ (D )②③④ 6.已知双曲线12222=-by a x (a >0,b >0)的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠FAF ,2tan 12-=∠F AF ,则双曲线方程为( ) A .1351222=-y x B .1312522=-y x C .1512322=-y xD .1125322=-y x7.圆心在抛物线)0(22>=y x y上,并且与抛物线的准线及x 轴都相切的圆的方程是( ) A .041222=---+y x y x B .01222=+-++y x y xC .01222=+--+y x y xD .041222=+--+y x y x8.双曲线的虚轴长为4,离心率26=e ,1F 、2F 分别是它的左、右焦点,若过1F 的直线与双曲线的右支交于A 、B 两点,且||AB 是||2AF 的等差中项,则||AB 等于( ) A .28 B .24 C .22D .8.9.(理)已知椭圆22221a y x=+(a >0)与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( )A .2230<<aB .2230<<a 或282>aC .223<a 或 282>a D .282223<<a(文)抛物线)2(2)2(2+-=-m y x 的焦点在x 轴上,则实数m 的值为( )A .0B .23 C .2D .310.已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其相交于N M ,两点, MN 中点横坐标为32-,则此双曲线的方程是( ) (A) 14322=-y x (B)13422=-y x (C)12522=-y x(D)15222=-y x11.将抛物线342+-=x xy 绕其顶点顺时针旋转090,则抛物线方程为( )(A )x y -=+2)1(2(B )2)1(2-=+x y (C )xy -=-2)1(2 (D )2)1(2-=-x y12.若直线4=+ny mx 和⊙O ∶422=+y x 没有交点,则过),(n m 的直线与椭圆14922=+y x 的交点个数( )A .至多一个B .2个C .1个D .0个二、填空题(每小题4分,共16分) 13.椭圆198log 22=+y x a 的离心率为21,则a =________. 14.已知直线1+=x y 与椭圆122=+ny mx)0(>>n m 相交于A ,B 两点,若弦AB 的中点的横坐标等于31-,则双曲线12222=-n y m x 的两条渐近线的夹角的正切值等于________.15.长为l (0<l <1)的线段AB 的两个端点在抛物线2x y =上滑动,则线段AB 中点M 到x 轴距离的最小值是________.16.某宇宙飞船的运行轨道是以地球中心F 为焦点的椭圆,测得近地点A 距离地面)km (m ,远地点B 距离地面)km (n ,地球半径为)km (R ,关于这个椭圆有以下四种说法:①焦距长为m n -;②短轴长为))((R n R m ++;③离心率Rn m mn e 2++-=;④若以AB 方向为x 轴正方向,F 为坐标原点,则与F 对应的准线方程为)())((m n R n R m x -++2-=,其中正确的序号为________. 三、解答题(共44分)17.(本小题10分)已知椭圆的一个顶点为A (0,-1),焦点在x 轴上.若右焦点到直线22=+-y x 的距离为3.(1)求椭圆的方程;(2)设椭圆与直线)0(≠+=k m kx y 相交于不同的两点M 、N.当AN AM =时,求m 的取值范围.18.(本小题10分)双曲线)0,0(12222>>=-b a by a x 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.19.(本小题12分)如图,直线与抛物线2交于),(,),(2211y x B y x A 两点,与x 轴相交于点M ,且121-=y y .(1)求证:M 点的坐标为)0,1(; (2)求证:OB OA ⊥;(3)求AOB ∆的面积的最小值.y x20.(本小题12分)已知椭圆方程为1822=+y x ,射线xy 22=(x ≥0)与椭圆的交点为M ,过M 作倾斜角互补的两条直线,分别与椭圆交于A 、B 两点(异于M ).(1)求证直线AB 的斜率为定值;(2)求△AMB 面积的最大值.三、解答题(20分) 11.(本小题满分10分)已知直线l 与圆0222=++x y x 相切于点T ,且与双曲线122=-y x相交于A 、B 两点.若T 是线段AB 的中点,求直线l 的方程.12.(10分)已知椭圆2222b y a x +(a >b >0)的离心率36=e ,过点),0(b A -和)0,(a B 的直线与原点的距离为23.(1)求椭圆的方程.(2)已知定点)0,1(-E ,若直线)0(2≠+=k kx y 与椭圆交于C 、D 两点.问:是否存在k 的值,使以CD为直径的圆过E 点?请说明理由.圆锥曲线单元检测答案1. A2.B 3 D 4 理C 文A 5 D 6 A 7 D 8A 9 理B 文B 10 D 11 B 12 B13.24或69 14.34 15.42l 16.①③④ 17.(1)依题意可设椭圆方程为 1222=+y ax ,则右焦点F (,12-a )由题设322212=+-a 解得32=a故所求椭圆的方程为1322=+y x .1322=+y x ………………………………………………4分.(2)设P 为弦MN 的中点,由⎪⎩⎪⎨⎧=++=1322y x m kx y 得)1(36)13(222=-+++m mkx x k由于直线与椭圆有两个交点,,0>∆∴即 1322+<k m①………………6分13322+-=+=∴k mkx x x N M p 从而132+=+=k mm kx yp pmkk m x y k pp Ap 31312++-=+=∴ 又MNAP AN AM⊥∴=,,则kmk k m 13132-=++-即1322+=k m②…………………………8分把②代入①得 22m m > 解得 20<<m 由②得 03122>-=m k解得21>m .故所求m 的取范围是(2,21)……………………………………10分 18.设M )(0,0y x是双曲线右支上满足条件的点,且它到右焦点F 2的距离等于它到左准线的距离2MN ,即MNMF =2,由双曲线定义可知eMF MF eMNMF =∴=211……5分 由焦点半径公式得000x eaex aex ∴=-+ee e a -+=2)1(…………………………7分 而a ee e a ax ≥-+∴≥20)1( 即122≤--e e 解得1221+≤≤-e 但1211+≤<∴>e e ……………………………………10分19. (1 ) 设M 点的坐标为)0,(0x , 直线l 方程为0x my x +=, 代入x y =2得002=--x my y ① 21,y y 是此方程的两根,∴1210=-=y y x ,即M 点的坐标为(1, 0). (2 ) ∵ 121-=y y∴ 0)1(21212122212121=+=+=+y y y y y y y y y y x x∴ OB OA ⊥.(3)由方程①,m y y =+21, 121-=y y , 且 1||0==x OM , 于是=-=∆||||2121y y OM S AOB 212214)(21y y y y -+=4212+m ≥1, ∴ 当0=m 时,AOB ∆的面积取最小值1. 20.解析:(1)∵ 斜率k 存在,不妨设k >0,求出M (22,2).直线MA 方程为)22(2-=-x k y ,直线AB 方程为)22(2--=-x k y .分别与椭圆方程联立,可解出2284222-+-=k k k xA,2284222-++=k k k x B .∴22)(=--=--BA B A B A B A x x x x k x x y y . ∴22=AB k (定值).(2)设直线AB 方程为mx y +=22,与1822=+y x 联立,消去y 得mxx24162+)8(2=-+m .由0>∆得44<<-m ,且0≠m ,点M 到AB 的距离为3||m d =.设AMB ∆的面积为S . ∴2)216(321)16(321||41222222=≤-==⋅m m d AB S .当22±=m 时,得2max=S.11.解:直线l 与x 轴不平行,设l 的方程为 a ky x += 代入双曲线方程 整理得12)1(222=-++-a kay y k ……………………3分 而12≠-k ,于是122--=+=k aky y y B A T 从而12--=+=k a a ky x T T 即)1,1(22kak ak T --……5分Θ点T 在圆上 012)1()1(22222=-+-+-∴k a k a kak即22+=a k①由圆心)0,1(-'O .l T O ⊥' 得 1-=⋅'l TO k k 则 0=k或 122+=a k当0=k 时,由①得 la ∴-=,2的方程为 2-=x ;当122+=a k时,由①得 1=a lK ∴±=,3的方程为13+±=y x .故所求直线l 的方程为2-=x 或13+±=y x …………………………10分12.解:(1)直线AB 方程为:0=--ab ay bx . 依题意⎪⎪⎩⎪⎪⎨⎧=+=233622ba ab ac , 解得⎩⎨⎧==13b a ,∴ 椭圆方程为 1322=+y x .(2)假若存在这样的k 值,由⎩⎨⎧=-++=033222y x kx y ,得)31(2k +09122=++kx x .∴)31(36)12(22>+-=∆k k .① 设1(x C ,)1y 、2(x D ,)2y ,则⎪⎪⎩⎪⎪⎨⎧+=+-=+⋅2212213193112k x x k k x x ,② 而4)(2)2)(2(212122121+++=++=⋅x x k x x k kx kx yy .要使以CD 为直径的圆过点E (-1,0),当且仅当CE ⊥DE 时,则1112211-=++⋅x y x y ,即)1)(1(2121=+++x x y y .∴5))(1(2)1(21212=+++++x x k x x k .③将②式代入③整理解得67=k .经验证,67=k ,使①成立.综上可知,存在67=k ,使得以CD 为直径的圆过点E .。
圆锥曲线与方程(填空题:较难)1、设、分别为椭圆与双曲线的公共焦点,它们在第一象限内交于点,,若椭圆的离心率,则双曲线的离心率的取值范围为__________.2、已知是双曲线的左、右焦点,点在双曲线的右支上,是坐标原点,是以为顶点的等腰三角形,其面积是,则双曲线的离心率是______________.3、下列命题正确的是_______(写出正确的序号)①已知、,,则动点的轨迹是双曲线左边一支;②已知椭圆的长轴在轴上,若焦距为,则实数的值是;③抛物线的焦点坐标是。
4、如图,在平面直角坐标系xOy中,F是椭圆的右焦点,直线与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率为_____.5、椭圆与双曲线有相同的焦点,,椭圆的一个短轴端点为,直线与双曲线的一条渐近线平行,若椭圆于双曲线的离心率分别为,,则的最小值为__________.6、已知F1,F2分别是椭圆的左、右焦点,现以F2为圆心作一个圆恰好经过椭圆中心并且交椭圆于点M、N,若过F1的直线MF1是圆F2的切线,则椭圆的离心率为 ______ .7、已知、是双曲线(,)的左右焦点,以为直径的圆与双曲线的一条渐近线交于点,与双曲线交于点,且、均在第一象限,当直线时,双曲线的离心率为,若函数,则__________.8、已知A、B为双曲线E的左右顶点,点M在E上,△ABM为等腰三角形,且顶角为120°,则E的离心率为_______.9、已知圆,抛物线与相交于两点,,则抛物线的方程为__________.10、已知椭圆,点是椭圆的左右焦点,点是椭圆上的点,的内切圆的圆心为,0,则椭圆的离心率为______.11、设分别是椭圆的左,右焦点,为椭圆上任一点,点的坐标为,则的最小值为________.12、已知椭圆,是的长轴的两个端点,点是上的一点,满足,设椭圆的离心率为,则______.13、已知椭圆:,双曲线:,以的短轴为一条最长对角线的正六边形与轴正半轴交于点,为椭圆右焦点,为椭圆右顶点,为直线与轴的交点,且满足是与的等差中项,现将坐标平面沿轴折起,当所成二面角为时,点在另一半平面内的射影恰为的左顶点与左焦点,则的离心率为__________.14、已知等腰梯形ABCD中AB//CD,AB=2CD=4,∠BAD=600,双曲线以A,B为焦点,且经过C、D两点,则该双曲线的离心率为_________.15、设抛物线()的焦点为,准线为.过焦点的直线分别交抛物线于两点,分别过作的垂线,垂足.若,且三角形的面积为,则的值为___________.16、已知椭圆的方程为,过椭圆中心的直线交椭圆于两点,是椭圆右焦点,则的周长的最小值为__________,的面积的最大值为__________.17、已知、是过抛物线()的焦点的直线与抛物线的交点,是坐标原点,且满足,,则的值为__________.18、已知抛物线的焦点为,过抛物线上点的切线为,过点作平行于轴的直线,过作平行于的直线交于,若,则的值为__________.19、点是焦点为的双曲线上的动点,若点满足,则点的横坐标为____________20、已知为椭圆上的一个点,,分别为圆和圆上的点,则的最小值为.21、一光源在桌面的正上方,半径为的球与桌面相切,且与球相切,小球在光源的中心投影下在桌面产生的投影为一椭圆,如图所示,形成一个空间几何体,且正视图是,其中,则该椭圆的长轴长为_______22、已知双曲线与抛物线有一个公共的焦点.设这两曲线的一个交点为,若,则点的横坐标是_______;该双曲线的渐近线方程为_______.23、如图,抛物线的一条弦经过焦点,取线段的中点,延长至点,使,过点,作轴的垂线,垂足分别为,则的最小值为__________.24、已知椭圆:的短轴长为2,离心率为,设过右焦点的直线与椭圆交于不同的两点A,B,过A,B作直线的垂线AP,BQ,垂足分别为P,Q.记,若直线l 的斜率≥,则的取值范围为___.25、过椭圆的左顶点A的斜率为的直线交椭圆于另一点,且点与右焦点的连线垂直于轴,若,则椭圆的离心率的取值范围是____________.26、已知椭圆的离心率为,右焦点为,点在圆上,且在第一象限,过作圆的切线交椭圆于,两点.若的周长为,则椭圆的方程为____.27、点是圆上的点,点是抛物线上的点,则点到直线的距离与到点的距离之和的最小值是__________.28、为抛物线的焦点,点在抛物线上,是圆上的点,则最小值是__________.29、点在曲线上,点在曲线上,线段的中点为,是坐标原点,则线段长的最小值是__________.30、已知抛物线:的焦点是,直线:交抛物线于,两点,分别从,两点向直线:作垂线,垂足是,,则四边形的周长为__________.31、抛物线的焦点为,设过点的直线交抛物线于两点,且,则__________.32、为抛物线上任意一点,在轴上的射影为,点,则与长度之和的最小值为__________.33、已知双曲线的方程为,其左、右焦点分别是,已知点坐标,双曲线上点满足,则__________.34、已知抛物线的焦点为F,E是C的准线上位于轴上方的一点,直线EF与C在第一象限交于点M,在第四象限交于点N,且,则点N到轴的距离为________________.35、已知抛物线的焦点为,直线与抛物线相切于点,是上一点(不与重合),若以线段为直径的圆恰好经过,则的最小值是__________.36、已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值是____.37、过抛物线的焦点的直线交该抛物线于、两点,若,为坐标原点,则__________.38、已知抛物线的焦点为,其准线与轴交于点,点在抛物线上,且,则点的横坐标为__________.39、双曲线的左右两焦点分别是,若点在双曲线上,且为锐角,则点的横坐标的取值范围是________.40、已知双曲线的右焦点为,点在双曲线的左支上,若直线与圆相切于点且,则双曲线的离心率值为__________.41、已知双曲线:(,)和圆:.过双曲线上一点引圆的两条切线,切点分别为,.若可为正三角形,则双曲线离心率的取值范围是__________.42、已知抛物线的焦点为,过抛物线上点的切线为,过点作平行于轴的直线,过作平行于的直线交于,若,则的值为__________.43、过双曲线(,)的左焦点向圆作一条切线,若该切线与双曲线的两条渐进线分别相交于第一、二象限,且被双曲线的两条渐进线截得的线段长为,则该双曲线的离心率为__________.44、设抛物线()的焦点为,准线为.过焦点的直线分别交抛物线于两点,分别过作的垂线,垂足.若,且三角形的面积为,则的值为___________.45、已知椭圆:的右焦点为,上、下顶点分别为,,直线交于另一点,若直线交轴于点,则的离心率是__________.46、已知分别是双曲线的左、右焦点,为双曲线右支上一点,且,,则 ________.47、设为双曲线右支上的任意一点,为坐标原点,过点作双曲线两渐近线的平行线,分别与两渐近线交于,两点,则平行四边形的面积为__________.48、已知双曲线的左右焦点分别为,过点的直线交双曲线右支于两点,若是以为直角顶点的等腰三角形,则的面积为__________.49、设分别为双曲线的左右焦点,为双曲线右支上任一点,当的最小值为时,则该双曲线的离心率的取值范围是__________.50、过双曲线的右焦点作轴的垂线,交双曲线于、两点,为左顶点,设,双曲线的离心率为,则__________.51、直线过抛物线的焦点,与抛物线交于、两点,与其准线交于点,若,,则__________.52、如图,为抛物线上的两点,为抛物线的焦点且,为直线上一点且横坐标为,连结.若,则______.53、曲线是平面内与两个定点和的距离的积等于常数的点的轨迹.给出下列三个结论:①曲线过坐标原点;②曲线关于坐标原点对称;③若点在曲线上,则的面积不大于.其中,所有正确结论的序号是__________.54、已知椭圆:的左焦点为,与过原点的直线相交于、两点,连接,,若,,,则的离心率.55、已知抛物线的准线方程为,焦点为为抛物线上不同的三点,成等差数列,且点在轴下方,若,则直线的方程为.56、已知抛物线:,点为抛物线上任意一点,过点向圆:作切线,切点分别为,,则四边形面积的最小值为____________.57、已知长方形,,,则以、为焦点,且过、两点的椭圆的离心率为.58、已知、是椭圆(>>0)的两个焦点,为椭圆上一点,且.若的面积为9,则=____________.59、直线与椭圆相交于A,B两点,AB中点为M,若直线AB斜率与OM斜率之积为,则椭圆的离心率e的值是.60、椭圆的两个焦点与F1、F2,若P为其上一点,则,则椭圆离心离的取值范围为。
圆锥曲线与方程(填空题:容易)1、某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:①题目:“在平面直角坐标系中,已知椭圆的左顶点为,过点作两条斜率之积为2的射线与椭圆交于,,…”②解:“设的斜率为,…点,,…”据此,请你写出直线的斜率为.(用表示)2、椭圆25x2+16y2=1的焦点坐标是________.3、已知方程表示双曲线,则的取值范围是______________.4、设点是椭圆上的动点,为椭圆的左焦点,则的最大值为______.5、已知直线交椭圆:于,两点,为椭圆的左焦点,当直线经过右焦点时,周长为__________.6、椭圆的离心率为________.7、已知直线交椭圆于、两点,椭圆的右焦点为点,则的周长为__________.8、抛物线的准线方程是_____.9、已知双曲线上一点到一个焦点的距离等于2,则点到另一个焦点距离为______.10、在平面直角坐标系中,已知抛物线上一点到焦点的距离为3,则点的横坐标是____.11、若椭圆短轴一端点到椭圆一个焦点的距离是该焦点到同侧长轴端点距离的倍,则该椭圆的离心率为___________.12、抛物线的准线方程为________.13、已知双曲线的离心率为,则_____.14、若抛物线上的点到轴的距离是,则到焦点的距离为__________.15、方程表示双曲线的充要条件是_________.16、椭圆的离心率为,则的值为_____________.17、过点(0,1)且与抛物线只有一个公共点的直线有________条.18、已知方程(k2-1)x2+3y2=1是焦点在y轴上的椭圆,则k的取值范围是________.19、双曲线的右焦点坐标为__________,过右焦点且平行于该双曲线渐近线的直线方程是__________.20、如果椭圆上一点到一个焦点的距离为6,那么点到另外一个焦点的距离是__________.21、双曲线的顶点到其渐近线的距离等于__________.22、经过点的抛物线的标准方程为__________.23、双曲线的焦距为________.24、已知双曲线离心率,虚半轴长为3,则双曲线方程为______________.25、在平面直角坐标系中,双曲线的离心率是____.26、已知双曲线过点,且与双曲线有相同的渐近线,则双曲线的标准方程为__________.27、已知是椭圆,的左焦点,为右顶点,是椭圆上的一点,轴,若,则该椭圆的离心率是__________.28、已知双曲线以原点为中心,过点(),且以抛物线的焦点为右顶点,那么双曲线的方程为__________.29、经过点的抛物线的标准方程为__________.30、抛物线的焦点坐标是__________.31、若双曲线上一点到右焦点的距离为,则点到原点的距离是__________.32、抛物线的准线方程为__________.33、双曲线的焦距是10,则实数的值为_____________.34、若抛物线的焦点与椭圆的右焦点重合,则该抛物线的准线方程为__________.35、直线与椭圆恒有两个公共点,则的取值范围为 .36、椭圆的一条准线方程为,则________37、若抛物线上的点到其焦点的距离为,则.38、在平面直角坐标系中,如果双曲线的焦距为,那么当任意变化时,的最大值是__________.39、已知双曲线的右焦点为,若过点且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则的取值范围是 _____________.40、直线被椭圆所截得的弦的中点坐标是.41、双曲线的离心率,则的取值范围是.42、抛物线与椭圆有相同的焦点,抛物线与椭圆交于,若共线,则椭圆的离心率等于.43、过抛物线y2=4x的焦点且斜率为1的直线交该抛物线于A、B两点,则|AB|= ______44、若点在双曲线上,则的最小值是.45、若椭圆的焦点在x轴上,则k的取值范围为.46、抛物线的准线方程为。
47、抛物线的准线方程为___________.48、已知抛物线的焦点与双曲线的一个焦点重合,则该双曲线的离心率为__________.49、抛物线的焦点坐标是 .50、双曲线的两条渐近线方程为___________.51、抛物线的焦点坐标是____________.52、一个圆的圆心在抛物线上,且该圆经过抛物线的顶点和焦点,若圆心在第一象限,则该圆的标准方程是_________.53、焦点坐标为的抛物线的标准方程为_____________.54、焦点坐标为的抛物线的标准方程为_____________.55、椭圆的焦点坐标为56、在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为________.57、设、分别是椭圆的左,右焦点,为椭圆上任一点,点的坐标为,则| |+||的最大值为_______58、若方程所表示的曲线为C,给出下列四个命题:①若C为椭圆,则;②若C为双曲线,则或;③曲线C不可能是圆;④若,曲线C为椭圆,且焦点坐标为;⑤若,曲线C为双曲线,且虚半轴长为.其中真命题的序号为____________.(把所有正确命题的序号都填在横线上)59、若椭圆,则实数的取值范围是.60、抛物线的焦点到准线的距离为.61、双曲线的焦距为___________.62、已知点、分别是椭圆:()的上顶点和左焦点,若于圆:相切于点,且点是线段靠近点的三等分点,则椭圆的标准方程为.63、双曲线的渐近线方程为.64、已知抛物线:,过抛物线的焦点的直线交抛物线于点,交抛物线的准线于点,若,则点到原点的距离为 .65、双曲线的渐近线方程为___________66、椭圆的短轴长为,则.67、是椭圆上的点,、是椭圆的两个焦点,,则的面积等于.68、抛物线y = 4x2的焦点坐标为____________.69、如图,已知抛物线y2=2px(p>0)的焦点恰好是椭圆(a>b>0)的右焦点F,且两条曲线的交点连线也过焦点F,则该椭圆的离心率为.70、已知是抛物线上一点,是该抛物线的焦点,则以为直径且过(0,2)的圆的标准方程为 .参考答案1、2、3、4、5、6、7、208、9、1010、211、12、13、14、1015、(-1,5)16、17、318、(-∞,-2)∪(2,+∞)19、或20、1421、22、或23、24、25、26、27、28、29、或30、31、332、33、34、35、36、537、38、39、40、41、42、43、844、45、46、x=-247、48、49、50、51、(0,1)52、53、54、55、56、57、1558、②④⑤59、60、61、862、63、64、65、66、267、68、69、70、【解析】1、试题分析:因为直线斜率之积为,所以的斜率为,由已知,,所以把换成,可得点,则直线的斜率为.考点:1.直线与椭圆的位置关系;2.直线斜率的计算公式.【方法点睛】本题主要考查了直线与椭圆的位置关系, 运算能力,属于中档题. 利用两条直线斜率之积为,得出直线的斜率为, 把换成,可得出点的坐标, 利用经过两点的直线斜率计算公式,可求出直线的斜率的表达式. 解答本题的关键是替换思想, 即把换成,得出点的坐标.2、椭圆的标准方程为,故焦点在y轴上,其中,所以,故.所以该椭圆的焦点坐标为.答案:.3、表示双曲线或.4、椭圆的标准方程为,所以。
由椭圆的性质可得,当点为椭圆的右顶点时,有最大值,且。
答案:5、设椭圆的右焦点为,周长为。
答案:126、依题意,故离心率为.7、椭圆,所以,直线经过椭圆的左焦点,椭圆的右焦点为,由椭圆的定义可知,的周长为.点睛:椭圆上的点与焦点三点围成的三角形称为“焦点三角形”,焦点三角形有很多性质,其中常考的有:周长为,面积为。
本题中可以直接利用椭圆定义即可求解.8、抛物线的方程为故其准线方程为故答案为9、设双曲线的焦点分别为,由题意,得,所以;故填10.【技巧点睛】本题考查双曲线的定义;处理涉及椭圆或双曲线的点与两焦点间的距离问题时,往往利用椭圆或双曲线的定义进行求解;但要有时需要判定该点在双曲线上的哪一支上,以免出现增解.10、若抛物线上一点到焦点的距离为3,则,解得,即点的横坐标是2.【方法点睛】本题考查过抛物线的焦点的弦问题;在求过抛物线的焦点的弦的长度或焦半径时,利用抛物线的定义(将抛物线的点到焦点的距离转化为到准线的距离)可起到事半功倍的效果,如:过抛物线的焦点的直线交抛物线于两点,则.11、不妨设椭圆的标准方程为,则椭圆短轴一端点到椭圆一个焦点的距离是该焦点到同侧长轴端点的距离的倍,则,即,即该椭圆的离心率为.12、抛物线的准线方程为;故填.13、由题意,得,又因为,解得;故填.14、抛物线的焦点为,准线方程为。
∵点到轴的距离是,∴点到准线的距离是10,根据抛物线的定义可得,到焦点的距离为10.答案:10.15、若曲线表示双曲线,则需满足,所以实数的取值范围为。
答案:16、试题分析:当焦点在轴时,,所以,解得,当焦点在轴时,,所以,解得,所以答案应填:.考点:1、椭圆的离心率;2、分类讨论.17、过点的斜率不存在的直线为满足与只有一个公共点,当斜率存在时,设直线为,与联立整理得当时,方程是一次方程,有一个解,满足一个交点当时由可得值有一个,即有一个公共点,所以满足题意的直线有条。
18、方程(k2-1)x2+3y2=1可化为.由椭圆焦点在y轴上,得解之得k>2或k<-2.答案:(-∞,-2)∪(2,+∞).19、由题意知,,所以双曲线的右焦点坐标为;又双曲线的渐近线方程为,故过右焦点且平行于该双曲线渐近线的直线方程为,即或.答案:(1). (2). 或。
20、椭圆上一点到两个焦点的距离和为.因为到一个焦点的距离为6,那么点到另外一个焦点的距离是14.答案为:14.21、由题意得,顶点坐标为,渐近线方程为,则顶点坐标为的距离为22、由点在第四象限,则抛物线的开口方向为向右或向下,所以可设该抛物线的方程为或(),将点坐标分别代入两方程得,所求抛物线的方程为或.23、由双曲线-=1,知c2=12,∴c=2,∴2c=4.24、由已知可得双曲线方程为.25、26、设与双曲线有相同的渐近线的双曲线方程为,将点带人方程有,所以,则所求双曲线方程为.27、根据椭圆几何性质可知,,所以,即,由因为,所以有,整理可得,两边同除以得:,所以,由于,所以.28、抛物线的焦点为,则可设双曲线方程为,将点()带人方程得,所以双曲线方程为.29、由点在第四象限,则抛物线的开口方向为向右或向下,所以可设该抛物线的方程为或(),将点坐标分别代入两方程得,所求抛物线的方程为或.30、解:抛物线的标准方程为:,据此可得:抛物线的焦点坐标是.31、依题意,,故为又顶点,到原点的距离为点睛:本题主要考查双曲线的标准方程,考查双曲线的几何性质.由于题目给定了双曲线的标准方程,根据方程我们可以求出,注意到,恰好符合题意中点的要求,由此可以判断出点为双曲线的右顶点,这样就可以求得到原点的距离为.32、依题意,故,准线方程为.33、双曲线的焦距为所以,,所以故本题正确答案是34、由题意得椭圆的右焦点为 ,即抛物线的焦点为,即 ,即 ,所以该抛物线的准线方程为 .即该抛物线的准线方程为 .35、试题分析:由直线方程可得直线横过定点,当在椭圆内部时满足题意要求所以当椭圆焦点在y轴时,满足在椭圆内部,当椭圆焦点在x轴时需满足所以的取值范围为考点:椭圆方程及性质36、由题意知,在椭圆中,所以准线方程为。