2012年高职高考第五次月考数学试题(附详细答案)
- 格式:doc
- 大小:321.50 KB
- 文档页数:4
稳派理科新课改2012届高三高考压轴考试 湖北数学(文科)参考答案与评分细则选择题:1、D 2、B 3、A 4、C 5、D 6、C 7、A 8、B 9、B 10、C一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.复数2(1)z i i =+的虚部为A .iB .i -C .1D .1-【答案】D .【解析】因为2(1)1(1)1z i i i i =+=-⋅+=--,所以z 的虚部为1-.故选D . 【命题立意】考查复数的代数式运算和对复数概念的理解.2.设n S 是公差不为0的等差数列{}n a 的前n 项和,且1S ,2S ,4S 成等比数列,则21a a 等于 A .2 B .3 C .4 D .5【答案】B .【解析】设等差数列{}n a 的首项为1a ,公差为d (0d ≠),则2214S S S =,即211(2)a d a +=⨯1(46)a d +,求得12d a =,则21113a a da a +==.故选B . 【命题立意】考查等差、等比数列通项公式、求和公式即性质的简单应用.3. 已知函数2log ,1(),1x x f x x c x ≥⎧=⎨+<⎩,则“1c =-”是“()f x 在R 上递增”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A .【解析】当1c =-时,由函数2log ,1()1,1x x f x x x ≥⎧=⎨-<⎩的图象可以得出其是增函数;反之,不一定成立,如取2c =-.所以“1c =-”是“()f x 在R 上递增”的充分不必要条.故选A .【命题立意】考查函数的单调性和充要条件的理解. 4.设0ω>,将函数sin()23y x πω=++的图象向右平移43π个单位后与原函数图像重合,则ω的一个可能的取值是A .43B .34C .32D .23【答案】C .【解析】函数sin()23y x πω=++的图象经过变换后,所得函数图象对应的解析式为4sin()233y x ωππω=-++,依题意,42333k πωπππ-+=+(k ∈Z ),解得32k ω=-(k ∈Z ),对照选择支,可知当1k =-时,ω的一个可能的取值为32.故选C .【命题立意】考查三角函数的图像变换.5.一个几何体的三视图如图所示,则这个几何体的表面积为A.6+B.6+C.8D.8+【答案】D .【解析】由三视图知,该几何体是一个底面为直角三角形的直棱柱,其表面积等于12(12)1222)2⨯⨯+⨯+⨯8=+D .【命题立意】考查几何体的三视图与几何体表面积的计算.6. 已知点O 为△ABC 的外心,且||4AC = ,||2AB =,则AO BC ⋅ 等于A .2B .4C .6D .8【答案】C .【解析】取特殊图形,令△ABC 是以AC 为斜边的直角三角形,则12AO BC AC BC ⋅=⋅=14cos3062︒⨯⨯=.故选C . 【命题立意】考查平面几何图形中向量的数量积计算.7. 下表提供了某厂节能降耗技术改造后在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组数据:正视图2122侧视图俯视图根据上表的数据,求出y 关于x 的线性回归方程为 0.70.35y x =+,那么表中的t 值为A .3B .3.15C .3.5D .4.5【答案】A .【解析】由 0.70.35y x =+得2.54 4.534560.70.3544t ++++++=⨯+,所以11 3.54t +=,求得3t =. 故选A .【命题立意】考查线性回归方程的简单应用.8. 已知双曲线22221x y a b-=(0a >,0b >)的离心率为2e =,过双曲线上一点M 作直线MA,MB交双曲线于A ,B 两点,且斜率分别为1k ,2k ,若直线AB 过原点,则12k k ⋅的值为A .2B .3C D【答案】B .【解析】设点00(,)M x y ,11(,)A x y ,则11(,)B x y --,01101y y k x x -=-,01201y y k x x +=+,即12k k ⋅=22012201y y x x --.又2200221x y a b -=,2211221x y a b -=,所以22220101220x x y y a b ---=,即2220122201y y b x x a -=-,所以2122b k k a ⋅=.又离心率为2e =,所以22212213c a k k e a-⋅==-=.故选B . 【命题立意】考查双曲线的基本几何性质和离心率的计算. 9.数列{}n a 的前n 项和22n S n n =-,阅读程序框图,输出S 的值是A .101B .106C .110D .115【答案】B .【解析】因为22n S n n =-,所以11,123,2n nn S n a n S S n -=⎧==-⎨-≥⎩,所以123121232(23)2kS k =-⨯+⨯+⨯++-⨯ , ①23412121232(23)2k S k +=-⨯+⨯+⨯++-⨯ , ②所以①-②得34112(222)(23)2k k S k ++-=-++++--⋅,即110(25)2k S k +=+-⋅(k *∈N ).由100S ≥得4k ≥,所以106S =.故选B .【命题立意】考查程序框图知识和数列的通项公式与求和公式的计算.10.已知符号函数1,0sgn()0,01,0x x x x >⎧⎪==⎨⎪-<⎩,则函数2()sgn(ln )ln f x x x =-的零点个数为 A .4 B .3 C .2 D .1【答案】C .【解析】依题意,当1x >时,ln 0x >,sgn(ln )1x =,则22()sgn(ln )ln 1ln f x x x x =-=-,令21ln 0x -=,得x e =或1x e=,结合1x >得x e =;当1x =时,ln 0x =,sgn(ln )0x =,2()ln f x x =-,令2ln 0x -=,得1x =,符合;当01x <<时,ln 0x <,sgn(ln )1x =-,()f x =21ln x --,令21ln 0x --=,得2ln 1x =-,此时无解.因此2()sgn(ln )ln f x x x =-的零点个数为2.故选C .【命题立意】考查创新概念理解和函数零点个数的判断.第Ⅱ卷(非选择题 共100分)二、填空题(本大题共7小题,每小题5分,共35分.请将答案填在答题卡对应题号的位置,填错位置,书写不清,模棱两可均不得分.) 11.已知{}|ln M x y x ==,{}|||2x N y y -==,那么M N = .【答案】(]0,1. 【解析】由20x x -≥⎧⎨>⎩,得02x <≤,即{}|02M x x =<≤;由于函数||2x y -=是增函数,而||0x -≤,所以||0022x -<≤,求得01y <≤,即{}|01N y y =<≤.所以M N = (]0,1.故填(]0,1.【命题立意】考查函数的定义域、值域的求解和集合的运算. 12.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们所有比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的 中位数分别为 .甲 乙 6 9 8 0 7 8 5 5 7 9 1 1 1 3 3 4 6 2 2 0 2 3 1 0 1 4 0【答案】19,13.【解析】根据茎叶图中的数据,可知甲运动员的中数为19,乙运动员 的中数为13.故填19,13.【命题立意】考查茎叶图的应用和中位数的概念和识别.13.已知实数,,,a b c d 成等比数列,且当x b =时,函数ln(2)y x x =+-取到极大值c ,则ad = .【答案】1-.【解析】由已知112y x '=-+,则1102ln(2)b c b b⎧-=⎪+⎨⎪=+-⎩,解得11b c =-⎧⎨=⎩.又,,,a b c d 成等比数列,所以1ad bc ==-.故填1-.【命题立意】考查导数在求函数最值上的应用和等比数列的性质.14.已知实数,x y 满足1236y y x x y ≥⎧⎪≤-⎨⎪+≤⎩,则|3||4|z x y =-+-的最小值为 . 【答案】1.【解析】作出满足条件的可行域(如图),因为|3|z x =-|4|y +-|1|x y ≥+-,可知,当可行域内的点(,)x y 满足 x y =时,z 取得最小值1.故填1.【命题立意】考查可行域的图形理解和求绝对值函数的最值问题.15.设a ,b 均为大于1的正数,且100ab a b +--=,若a b +的最小值为m ,则m = ;满足2232x y m +≤的整点(,)x y 的个数为 . 【答案】6;9.【解析】由100ab a b +--=可得911b a =--,9161a b a a +=+-≥-,当且仅当91a =-1a -,即4a =时等号成立,所以6m =;满足不等式22326x y +≤的点在椭圆22123x y +=上及其内部,整点共有9个. 故填6;9.【命题立意】考查利用均值不等式求二元条件最值和闭区域几何图形中的整点问题. 16. 如图,三角数阵满足下列两个条件:12 2①第n 行首尾两数均为n ;②图中的递推关系类似杨辉三角,则(1)若记第n 行的第m 个数为nm a ,则73a = ; (2)第n (2n ≥)行的第2个数是 .【答案】(1)41;(2)222n n -+.【解析】(1)列出三角数阵到第7行,可知7341a =;(2)设第n (2n ≥)行的第2个数构成数列{}n a ,因为322a a -=,433a a -=,544a a -=,… ,11n n a a n --=-,所以22n a a -=+ (1)(1)34(1)2n n n +-+++-= ,所以222n n n a -+=.故填41;222n n -+.【命题立意】考查三角数阵的理解和数列通项公式的探究.17. 定义在[)1,+∞上的函数()f x 满足:①(2)()f x cf x =(c 为正常数);②当24x ≤≤时,()f x =1|3|x --.若函数的所有极大值点均落在同一条直线上,则c = .【答案】1或2.【解析】由已知可得,当12x ≤≤时,11()(2)(1|23|)f x f x x c c==--;当24x ≤≤时,()f x =1|3|x --;当48x ≤≤时,()()(1|3|)22x xf x cf c ==--.由题意,三点31(,)2c ,(3,1),(6,)c 共线,则11136332c c --=--,解得1或2.故填1或2. 【命题立意】考查分段函数的性质、函数极值的理解和三点共线知识的应用. 三、解答题(本大题共5小题,共65分.解答应写出文字说明、证明过程或演算步骤.)18.(本小题满分12分)已知数列{}n a 满足:11a =,221sin cos2cos n n n a a θθθ+-⋅=⋅(n *∈N ),其中(0,)2πθ∈.(1)当4πθ=时,求数列{}n a 的通项公式;(2)在(1)的条件下,若数列{}n b 中,1sin cos24nn n a a b ππ-=+(2n ≥,n *∈N ),且11b =,求证:对于n *∀∈N,1n b ≤≤【解析】(1)当4πθ=时,21sin 2θ=,cos 20θ=,所以1102n n a a +-=,即112n n a a +=. 故数列{}n a 是首项为11a =,公比为12的等比数列,其通项公式为112n n a -=(n *∈N ). 5分 (2)由(1)得,112n n a -=,所以当2n ≥,n *∈N 时,有 11211sin cos sin()cos()242242n n n n n a a b ππππ---=+=⋅+⋅sin cos sin()2224n n n ππππ=+=+,11b =也满足上式,故当n *∈N时,有sin()24n nb ππ=+. 10分因为n *∈N ,所以022nππ<≤,34244nππππ<+≤,所以1sin()24n ππ≤+≤即1n b ≤≤n *∈N )恒成立. 12分 【命题探究】本题体现三角函数知识和数列知识的综合,第(1)问通过三角函数特殊角的计算,得到数列的通项公式;第(2)问将传统的三角函数值域的求解,转化为对数列型不等式的推理证明. 19.(本小题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[)13,14,第二组[)14,15,…,第五组[]17,18,下图是 按分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数; (2)若从第一、五组中随机取出两个成绩m ,n ,求这两个成绩的差的绝对值大于1的概率(||1)P m n ->.【解析】(1)由频率分布直方图知,成绩在[)14,16内的 人数为500.16500.3827⨯+⨯=(人),所以该班成绩良好的人数为27人. 4分 (2)由频率分布直方图知,成绩在[)13,14的人数为500.06⨯3=(人),设为x ,y ,z ;成绩在[]17,18的人数为500.08⨯4=(人),设为A ,B ,C ,D . 若[),13,14m n ∈时,有xy ,xz ,yz 共3中情况;若[],17,18m n ∈时,有AB ,AC ,AD ,BC ,BD ,CD 共6中情况;若m ,n 分别在[)13,14和[]17,18内时,如下表列所示,共有12种情形.于是,基本事件总数为21种,事件“||1m n ->”所包含的基本事件数有12种, 所以124(||1)217P m n ->==. 12分 【命题探究】第(1)问通过频率分布直方图的计算,考查数据的处理能力;第(2)问计算满足某种条件的概率,凸出枚举法是求解统计与概率问题的最基本方法.20.(本小题满分13分)如图1,在平面四边形ABCD 中,已知45A ︒∠=,90C ︒∠=,ADC ∠=105︒,AB BD =,现将四边形ABCD 沿BD 折起,使平面ABD ⊥平面BDC (如图2),设点E ,F 分别为棱AC ,AD 的中点.(1)求证:DC ⊥平面ABC ;(2)设CD a =,求三棱锥A BEF -的体积.【解析】(1)因为AB BD =,且45A ︒∠=,所以45ADB ︒∠=,90ABD ︒∠=,即A B B D ⊥.因为平面ABD ⊥平面BDC ,且平面ABD 平面BDC BD =,所以AB ⊥底面BDC , 而CD ⊂底面BDC ,所以AB CD ⊥.又90DCB ︒∠=,所以DC BC ⊥,且AB BC B = ,所以DC ⊥平面ABC . 6分(2)因为E ,F 分别为棱AC ,AD 的中点,所以EF CD ∥, 又由(1)知,DC ⊥平面ABC ,所以EF ⊥平面ABC , 所以13A BEF F AEB AEB V V S FE --==⋅△. ABCD图1ABCDEF图2因为105ADC ︒∠=,所以60BDC ︒∠=,30DBC ︒∠=,由CD a =,得2BD a =,BC =,1122EF CD a ==,所以211222ABC S AB BC a =⋅=⋅=△,由此得2AEB S =△.于是,231132F AEB V a -=⋅=,即3A BEF V -=. 13分【命题探究】本题以折叠问题为载体,体现立体几何中从平面到空间的动态过程.第(1)问考查线面的垂直,第(2)问探究三棱锥体的体积,等积变换是求解几何体的体积,空间的点面距离中常用的方法.21.(本小题满分14分)已知函数1()ln sin g x x x θ=+在[)1,+∞上为增函数,且(0,)θπ∈,θ为常数,1()ln m f x mx x x-=--(m ∈R ). (1)求θ的值; (2)设2()e h x x=,若在[]1,e 上至少存在一个0x ,使得000()()()f x g x h x ->成立,求实数m 的取值范围.【解析】(1)由题意,211()0sin g x x xθ'=-+≥在[)1,+∞恒成立,即2sin 10sin x x θθ-≥在[)1,+∞恒成立. 因为(0,)θπ∈,所以sin 0θ>,故sin 10x θ-≥在[)1,+∞恒成立,只需sin 110θ⋅-≥, 即sin 1θ≥,只有sin 1θ=,所以2πθ=. 5分(2)构造函数()()()()F x f x g x h x =--,则2()2ln m e F x mx x x x=---. 当0m ≤时,由[]1,x e ∈,得0m mx x -≤,22ln 0ex x--<,所以在[]1,e 上不存在一个0x ,使得000()()()f x g x h x ->成立; 9分当0m >时,22222222()m e mx x m eF x m x x x x-++'=+-+=, 因为[]1,x e ∈,所以220e x -≥,20mx m +>,即()0F x '>在[]1,e 上恒成立,故()F x 在[]1,x e ∈上单调递增,max ()()40mF x F e me e==-->,解得241e m e >-.14分【命题探究】本题是一道利用导数知识研究函数性质的综合题,主要考查利用导数研究函数的单调性,探究参数的取值范围和证明不等式等知识.在利用导数探求参数的取值范围问题时,要注意体现分类讨论与整合思想.22.(本小题满分14分)已知点Q 位于直线3x =-右侧,且到点(1,0)F -的距离与到直线3x =-的距离之和等于4.(1)求动点Q 的轨迹C ;(2)直线l 过点(1,0)M 交曲线C 于A ,B 两点,点P 满足1()2FP FA FB =+ ,0EP AB ⋅=,又(,0)E OE x =,其中O 为坐标原点,求E x 的取值范围;(3)在(2)的条件下,△PEF 能否成为以EF 为底的等腰三角形?若能,求出此时直线l 的方程;若不能,请说明理由.【解析】(1)设(,)Q x y ,则||34QF x ++=(3x >-),34x +=(3x >-),化简得24y x =-((]3,0x ∈-).所以动点Q 的轨迹为抛物线24y x =-位于直线3x =-右侧的部分. 4分(2)因为1()2FP FA FB =+ ,所以P 为AB 的中点;又因为0EP AB ⋅= ,且(,0)E OE x =,所以点E 为线段AB 的垂直平分线与x 轴的交点.由题意可知,直线l 与x 轴不垂直,所以不妨设直线l 的方程为(1)y k x =-,由(]2(1)4(3,0)y k x y x x =-⎧⎨=-∈-⎩,得2222(42)0k x k x k +-+=(](3,0)x ∈-. (*) 设2222()(42)f x k x k x k =+-+,要使直线l 与曲线C 有两个不同的交点,只需22422(42)4042302(3)0(0)0k k k kf f ⎧=-->⎪-⎪⎪-<<⎨-⎪->⎪>⎪⎩△,解得2314k <<. 7分 设11(,)A x y ,22(,)B x y ,则由(*)式得,2122242k x x k -+=,所以线段AB 中点P 的坐标为122212P x x x k +==-,2(1)P P y k x k=-=-,第 11 页 共 11 页 则直线EP 的方程为2212(1)y x k k k+=--+. 令0y =,得到点E 的横坐标为221E x k=--, 因为2314k <<,所以1133E x -<<-,即E x 的取值范围是11(,3)3--. 10分 (3)不可能.证明如下:要使△PEF 能否成为以EF 为底的等腰三角形,只需2P E F x x x =+, 即22222(1)11k k -=---,解得212k =. 另一方面,要使直线满足(2)的条件,需要23(,1)4k ∈, 而13(,1)24∉,所以不可能使△PEF 成为以EF 为底的等腰三角形. 14分 【命题探究】本题从探求圆锥曲线的轨迹问题提出命题,对于轨迹问题求解,要注意检验轨迹方程中隐含的限制条件.本题第(2)问以向量知识提出条件信息,既体现了向量的工具作用,也凸显高考解析几何命题的一种常见风格.本题第(3)问是一个研究性问题,当求出满足条件的参数后,要进行检验是否满足命题的大前提条件.。
某某省某某市四地七校2012届高三5月月考(数学文) 新人教A版一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.复数21i +等于( ) (A)1i + (B)1i -(C)22i + (D)22i -2.已知数列{}n a 为等差数列,且377,3,a a ==则10a 等于( ) (A)0(B)1(C)9(D)103.已知5sin 5α=,则44sin cos αα-的值为( ) (A)15-(B)35-(C)15 (D)354.已知向量(1,2)a =,向量(,2)b x =-,且()a a b ⊥-,则实数x 等于( ) (A)9(B)4(C)0(D)4-5.如图,函数()y f x =的图象在点(5,(5))P f 处的切线方程是8y x =-+,则(5)(5)f f '+=( )(A)12(B)1 (C)2 (D)06.若集合}4,2{},,1{2==B m A ,则"2"m =是"{4}"A B =的( )(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件7.已知直线,,l m 平面,αβ、且,,l m αβ⊥⊂给出下列四个命题:①若//,αβ则;l m ⊥②若,l m ⊥则//;αβ③若,αβ⊥则//;l m ④若//,l m 则;αβ⊥ 其中真命题是( ) (A)①② (B)①③(C)①④ (D)②④8.某校举行演讲比赛,9位评委给选手A 打出的分数如茎叶图 所示,统计员在去掉一个最高分和一个最低分后,算得平均 分为91,复核员在复核时,发现有一个数字(茎叶图中的x ) 无法看清,若统计员计算无误,则数字x 应该是( ) (A)5(B)4(C)3(D)29.某器物的三视图如图所示,根据图中数据可知该器物的表面积为( ) (A)4π(B)5π(C)8π(D)9π10.已知x >0,y >0,lg2x+lg8y=lg2,则11x y+的最小值是( ) (A)3323+423+11.以双曲线22163x y -=的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( ) (A)22320x y x +-+=(B)22(3)9x y -+= (C)22320x y x +++=(D)3)3(22=+-y x12.定义在R 上的函数()f x 满足()(),(2)(2),f x f x f x f x -=--=+且(1,0)x ∈-时,1()2,5x f x =+则2(log 20)f =( )(A)1 (B)45(C)1-(D)45-二、填空题:本大题共4小题,每小题4分,共16分。
某某省某某市四地七校2012届高三5月月考(数学理)新人教版一、选择题(本题共有10小题,每小题5分, 共50分)1、已知i 是虚数单位,复数z =i 2(1+i )的虚部为( ) A .-i B. i C. -1 D. 1 2.设1:-<x p 或1>x ,2:-<x q 或1>x ,则p ⌝是q ⌝的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.设α、β是两个不同的平面,a 、b 是两条不同的直线, 给出下列4个命题,其中正确命题是()A .若a ∥α,b ∥α,则a ∥bB .若a ∥α,b ∥β,a ∥b ,则α∥βC .若a ⊥α,b ⊥β,a ⊥b ,则α⊥βD .若a 、b 在平面α内的射影互相垂直,则a ⊥b4.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有()A .72种B .96种C .108种D .120种5. 设椭圆以正方形的两个顶点为焦点且过另外两个顶点,那么此椭圆的离心率为( ) (A) 21- (B)22 (C) 512- (D) 22或21- 6.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A.36 cm3B.48 cm 3C.60 cm3D.72 cm 37.右边方框中是一个求20个数的平均数的程序,则在横线上可填的语句为( )A .20i >B .20i <C .20i >=D .20i <=8.若直线022=+-by ax )0,0(>>b a 被圆014222=+-++y x y x 所截得的弦长为4,则b a 11+的最小值为() A .41 B .21C .2D .49.设a ,b ,m 为正整数,若a 和b 除以m 的余数相同,则称a 和b 对m 同余.记作(mod )a b m ≡,已知122420094018200920092009333,(mod10)a C C C b a =+++≡,则b 的值可以是()A . 1012B .2009C .3003D .600110.从双曲线)20(12222a b by a x <<=-的左焦点F 引圆222a y x =+的切线,切点为T,延长FT 交双曲线右支于点P,O 为坐标原点,M 为PF 的中点,则||||MT MO -与a b -的大小关系为( ) .A .MO MT b a ->-B .MO MT b a -=-C .MO MT b a -<-D ..不能确定二、填空题:(本大题共5小题,每小题4分,共20分)11.已知角α的终边在直线34y x =-上,则2sin cos αα+=_________. 12.由曲线22y x =,直线42y x =--,直线1x =围成的封闭图形的面积为_________. 13.已知样本方差由102211(5)10i i s x ==-∑求得,则101kk x==∑.14.已知函数)0,0(1)(cos )(2>>++=ωϕωA x A x f 的最大值为3,)(x f 的图像与y 轴的交点坐标为)2,0(,其相邻两条对称轴间的距离为2,则++)2()1(f f (2010)f +=____________.15.下图展示了一个由区间(0,1)到实数集R 的映射过程:区间0,1中的实数m 对应数轴上的点M ,如图1;将线段AB 围成一个圆,使两端点A 、B 恰好重合,如图2;再将这个圆放在平面直角坐标系中,使其圆心在y 轴上,点A 的坐标为0,1,如图3.图3中直线AM 与x 轴交于点,0N n ,则m 的象就是n ,记作f m n .下列说法中正确命题的序号是.(填出所有正确命题的序号)①114f ⎛⎫=⎪⎝⎭;②()f x 是奇函数; ③()f x 在定义域上单调函数; ④()f x 的图象关于点1,02⎛⎫ ⎪⎝⎭对称. 三、解答题:(本大题有6小题共80分. 解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分13分)已知函数)2cos()42cos(4cos )(x x xx f -⋅-⋅=ππ,将函数()(0,)f x +∞在的所有极值点从小到大排成一数列,记为{}.n a(1)求数列{}n a 的通项公式;(2)令11n n n b a a +=⋅,求数列{}n b 前n 项和.n T17.(本题满分13分)如图,在三棱柱111ABC A B C -中,已知11,2,BC BB ==13BCC π∠=AB ⊥侧面11BB C C(Ⅰ)求直线C 1B 与底面ABC 所成角正切值;(Ⅱ)在棱1CC (不包含端点1,)C C 上确定一点E 的位置,使得1EA EB ⊥(要求说明理由).(Ⅲ)在(2)的条件下,若2AB =,求二面角11A EB A --的大小.18、(本小题满分13分)对某校高一年级的学生参加社区服务的次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加社区服务的次数,根据此数据作出了右图所示的频数与频率的统计表和频率分布直方图:(I )求出表中M 、p 及图中a 的值(II )学校决定对参加社区服务的学生进行表彰,对参加活动次数在[25,30]区间的每个学生发放价值80元的学习用品,对参加活动次数在[20,25)区间的每个学生发放价值60元的学习用品,对参加活动次数在[15,20)区间的每个学生发放价值40元的学习用品,对参加活动次数在[10,15)区间的每个学生发放价值20元的学习用品,在所抽取的这M 名学生中,任意取出2人,设X 为此二人所获得学习用品价值之差的绝对值,求X 的分布列与数学期望E (X )。
试卷类型:A2012届高三原创月考试题五数 学适用地区:新课标地区 考查X 围:全部内容 建议使用时间:2011年12月底本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,考生作答时,将答案答在答题卡上.在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必先将自己的某某、某某号填写在答题卡上,认真核对条形码上的某某、某某号,并将条形码粘贴在答题卡的指定位置上.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效. 4.保持卡面清洁,不折叠,不破损.5.做选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的题号涂黑.第Ⅰ卷一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.[2011·某某卷] 把复数z 的共轭复数记作z ,i 为虚数单位.若z =1+i ,则(1+z )·z =( )A .3-iB .3+iC .1+3iD .3 2已知集合U =R ,集合则},11|{xy x A -==UA 等于( )A }10|{<≤x xB }10|{≥<x x x 或C }1|{≥x xD }0|{<x x3.[2011·某某卷] 阅读右面的程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .64. [2011·某某卷] 设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件D .即不充分也不必要条件5.(理)[2011·某某卷] 有5本不同的书,其中语文书2本,数学书2本,物理书1本,若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是( ) A.15 B.25C.35D.45(文)设变量,x y 满足约束条件31,23x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则目标函数23z x y =+的最小值为( )A .7B .8C .10D .236.设表示三条直线,表示两个平面,则下列命题中不正确的是( )Aββαα⊥⇒⎭⎬⎫⊥c c // B C ////b c b c c ααα⎫⎪⊂⇒⎬⎪⊄⎭D αα⊥⇒⎭⎬⎫⊥b a b a //7.[2011·某某卷] 某产品的广告费用x 与销售额y 的统计数据如下表:广告费用x (万元) 4 2 3 5 销售额y (万元) 49 26 39 54 根据上表可得回归方程y ^=b ^x +a ^中的b ^为9.4,据此模型预报广告费用为6万元时销售额为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元 8.[2011·某某卷] 函数y =x2-2sin x 的图象大致是( )9.[2011·某某四校联考]已知数列{n a }满足*331log 1log ()n n a a n ++=∈N ,且2469a a a ++=,则15793log ()a a a ++的值是( )A.15-B.5-C.5D.1510.[2011·课标全国卷] 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝⎛⎭⎪⎫ω>0,|φ|<π2的最小正周期为π,且f (-x )=f (x ),则( )A .f (x )在⎝ ⎛⎭⎪⎫0,π2单调递减B .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递减C .f (x )在⎝⎛⎭⎪⎫0,π2单调递增D .f (x )在⎝ ⎛⎭⎪⎫π4,3π4单调递增11.将一骰子抛掷两次,所得向上的点数分别为m 和n ,则函数3213y mx nx =-+在[)1,+∞上为增函数的概率是( )A .12B .23C .34D .56第Ⅱ卷二、填空题(本大题共4小题,每小题4分,共16分.将答案填在答题卷相应位置上) 13.(理)[2011·某某卷] 一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.(文)[2011·皖南八校二模]某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1—50号,并分组,第一组1—5号,第二组6—10号,……,第十组46—50号,若在第三组中抽得为12的学生,则在第八组中抽得为的学生.14.某几何体的三视图,其中正视图是腰长为2的等腰三角形,侧视图是半径为1的半圆,则该几何体的表面积是 .15.[2011·课标全国卷] 在平面直角坐标系xOy 中,椭圆C 的中心为原点,焦点F 1,F 2在x 轴上,离心率为22.过F 1的直线l 交C 于A ,B 两点,且△ABF 2的周长为16,那么C 的方程为________________.16.[2011·某某卷] 设V 是全体平面向量构成的集合,若映射f :V →R 满足:对任意向量a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,以及任意λ∈R ,均有f (λa +(1-λ)b )=λf (a )+(1-λ)f (b ).则称映射f 具有性质P . 现给出如下映射:①f 1:V →R ,f 1(m )=x -y ,m =(x ,y )∈V ;②f 2:V →R ,f 2(m )=x 2+y ,m =(x ,y )∈V ; ③f 3:V →R ,f 3(m )=x +y +1,m =(x ,y )∈V .其中,具有性质P 的映射的序号为________.(写出所有具有性质P 的映射的序号) 三、解答题(本大题共6小题,满分74分.解答须写出文字说明、证明过程和演算步骤) 17. (本小题满分12分)在△ABC 中,,,A B C 的对边分别是,,a b c ,且满足(2)cos cos a c B b C -=.(1)求B ;(2)设(sin ,cos 2),(4,1),(1),A A k k ==>且m n ⋅m n 的最大值是5,求k 的值.18.(本小题满分12分)(理)[2011·某某八校联考]设不等式224x y +≤确定的平面区域为U ,1x y +≤确定的平面区域为V .(1)定义横、纵坐标为整数的点为“整点”,在区域U 内任取3个整点,求这些整点中恰有2个整点在区域V 的概率;(2)在区域U 内任取3个点,记这3个点在区域V 的个数为X ,求X 的分布列和数学期望.(文)( [2011·皖南八校二次模拟]已知向量(,),(1,2)x y ==-a b ,从6X 大小相同、分别标有1、2、3、4、5、6的卡片有放回地抽取两X ,x 、y 分别表示第一次、第二次抽取的卡片上的.(1)求满足1⋅=-a b 的概率; (2)求满足0⋅>a b 的概率.19. (本小题满分12分)(理)[2011·某某卷] 在如图所示的几何体中,四边形ABCD 为平行四边形,∠ACB =90°,EA ⊥平面ABCD ,EF ∥AB ,FG ∥BC ,EG ∥AC ,AB =2EF . (1)若M 是线段AD 的中点,求证:GM ∥平面ABFE ; (2)若AC =BC =2AE ,求二面角A -BF -C 的大小.(文)[2011·某某八校联考]已知直角梯形ABCD 中,//AB CD ,,1,2,13,AB BC AB BC CD ⊥===+过A 作AE CD ⊥,垂足为E ,G 、F 分别为AD 、CE 的中点,现将△ADE 沿AE 折叠,使得DE EC ⊥.(1)求证://FG BCD 面;(2)设四棱锥D-ABCE 的体积为V ,其外接球体积为/V ,求V V ':的值.20.(本小题满分12分)[2011·某某卷] 已知公差不为0的等差数列{a n }的首项a 1为a (a∈R ).设数列的前n 项和为S n ,且1a 1,1a 2,1a 4成等比数列.(1)求数列{a n }的通项公式及S n ;(2)记A n =1S 1+1S 2+1S 3+…+1S n ,B n =1a 1+1a 2+1a 22+…+1a 2n -1.当n ≥2时,试比较A n 与B n的大小.21. (本小题满分12分)[2011·某某某某一调]据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为k (0)k >.现已知相距18km 的A ,B 两家化工厂(污染源)的污染强度分别为,a b ,它们连线上任意一点C 处的污染指数y 等于两化工厂对该处的污染指数之和.设AC x =(km ). (1)试将y 表示为x 的函数;(2)若1a =,且6x =时,y 取得最小值,试求b 的值.22.(本小题满分14分)[2011·某某卷] 如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(1)设e =12,求|BC |与|AD |的比值;(2)当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.试卷类型:A2012届高三原创月考试题五参考答案数 学1. 【答案】A【解析】∵z =1+i ,∴z =1-i ,∴(1+z )·z =(2+i)(1-i)=3-i. 2. 【答案】 AABCDEGF ·· ABCDEGF【解析】求函数xy 11-=的定义域得{}01<≥=x x x A 或,求出A 的补集即可. 3. 【答案】B【解析】i =1时,a =1×1+1=2; i =2时,a =2×2+1=5; i =3时,a =3×5+1=16;i =4时,a =4×16+1=65>50,∴输出i =4,故选B. 4.【答案】A【解析】当x ≥2且y ≥2时,一定有x 2+y 2≥4;反过来当x 2+y 2≥4,不一定有x ≥2且y ≥2,例如x =-4,y =0也可以,故选A. 5. (理)【答案】B【解析】由古典概型的概率公式得P =1-2A 22A 22A 23+A 33A 22A 22A 55=25. (文)【答案】A6. 【答案】D【解析】由,,,a b a b b b αααα⊥⊂可得的位置关系有:与相交不一定垂直,所以D 不正确. 7. 【答案】B【解析】x =4+2+3+54=3.5,y =49+26+39+544=42,由于回归方程过点(x ,y ),所以42=9.4×3.5+a ^,解得a ^=9.1,故回归方程为y ^=9.4x +9.1,所以当x =6时,y =6×9.4+9.1=65.5. 8. 【答案】C【解析】由f (-x )=-f (x )知函数f (x )为奇函数,所以排除A ;又f ′(x )=12-2cos x ,当x 在x 轴右侧,趋向0时,f ′(x )<0,所以函数f (x )在x 轴右边接近原点处为减函数,当x =2π时,f ′(2π)=12-2cos2π=-32<0,所以x =2π应在函数的减区间上,所以选C. 9.【答案】B【解析】由题可知数列{n a }为等比数列且公比3q =,因为2469a a a ++=,故242(1)9a q q ++=,所以579a a a ++=24324552(1)(1)3a q q a q q q ++=++=,故15793log ()a a a ++=-5.10.【答案】A【解析】原式可化简为f (x )=2sin ⎝⎛⎭⎪⎫ωx +φ+π4,因为f (x )的最小正周期T =2πω=π,所以ω=2,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +φ+π4, 又因为f (-x )=f (x ),所以函数f (x )为偶函数,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +φ+π4=±2cos2x ,所以φ+π4=π2+k π,k ∈Z ,所以φ=π4+k π,k ∈Z ,又因为||φ<π2,所以φ=π4,所以f (x )=2sin ⎝⎛⎭⎪⎫2x +π2=2cos2x , 所以f (x )=2cos2x 在区间⎝ ⎛⎭⎪⎫0,π2上单调递减.11. 【答案】 D【解析】要使函数3213y mx nx =-+在[)1,+∞上为增函数,则需满足[)m n mx n mx y 2,12n 0222≤∴+∞≤≥-='上恒成立,在恒成立,即,本题转化为:将一骰子抛掷两次,所得向上的点数分别为m 和n ,求m n 2≤的概率,故选D. 12. 【答案】B【解析】由图可知a >0.当m =1,n =1时,f (x )=ax (1-x )的图象关于直线x =12对称,所以A 不可能;当m =1,n =2时,f (x )=ax (1-x )2=a (x 3-2x 2+x ), f ′(x )=a (3x 2-4x +1)=a (3x -1)(x -1),所以f (x )的极大值点应为x =13<0.5,由图可知B 可能.当m =2,n =1时,f (x )=ax 2(1-x )=a (x 2-x 3), f ′(x )=a (2x -3x 2)=-ax (3x -2),所以f (x )的极大值点为x =23>0.5,所以C 不可能;当m =3,n =1时,f (x )=ax 3(1-x )=a (x 3-x 4), f ′(x )=a (3x 2-4x 3)=-ax 2(4x -3),所以f (x )的极大值点为x =34>0.5,所以D 不可能,故选B.13. (理) 【答案】12【解析】设抽取男运动员人数为n ,则n 48=2148+36,解之得n =12.(文)【答案】 37【解析】组距为5,(8-3)5⨯+12=37.14. 【答案】2(π+【解析】此图形的表面积分为两部分:底面积即俯视图的面积为:32,侧面为一个完整的圆锥的侧面,母线长为2,底面半径为1,所以侧面积为π2,两部分加起来即为2(π3)+.又△ABF 2的周长为||AB +||AF 2+||BF 2=||AF 1+||BF 1+||BF 2+||AF 2=(||AF 1+||AF 2)+(||BF 1+||BF 2)=2a +2a =4a ,所以4a =16,a =4,所以b =22,所以椭圆方程为x 216+y 28=1.16. 【答案】①③【解析】设a =(x 1,y 1)∈V ,b =(x 2,y 2)∈V ,则λa +(1-λ)b =λ(x 1,y 1)+(1-λ)(x 2,y 2)=(λx 1+(1-λ)x 2,λy 1+(1-λ)y 2), ①f 1(λa +(1-λ)b )=λx 1+(1-λ)x 2-[λy 1+(1-λ)y 2] =λ(x 1-y 1)+(1-λ)(x 2-y 2)=λf 1(a )+(1-λ)f 1(b ), ∴映射f 1具有性质P ;②f 2(λa +(1-λ)b )=[λx 1+(1-λ)x 2]2+[λy 1+(1-λ)y 2],λf 2(a )+(1-λ)f 2(b )=λ(x 21 +y 1 ) + (1-λ)(x 22 + y 2 ), ∴f 2(λa +(1-λ)b )≠λf 2(a )+(1-λ)f 2(b ), ∴ 映射f 2不具有性质P ;③f 3(λa +(1-λ)b )=λx 1+(1-λ)x 2+(λy 1+(1-λ)y 2)+1 =λ(x 1+y 1+1)+(1-λ)(x 2+y 2+1)=λf 3(a )+(1-λ)f 3(b ), ∴ 映射f 3具有性质P .故具有性质P 的映射的序号为①③.17.解:(1)C b B c a cos cos )2(=-,C B B C A cos sin cos )sin sin 2(=-∴ ,即)sin(cos sin cos sin cos sin 2C B B C C B B A +=+=.π,2sin cos sin .A B C A B A ++=∴=10π,sin 0,cos .2A AB <<∴≠∴= .π0π,.3B B <<∴=(2)22π4sin cos 22sin 4sin 1,(0,)3k A A A k A A ⋅=+=-++∈m n , 设,sin t A =则(]1,0∈t .2222412()12t kt t k k ⋅=-++=--++m n ,(]1,0∈t .1,k >∴当1t =时,⋅m n 取最大值.依题意得,max 3()241,2k k ⋅=-++∴=m n .18.(理)解:(1)依题可知平面区域U的整点为()()()()()()0,0,0,1,0,2,1,0,2,0,1,1±±±±±±共有13个,平面区域V 的整点为()()()0,0,0,1,1,0±±共有5个, ∴2158313C .C 40C 143P ==. (2)依题可得:平面区域U 的面积为:2π24π⋅=,平面区域V 的面积为:12222⨯⨯=. 在区域U 内任取1个点,则该点在区域V 内的概率为214π2π=, 易知:X 的可能取值为0123,,,, 且()()323120133332π132π11111(0)C 1(1)C 122π8π2π2π8πP X P X π--⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅-===⋅⋅-=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, ,()21323333332π111111(2)C 1(3)C 12π2π8π2π2π8πP X P X -⎛⎫⎛⎫⎛⎫⎛⎫==⋅⋅-===⋅⋅-= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,.∴X 的分布列为:X 的数学期望()()()3233332π132π132π1130123=8π8π8π8π2πEX ---=⨯+⨯+⨯+⨯.(或者:1~(3,)2πX B ,故13=32π2πEX np =⨯=) (文)解:(1)设(x ,y )表示一个基本事件,则两次抽取卡片的所有基本事件有(1,1)、 (1,2)、(1,3)、(1,4)、(1,5)、(1,6)、(2,1)、(2,2)、 …、(6,5)、(6,6),共36个.用A 表示事件“1=-a b ”,即21x y -=-,则A包含的基本事件有(1,1)、(3,2)、(5,3),共3个,31()3612P A ==.(2)020,x y ⋅>->即a b 在(1)中的36个基本事件中,满足20x y ->的事件有(3,1)、(4,1)、(5、1)、(6,1)、(5,2)、(6、2)共6个,所以P (B )=61366=. 19.(理)解:(1)证法一:因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°,所以△ABC ∽△EFG ,∠EGF =90°. 由于AB =2EF ,因此BC =2FG ,连接AF ,由于FG ∥BC ,FG =12BC ,在平行四边形ABCD 中,M 是线段AD 的中点,则AM ∥BC 且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形,因此GM ∥FA ,又FA ⊂平面ABFE ,GM ⊄平面ABFE ,所以GM ∥平面ABFE . 证法二:因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°,所以△ABC ∽△EFG ,∠EGF =90°. 由于AB =2EF ,所以BC =2FG , 取BC 的中点N ,连接GN ,图1因此四边形BNGF 为平行四边形,所以GN ∥FB .在平行四边形ABCD 中,M 是线段AD 的中点,连接MN .则MN ∥AB . 因为MN ∩GN =N ,所以平面GMN ∥平面ABFE , 又GM ⊂平面GMN ,所以GM ∥平面ABFE . (2)解法一:因为∠ACB =90°,所以∠CAD =90°,又EA ⊥平面ABCD ,所以AC 、AD 、AE 两两垂直.图2分别以AC 、AD 、AE 所在直线为x 轴,y 轴和z 轴,建立如图2所示的空间直角坐标系, 不妨设AC =BC =2AE =2,则由题意得A (0,0,0),B (2,-2,0),C (2,0,0),E (0,0,1),所以AB →=(2,-2,0),BC →=(0,2,0),又EF =12AB ,所以F (1,-1,1),BF →=(-1,1,1).设平面BFC 的法向量为m =(x 1,y 1,z 1),则m ·BC →=0,m ·BF →=0,所以⎩⎪⎨⎪⎧y 1=0,x 1=z 1,取z 1=1得x 1=1.所以m =(1,0,1).设平面ABF 的法向量为n =(x 2,y 2,z 2),则n ·AB →=0,n ·BF →=0,所以⎩⎪⎨⎪⎧x 2=y 2,z 2=0,取y 2=1,得x 2=1,则n =(1,1,0),所以cos 〈m ,n 〉=m ·n |m ||n |=12.因此二面角A -BF -C 的大小为60°. 解法二:由题意知,平面ABFE ⊥平面ABCD ,取AB 的中点H ,连接CH .图3因为AC =BC ,所以CH ⊥AB ,则CH ⊥平面ABFE ,过H 向BF 引垂线交BF 于R ,连接CR ,则CR ⊥BF , 所以∠HRC 为二面角A -BF -C 的平面角. 由题意,不妨设AC =BC =2AE =2.在直角梯形ABFE 中,连接FH ,则FH ⊥AB ,又AB =22,所以HF =AE =1,BH =2,因此在Rt △BHF 中,HR =63,由于CH =12AB =2,所以在Rt △CHR 中,tan ∠HRC =263= 3.因此二面角A -BF -C 的大小为60°.(文)解:(1)证明:取AB中点H,连结,GH FH ,,,,GHBD FH BC GH BCD FH BCD ∴∴面面,,.FHGBCD GF BCD ∴∴面面面(2)()222121=213=3.1232,332V R ⨯⨯⨯=++=又外接球半径4826=π22=π,.338πV V V ''∴∴:=20.解: (1)设等差数列{a n }的公差为d ,由⎝ ⎛⎭⎪⎫1a 22=1a 1·1a 4,得(a 1+d )2=a 1(a 1+3d ).因为d ≠0,所以d =a 1=a ,所以a n =na ,S n =an n +12.(2)因为1S n =2a ⎝ ⎛⎭⎪⎫1n -1n +1,所以A n =1S 1+1S 2+1S 3+…+1S n =2a ⎝ ⎛⎭⎪⎫1-1n +1.因为a 2n -1=2n -1a ,所以B n =1a 1+1a 2+1a 22+…+1a 2n -1=1a ·1-⎝ ⎛⎭⎪⎫12n1-122a ⎝ ⎛⎭⎪⎫1-12n .当n ≥2时,2n =C 0n +C 1n +C 2n +…+C nn >n +1,即1-1n +1<1-12n ,所以,当a >0时,A n <B n ;当a <0时,A n >B n .21.解:(1)设点C 受A 污染源污染程度为2kax ,点C 受B 污染源污染程度为2(18)kb x -,其中k 为比例系数,且0k >.从而点C 处污染指数22(18)ka kby x x =+-. (2)因为1a =,所以,22(18)k kb y x x =+-,'3322[](18)b y k x x -=+-,令'0y =,得x =, 又此时6x =,解得8b =,经验证符合题意. 所以,污染源B 的污染强度b 的值为8.22.解:(1)因为C 1,C 2的离心率相同,故依题意可设C 1:x 2a 2+y 2b 2=1,C 2:b 2y 2a 4+x 2a2=1,(a>b >0).设直线l :x =t (|t |<a ),分别与C 1,C 2的方程联立,求得 A ⎝ ⎛⎭⎪⎫t ,a b a 2-t 2,B ⎝ ⎛⎭⎪⎫t ,b a a 2-t 2. 当e =12时,b =32a ,分别用y A ,y B 表示A ,B 的纵坐标,可知|BC |∶|AD |=2|y B |2|y A |=b 2a2=34. (2)t =0时的l 不符合题意,t ≠0时,BO ∥AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN相等,即b a a 2-t 2t =a ba 2-t 2t -a, 解得t =-ab 2a 2-b 2=-1-e2e2·a .因为|t |<a ,又0<e <1,所以1-e 2e 2<1,解得22<e <1.所以当0<e ≤22时,不存在直线l ,使得BO ∥AN ; 当22<e <1时,存在直线l ,使得BO ∥AN .。
2012年浙江省高等职业技术教育招生考试数学模拟试卷(问卷)一、选择题(本大题共18小题,均为单选题,每小题2分,共36 分)★1、已知集合{}2,A xx n n N ==∈,集合{}15B x x =-≤≤,若集合C A B⊂ ,则这样的集合C 有多少个 (▲) A 、3 B 、5 C 、7 D 、8 2、若不等式组x a x b>⎧⎨<⎩的解集为空集,则,a b 的关系是 (▲)A 、a b <B 、a b ≥C 、a b =D 、a b ≤ 3、若函数()f x 的图像经过点(0,1),则(4)f x +的函数的图象必经过点 (▲)A 、(4,-1)B 、(1,-4)C 、(-4,1)D 、(1,4)4、过点(1,2),且渐近线为3y x =± 的双曲线标准方程是 (▲) A 、221559xy-= B 、221559xy-+= C 、221559xy-= D 、221559xy-+=5、在三角形ABC 中:命题P :1cos 2A =是命题Q:sin 2A =的 (▲)A 、充分而非必要条件B 、必要而非充分条件C 、充要条件D 、既非充分也必要条件6、已知函数y =log 41x 与y =kx 的图象有公共点A ,且A 点的横坐标为2,则k 的值等于 (▲) A 、-41B 、41C 、-21D 、217、给出下列3个向量等式,其中正确的个数为 (▲)(1)0AB CA BC ++= (2)0AB AC BC --= (3)0AC AB BC --=.A . 0 B. 1 C. 2 D. 38、在等差数列{}n a 中若36a a G +=,则数列{}n a 的前8项的和8S 是 (▲) A 、G B 、2G C 、3G D 、4G 9、要得到函数()sin()3f x x π=-的图象,只需将()sin f x x =的图象 (▲) A 、向左平移3π B 、向右平移3π C 、向左平移6π D 、向右平移6π10、直线0103=-+y x 关于y 轴对称的直线方程是 (▲)A 、3100x y --=B 、3100x y -+=C 、3100x y ++=D 、3100x y +-= 11、已知312cos ,cos 513A B C A B C ==在三角形中,,cos 则的值是(▲)A 、6556 B 、-6556 C 、-6516 D 、6556或-651612、若点A (t ,-4)是曲线24250x x y ---=上的点,则t 的值为 (▲)A 、3 B 、3或1 C 、-3或1 D 、113、三棱锥P -ABC 的三个侧面与底面所成的二面角相等,则顶点在底面上的射影是底面三角形的 (▲)A 内心B 外心C 垂心D 重心★14、设00s 211,sin 2011co m ==则 (▲)A 、B 、C 、D 、15、(2x 3-x1)7的展开式中常数项是 (▲)A 、14B 、-14C 、42D 、-4216、若关于x 的二次不等式20ax bx c ++<的解集是空集,那么 (▲)A 、2040a b ac <->且B 、2040a b ac <-≤且C 、2040a b ac >-≤且D 、2040a b ac >->且17、苏宁电器行内某品牌饮水机定价1000元,因市场因素连续2次涨价10%,则现销售价为 (▲) A 、1110元 B 、1210元 C 、1200元 D 、1320元18、一只机器猫每秒前进或后退一步,程序设计人员让机器猫以每前进3步,再后退2步的规律移动,如果将此机器猫开始放在数轴的原点上,面向正的方向, 以一步的距离为1个单位长,令()P n 表示第n 秒时机器猫所在位置的坐标,且(0)0P =,则下列结论不正确...的是 (▲) A 、(3)3P = B 、(5)1P = C 、(101)21P = D 、(103)(104)P P <二、填空题:(本大题8小题,每小题4分,共24分) 19、指数函数()x f x a =过点(2,9),则a= ▲ 。
高中一年级5月数学考试试题(时间:120分钟,满分:150分)一、选择题(共12小题,每个5分。
每小题只有一个正确答案)1、下列说法正确的是AA、梯形一定是平面图形B、四边形一定是平面图形C、三点确定一个平面D、平面和平面有不同在一条直线上的三个交点2、下面四个命题:①分别在两个平行平面内的两条直线一定平行;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行。
其中正确的命题是 BA、①②B、②④C、①③D、②③3、有一个几何体的三视图如下图所示,这个几何体应该是CA、棱柱B、棱锥C、棱台D、圆台4、若直线∥平面,直线,则与的位置关系是 DA、∥B、与异面C、与相交D、与没有公共点5、在正方体中,下列几种说法正确的是DA、 B、C、与成角D、与成角6、下列命题中:(1)平行于同一直线的两个平面平行;(2)平行于同一平面的两个平面平行;(3)垂直于同一直线的两条直线平行;(4)垂直于同一平面的两条直线平行.其中正确命题的个数有 BA、1B、2C、3D、47、下列命题中正确的是CA、若一个角的两边与另一个角的两边分别平行,则这两个角相等。
B、有一个面是多边形,其余各面都是三角形,由这些面组成的几何体叫棱锥。
C、有两个面平行,其余各个面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱。
D、用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台。
8、若、表示直线,表示平面,则下列命题中,正确命题的个数为C①②③④A、1个B、2个C、3个D、4个9、球的表面积与它的内接正方体的表面积之比是AA、 B、 C、 D、10、右图代表一个未折叠的正方体的展开图,将其折叠起来,变成正方体后,应该是BA、 B、 C、 D、(第10题图)11、如右图为一个几何体的三视图,正视图和侧视图均为矩形,俯视图为正三角形,尺寸如图所示,则该几何体的全面积为 A_34A、24+B、6+C、32+D、14(第11题图)12、如图,在中,,ACBD若将绕所在直线旋转一周,所形成的旋转体的体积是A、 B、 C、 D、(第12题图)二、填空题(请将正确答案填在答题纸横线上)13、若直线AB、ADα,直线CB、CDβ,点E∈AB,点F∈BC,点G∈CD,点H∈DA,若直线EH∩直线FG=M,则点M在上。
稳派理科新课改2012届高三高考压轴考试 湖北数学(理科)参考答案与评分细则1、【答案】B .【解析】因为22(1)|1|(1)(1)z z z z -=-=--,所以(1)()0z z z --=,求得1z =或z z =,即z 为实数.故选B .【命题立意】考查复数的代数式运算和对复数概念的理解. 2、【答案】C .【解析】对于②,当0m =时,其逆命题不成立,所以②错误;对于④,其概率为14π-,所以④错误的.故选C .【命题立意】考查命题的真假判断、全称量词与存在量词的否定形式、充要条件的理解以及几何概型的概率计算.3、【答案】C .【解析】函数sin()23y x πω=++的图象经过变换后,所得函数图象对应的解析式为4sin()233y x ωππω=-++,依题意,42333k πωπππ-+=+(k ∈Z ),解得32k ω=-(k ∈Z ),对照选择支,可知当1k =-时,ω的一个可能的取值为32.故选C .【命题立意】考查三角函数的图像变换.4、【答案】D .【解析】由三视图知,该几何体是一个底面为直角三角形的直棱柱,其表面积等于12(12)1222)2⨯⨯+⨯+⨯8=+D .【命题立意】考查几何体的三视图与几何体表面积的计算.5、【答案】A .【解析】由 0.70.35y x =+得2.54 4.534560.70.3544t ++++++=⨯+,所以11 3.54t +=,求得3t =. 故选A .【命题立意】考查线性回归方程的简单应用.6、【答案】B .【解析】作出满足条件的可行域(如图),因为|3||4|z x y =-+-|1|x y ≥+-,可知,当可行域内的点(,)x y 满足x y =时,z 取得最小值1.故选B .【命题立意】考查可行域的图形理解和求绝对值函数的最值问题.7、【答案】D .【解析】首先考虑个位,个位上的数字是相连续的三个数字之和,只需满足(1)(2)n n n ++++10<,所以个位仅能取0,1,2;再考虑百位和十位,由定义知,百位和十位分别是相同的数,且都满足310n <,所以百位和十位可以取0,1,2,3.于是小于1000的“良数”个数有443⨯⨯ 48=(种).故选D .【命题立意】考查对创新概念的理解和排列问题的计算. 8、【答案】B .【解析】因为22n S n n =-,所以11,123,2n nn S n a n S S n -=⎧==-⎨-≥⎩,所以123121232(23)2kS k =-⨯+⨯+⨯++-⨯ , ①23412121232(23)2k S k +=-⨯+⨯+⨯++-⨯ , ②所以①-②得34112(222)(23)2k k S k ++-=-++++--⋅,即110(25)2k S k +=+-⋅ (k *∈N ).由100S ≥得4k ≥,所以106S =.故选B .【命题立意】考查程序框图知识和数列的通项公式与求和公式的计算.9、【答案】C .【解析】依题意,当1x >时,ln 0x >,sgn(ln )1x =,则22()sgn(ln )ln 1ln f x x x x =-=-,令21ln 0x -=,得x e =或1x e=,结合1x >得x e =;当1x =时,ln 0x =,sgn(ln )0x =,2()ln f x x =-,令2ln 0x -=,得1x =,符合;当01x <<时,ln 0x <,sgn(ln )1x =-,()f x =21ln x --,令21l n 0x --=,得2l n 1x =-,此时无解.因此2()sgn(ln )ln f x x x =-的零点个数为2.故选C .【命题立意】考查创新概念理解和函数零点个数的判断. 10、【答案】D .【解析】不妨设12x x >,则左边可化为1212()()()()f a x f a x g x g x -≤-,即11()(2)g x a a-+⋅ 1221()(2)x g x a x a ≥-+恒成立.构造函数1()()(2)h x g x a x a=-+,结合选择支,若2()g x x =+ln 2x -,则11()(2)(2)h x x a x a'=+-+,由已知1()2f x x x =+在[],a b 上单调递增,所以11()(2)(2)0h x x a x a'=+-+≥成立,则1212()()()()f a x f a x g x g x -≤-成立.同理可证当2()ln 2g x x x =+-时对右边也成立.故选D .【命题立意】考查函数的性质,体现导数在研究函数问题中的应用价值.(一)必考题(11---14题)11、【答案】3.【解析】设等差数列{}n a 的首项为1a ,公差为d (0d ≠),则2214S S S =,即211(2)a d a +=⨯1(46)a d +,求得12d a =,则21113a a da a +==.故填3. 【命题立意】考查等差、等比数列通项公式、求和公式即性质的简单应用.12、【答案】80-.【解析】00sin )cos )|2a x x dx x x ππ=-=+=-⎰,所以252()x x-+展开式的通项是10315(2)rr r r T C x -+=-,当3r =时,得其x 的系数为80-.故填80-.【命题立意】考查定积分的计算和利用二项展开式通项公式的求展开式中的特征项. 13、【答案】3Vk. 【解析】因为平面四边形的面积112233441()2S a d a d a d a d =+++,由已知条件有412()i i Sih k==∑,类比到三棱锥,三棱锥的体积112233441()3V S d S d S d S d =+++,又因为1212S S =3434S S k ===,所以413()i i V k id ==∑,即413()i i V id k ==∑.故填3V k .【命题立意】考查从平面到空间的类比推理能力. 14、【答案】6;9.【解析】由100ab a b +--=可得911b a =--,9161a b a a +=+-≥-,当且仅当91a =- 1a -,即4a =时等号成立,所以6m =;满足不等式22326x y +≤的点在椭圆22123x y +=上及其内部,整点共有9个. 故填6;9.【命题立意】考查利用均值不等式求二元条件最值和闭区域几何图形中的整点问题. (二)选考题(考生注意:请在第15、16两题中任选一题作答,如果全选,则按第15题作答结果评分)15、【答案】【解析】因为圆O 的半径为3,圆心O 到BC所以4BC ==.又AB =2AC B C -=,所以212AD AB AC =⋅=,即AD =故填【命题立意】考查平面几何知识中切割线定理等在平面几何图形中的边角计算.16、【解析】将点P 转化为直角坐标系,得(1P ;激昂直线l 转化成直角坐标,得:6l x -0=.则点P 到直线l 的距离为1d ==.故填1.【命题立意】考查极坐标与参数方程与普通方程的转化即点到直线的距离公式的应用.17、【解析】(1)因为点C 的坐标为34(,)55,根据三角函数 的定义知,4sin 5COA ∠=,3cos 5COA ∠=; 2分 又因为△AOB 为正三角形,所以3AOB π∠=.于是,cos cos()cos cossin sin333BOC COA COA COA πππ∠=∠+=∠-∠=. 5分 (2)因为AOC θ∠=(02πθ<<),所以3BOC πθ∠=+.在△BOC 中,||||1OB OC ==,由余弦定理可得,222()||||||2||||cos f BC OC OB OC OB BOC θ==+-∠22cos()3πθ=-+,即函数()f θ的解析式为()22cos()3f πθθ=-+. 8分因为02πθ<<,所以5336πππθ<+<,所以1cos()32πθ<+<,于是,1()2f θ<<,即函数()f θ的值域是(1,2. 12分 【命题探究】第(1)问考查单位圆中的三角函数定义和余弦的和角公式在求角的应用;第(2)问考查余弦定理的应用和三角函数值域的求解.18、【解析】(1)依题意,研究室的两个课题组都需要完成一项或两项课题研究任务,则①完成一项课题研究任务的概率为112221112()()33229C C ⋅⋅⋅⋅⋅=;②完成两项课题研究任务的概率为22111()()33229⋅⋅⋅=.于是,该研究室在完成一次课题研究任务中荣获“先进和谐研究室”的概率为211993P =+=. 5分 (2)该研究室在一次课题任务中荣获“先进和谐研究室”的概率为11222222222212284()(1)()333399P C C P P P P P ⎡⎤=⋅⋅-+⋅=-⎣⎦, 而(6,)B P ξ ,所以6E P ξ=. 10分 由 2.5E ξ≥知,22284()6 2.599P P -⨯≥,求得23544P ≤≤. 又21P ≤,所以2314P ≤≤,即2P 的取值范围是3,14⎡⎤⎢⎥⎣⎦. 12分 【命题探究】本题考查概率的计算、随机变量的分布列性质和数学期望的计算.求解离散型随机变量的问题,必须注意两点:(1)理解分布列的基本性质:①非负性,即0(1,2,,)i p i n ≥= ;②11nii p==∑.(2)掌握计算数学期望的公式:1122n n E x p x p x p ξ=+++ .如果随机变量服从二项分布,则可直接利用公式计算其数学期望,即若(,)B n p ξ ,则E np ξ=. 19、【解析】(1)因为21n a -,2n a ,21n a +成等差数列,所以221212n n n a a a -+=+, 由11a =,22a =,可知33a =.又2n a ,21n a +,22n a +成等比数列,所以221222n n n a a a ++=⋅,由22a =,33a =,可知492a =. 同理,求得56a =,68a =. 4分(2)方法1:依题意,有221212212222n n n n n n a a a a a a -+++=+⎧⎨=⎩,由11a =,22a =和递推关系知,0n a >,所以22n a,即=所以2d ==的等差数列,1)(1)22n n +=-⋅=,即22(1)2n n a +=, 8分 代入递推关系式,得22221222(1)(2)22n n n n n aa a ++++==⋅,所以21(1)(2)2n n n a +++=.于是,当n 为偶数时,22(1)(2)228n nn a ++==; 当n 为奇数时,11(1)(2)(1)(3)2228n n n n n a --++++==. 12分 (注:通项公式也可以写成2117(1)8216n n a n n +-=++,n *∈N )方法2:根据(1)求出的特值,提出猜想:21(1)2n n n a -+=,22(1)2n n a +=(n *∈N ),6分用数学归纳法证明如下.①当1n =时,21111(11)12a a ⨯-⋅+===,2212222a a ⨯===,猜想成立. ②假设n k =(1k ≥,k *∈N )时,猜想成立,即21(1)2k k k a -+=,22(1)2k k a +=,那么[]22(1)121221(1)(1)1(1)(1)22222k k k k k k k k k a a a a +-+-+++++==-=⨯-=,[]22222212(1)222(1)1(1)(2)(1)(2)2222k k k k k a k k k k a a a +++++++++⎡⎤===÷==⎢⎥⎣⎦, 所以当1n k =+时,猜想也成立.根据①、②知,对任意的n *∈N ,猜想成立. 10分于是,当n 为奇数时,11(1)(1)(3)2228n n n n n a +++++==; 当n 为偶数时,22(1)(2)228n n n a ++==. 12分 (注:通项公式也可以写成2117(1)8216n n a n n +-=++,n *∈N )【命题探究】本题考查等比数列、等差数列的性质和通项公式求解.探究数列的通项公式一般有两种方法,一是利用递推式进行代数恒等变换,推到出通项公式;另一种是先通过特值计算然后提出猜想,最后利用数学归纳法证明.20、【解析】(1)折叠前,因为EF BC ∥,BC AB ⊥; 所以折叠后,有EF PE ⊥,EF BE ⊥, 且PE BE E = ,所以PE ⊥平面PBE .又PB ⊂平面PBE ,所以EF PB ⊥. 5分 (2)二面角P FC B --的平面角的余弦值为定值,证明如下:因为BC BE ⊥,所以以B 为坐标原点,BC 为x 轴,BE 为y 轴,垂直于平面BCFE 的直线为z 轴,建立如图所示的空间直角坐标系,设BE t =,则2AE t =-. 由题设条件得,(0,0,0)B ,(2,0,0)C ,(0,,0)E t ,(2,,0)F t t -,30,1,)22P t t ⎛⎫-- ⎪ ⎪⎝⎭,3(2,)2CP t =-- ,(,,0)CF t t =- .设平面PFC 的法向量为(,,)x y z =m ,则00CP CF ⎧⋅=⎪⎨⋅=⎪⎩ m m,即32(1))0220x t y z tx ty ⎧-+-+=⎪⎨⎪-+=⎩, 取1x =,得1y =,z =(1,1=m ,又平面BCF 的法向量为(0,0,1)=n ,所以cos ,||⋅<>===m n m n |m ||n |. 12分 【命题探究】本题以折叠问题为载体,体现立体几何中从平面到空间的动态过程.第(1)问证明空间的线面垂直,一般都需要从线面垂直过渡;第(2)问探求二面角的平面角的余弦值是定值,其中,向量法是计算二面角的平面角的常用方法.21、【解析】(1)设(,)Q x y ,则||34QF x ++=(3x >-),z34x +=(3x >-),化简得24y x =-((]3,0x ∈-).所以动点Q 的轨迹C 为抛物线24y x =-位于直线3x =-右侧的部分. 3分(2)因为1()2FP FA FB =+ ,所以P 为AB 的中点;又因为0EP AB ⋅= ,且(,0)E OE x =,所以点E 为线段AB 的垂直平分线与x 轴的交点.由题意可知,直线l 与x 轴不垂直,所以不妨设直线l 的方程为(1)y k x =-,由(]2(1)4(3,0)y k x y x x =-⎧⎨=-∈-⎩,得2222(42)0k x k x k +-+=(](3,0)x ∈-. (*) 设2222()(42)f x k x k x k =+-+,要使直线l 与曲线C 有两个不同的交点,只需22422(42)4042302(3)0(0)0k k k k f f ⎧=-->⎪-⎪⎪-<<⎨-⎪->⎪>⎪⎩△,解得2314k <<. 6分 设11(,)A x y ,22(,)B x y ,则由(*)式得,2122242k x x k-+=, 所以线段AB 中点P 的坐标为122212P x x x k +==-,2(1)P P y k x k=-=-, 则直线EP 的方程为2212(1)y x k k k+=--+.令0y =,得到点E 的横坐标为221E x k=--,因为2314k <<,所以1133E x -<<-,即E x 的取值范围是11(,3)3--. 10分 (3)不可能.证明如下:要使△PEF 能否成为以EF 为底的等腰三角形,只需2P E F x x x =+, 即22222(1)11k k -=---,解得212k =.另一方面,要使直线满足(2)的条件,需要23(,1)4k ∈, 而13(,1)24∉,所以不可能使△PEF 成为以EF 为底的等腰三角形. 13分 【命题探究】本题从探求圆锥曲线的轨迹问题提出命题,对于轨迹问题求解,要注意检验轨迹方程中隐含的限制条件.本题第(2)问以向量知识提出条件信息,既体现了向量的工具作用,也凸显高考解析几何命题的一种常见风格.本题第(3)问是一个研究性问题,当求出满足条件的参数后,要进行检验是否满足命题的大前提条件. 22、【解析】(1)由题意,211()0sin g x x xθ'=-+≥在[)1,+∞恒成立,即2sin 10sin x x θθ-≥在[)1,+∞恒成立.因为(0,)θπ∈,所以sin 0θ>,故sin 10x θ-≥在[)1,+∞恒成立,只需sin 110θ⋅-≥, 即sin 1θ≥,只有sin 1θ=,所以2πθ=. 3分(2)构造函数()()()()F x f x g x h x =--,则2()2ln m e F x mx x x x=---. 当0m ≤时,由[]1,x e ∈,得0m mx x -≤,22ln 0ex x--<,所以在[]1,e 上不存在一个0x ,使得000()()()f x g x h x ->成立;当0m >时,22222222()m e mx x m eF x m x x x x-++'=+-+=, 因为[]1,x e ∈,所以220e x -≥,20mx m +>,即()0F x '>在[]1,e 上恒成立,故()F x 在[]1,x e ∈上单调递增,max ()()40mF x F e me e==-->,解得241e m e >-.8分 (3)由(1)知,当2πθ=时,1()ln g x x x=+在[)1,+∞上为增函数, 所以()(1)1g x g ≥=,即1ln 1x x≥-(0x >). (*) 对(*)式令1x k =(k *∈N ),则1ln 1k k≥-,取1,2,,k n = ,并把这n 个不等式累加,得111ln ln ln (11)(12)(1)12n n+++≥-+-++- ,即1(1)(1)ln !22n n n n n n +-≥-=,即(1)ln(!)2n n n -≤,所以(1)2!n n n e -≤; 11分又对(*)式令(1)x k k =+(k *∈N ),则1ln (1)1(1)k k k k +≥-+,取1,2,,k n =,并把这n 个不等式累加,得[]111ln(12)ln(23)ln (1)(1)(1)11223(1)n n n n ⎡⎤⨯+⨯+++≥-+-++-⎢⎥⨯⨯+⎣⎦, 即22211111ln 123(1)(1)()()2231n n n nn ⎡⎤⎡⎤⨯⨯⨯⨯⨯+≥--+-++-⎣⎦⎢⎥+⎣⎦,即21ln (!)(1)111n n n n n ⎡⎤+≥-+>-⎣⎦+,所以12(!)1n e n n ->+,即12!n n ->.1(1)22!n n n en e --<≤(n *∈N )得证. 14分【命题探究】本题是一道利用导数知识研究函数性质的综合题,主要考查利用导数研究函数的单调性,探究参数的取值范围和证明不等式等知识.在利用导数探求参数的取值范围问题时,要注意体现分类讨论与整合思想.第(3)问是利用函数不等式的结论证明数列型不等式,对于这类不等式的证明,需要有预测性地理解命题的构成思想(这是问题求解的思维难点),即从前面研究的函数式中对参数a 确定一个符合不等式结构的定值,再利用单调性得到一个不等式模型,对其中的自变量赋值即可得到解题的基本思路和方向.。
12012年内蒙古自治区高等职业院校 对口招收中等职业学校毕业生单独考试一、选择题1. 已知全集U={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6,7},则)B C (A U =( )A. {2,4,5,8}B.{4,5}C. {3}D.∅ 2.不等式01|5|≤--x 的解集是( )A.}64|{><x x x 或B.}64|{<<x xC.}64|{≥≤x x x 或D.}64|{≤≤x x 3.由下列条件决定的角θ中,一定是第二象限角的是( )A.0cos 0sin <>θθ且B. 0cos sin <⋅θθC.0tan 0cos >>θθ且D. 0tan cos <⋅θθ 4.若向量),2(),3,1(x b a =-=,且b a //,则x 的值是( ) A. 6 B.23 C. -6 D. 32 5.在等比数列}{n a 中,已知9,696==a a ,则3a =( )A.4B.3C.23D. 9166.若直线4=+y ax 与直线014=-+ay x 互相垂直,则a 的值等于( ) A.4 B.2± C.2 D. 07.从4,5,7,11,13这五个数中,任取两个不同的数字组成分数,则不同的分数共有( ) A. 10个 B.15个 C.20个 D. 25个8. 若椭圆13610022=+y x 上一点P 到焦点1F 的距离等于6,则点P 到另一个焦点2F 的距离为( )A .2B .4C . 8 D. 149. 10)1(x +展开式的第8项是( )A. 7710x C B.3710x C C. 8810x C D. 2810x C 10. 下列命题中正确的是( )A. 垂直于同一直线的两条直线互相平行B. 垂直于同一平面的两条直线互相平行C. 垂直于同一直线的两条直线互相垂直D. 平行于同一平面的两条直线互相平行11.在同一直角坐标系中,函数a x y +=与)10(≠>=a a a y x 且的图象可能是( )A. B. C. D.12.若方程11222=+-+m y m x 表示双曲线,则m 的取值范围为() A. ),1(+∞- B.),2(+∞- C.),1()2,(+∞---∞ D.)1,2(-- 二、填空题13. 函数)32sin(2π-=x y 的最小正周期是 .14. 210325)25.0()32(25log 8log ---+⋅= .15. 经过两直线082=++y x 与03=++y x 的交点,且与直线0534=-+y x 平行的直线方程是 .16. 甲乙二人独立射击同一目标,甲击中目标的概率是52,乙击中目标的概率是31,两人各射击一次,目标恰中一枪的概率是 .217. 如图,正三角形ABC 的边长为4,ABC AE 平面⊥,且2=AE ,则点E 到BC 的距离为 .18. 抛物线y x 42=上的一点M 到焦点的距离为10,则点的坐标是 . 三、解答题19.(本小题满分8分)设等差数列}{n a 的前n 项和为n S ,已知62=a ,32631=+a a ,求n n S a 和.20.(本小题满分8分)已知向量212123),1,0(),0,1(e e a e e -===,214e e b +=.求下列各式的值: (1)∙ ; (2)||b a +.21.(本小题满分10分)已知51cos sin =-αα,且α为第一象限角,求下列各式的值: (1)α2sin (2)αtan22.(本小题满分10分)已知圆C 经过点)1,2(P ,圆心在直线x y =上,并且与直线026=+-y x 相切.求圆C的标准方程.23.(本小题满分12分)已知二次函数c x ax x f +-=4)(2的对称轴方程为2=x ,且满足1)2(-=f ,设)]([log )(2x f x g =.求:(1))(x f 的解析式;(2)函数)(x g 的定义域;(3)使得3)(>x g 成立的x 的集合.24.(本小题满分12分)如图,正方形ABCD 的边长为4,O 为对角线的交点,E 、F 分别是AB 和AD 的中点,ABCD GC 平面⊥,且2=GC . (1)证明:EFG BD 平面//; (2)求B 到平面EFG 的距离.ABCEBACDGFEO。
2012年高职高考第五次月考数学试卷注意:本试卷共2页,第1页为选择题和填空题,第2页为答题卡,解答题在答题卡上,满分为150分,考试时间为120分钟。
所有答案必须写在答题卡上,否则不予计分。
一、选择题:共15小题,每小题5分,共75分;在每小题给出的四个选项中,只有一项是符合题目要求。
1.已知集合A={0,1,2,3},B={2,4,6},则=B AA.φB.{0,1,2,3,4,6}C.{0,1,2,3}D.{2} 2.已知向量)4,3(-=a ,则=aA.5B.7C.13D.7 3.函数y =2sinx+1的最大值为A.-1B.1C.2D.3 4.直线2x-y+1=0的斜率是A.-2B.-1C.2D.1 5.在等差数列}{n a 中,首项31=a ,公差2=d ,则前7项和=7S A.63 B.54 C.15 D.17 6.下列函数中,函数值恒大于零的是 A.2x y = B.x y 2log= C.xy 2= D.x y cos =7.等比数列}{n a 中,若3021=+a a ,12043=+a a ,则=+65a a A.240 B.480 C.720 D.9608.设函数x x x f sin )(3+=A.是奇函数B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数 9.已知向量)1,3(-=a ,b =(5,y),若a ‖b ,则y= A.53-B.35-C.53 D.3510.抛物线x y 42=的准线方程是A.1=yB.1-=yC.1=xD.1-=x 11.不等式421<-x 的解集是A.RB.(-1,3)C.(0,2)D.),3()1,(∞+--∞12.从6名男大学生和2名女大学生中选取4名参加演讲团,2名女大学生全被选中的概率为 A.31 B.72 C.143 D.14513.=165cos 15sin 4A.2B.-2C.1D.-1 14.若1>a ,则 A.0l og21<a B. 0log2<a C.01<-aD.012<-a15.圆心在点C(5,0),且与直线0543=++y x 相切的圆的方程是 A.0161022=+-+x y xB.091022=+-+x y xC.0161022=--+x y xD.091022=--+x y x二、填空题:共5小题, 每小题5分,共25分.答案请写在答题卡上. 16.求值:=-+-)45tan()21(1.17.椭圆1153122=+yx的焦距等于___________.18.在△ABC 中,已知∠A=60o,b=8,c=3,则a=____________. 19.化简:=-10cos 30cos 10sin 30sin .20.若函数)2(log )(2m x x f +=的定义域为),2(∞+,则=)10(f .2011—2012学年第二学期数学科第五次月考试卷_____级____班 姓名__________ 学号________ 得分_________===========密====封===线=======密====封===线=======密====封===线2012年高职高考第五次月考数学试卷答题卡一、选择题:共15小题,每小题5分,共75分填涂样例: 正确填涂 (注意:胡乱填涂或模糊不清不记分) 1 [A] [B] [C] [D]6 [A] [B] [C] [D] 11 [A] [B] [C] [D] 2 [A] [B] [C] [D]7 [A] [B] [C] [D] 12 [A] [B] [C] [D] 3 [A] [B] [C] [D]8 [A] [B] [C] [D] 13 [A] [B] [C] [D] 4[A ][B] [C] [D] 9 [A] [B] [C ][D] 14[A] [B] [C] [D] 5 [A] [B] [C] [D] 10 [A] [B] [C] [D]15 [A] [B] [C] [D]二、填空题:共5小题,每小题5分,共25分 16.17.18. 19. 20.三、解答题:共4小题,其中21题10分,22题12分,23、24题14分,共50分.解答应写出文字说明、证明过程或演算步骤. 21.已知)2,0(πα∈,且2592cos sin2=+αα,求(1)αsin ;(2)αcos . (10分)22.已知二次函数)()(2Z a c bx ax x f ∈++=为偶函数,对于任意的R x ∈,1)(≤x f 恒成立,且0)1(=f ,求: (1)b 的值;(2))(x f 的表达式。
(12分23.(14分)已知等差数列}{n a 的前7项和为42,前9项之和比第4项多57, (1)求等差数列}{n a 的首项1a 和公差d ;(2)设}{n n a b -是首项为2,公比为3的等比数列,求数列}{n b 的通项公式及其前n 项和n T 。
24.设双曲线中心在原点O ,焦点F 1、F 2在x 轴上,实轴长为4,离心率为6=e , (1)求双曲线的方程;(2)若点P 在双曲线上,且 9021=∠PF F ,求21PF F ∆的面积;(3)若过点M(1,1)的直线l 与双曲线交于A 、B 两点,且M 恰为线段AB 的中点,求直线l 的方程. (14分)2011—2012学年第二学期数学科第五次月考试卷_____级____班 姓名__________ 学号________ 得分_________===========密====封===线=======密====封===线=======密====封===线2012年高职高考第五次月考数学试卷参考答案一、选择题:共15小题,每小题5分,共75分 BADCA CBABD BCDAB二、填空题:共5小题,每小题5分,共25分16.1 17.8 18.7 19.2 20.4三、解答题:共4小题,其中21题10分,22题12分,23、24题14分共50分. 21.解:(1)由已知得259)sin 21(sin 22=-+αα ……………………………2分2516sin 2=⇒α ……………………………3分∵)2,0(πα∈∴54sin =α ……………………………5分 (2) 由(1)知54sin =α,而)2,0(πα∈∴53)54(1sin 1cos 22=-=-=αα ……………………………10分22.解:(1)由函数c bx ax x f ++=2)(为偶函数得)()(x f x f =- …………………1分⇒0)()(22=⇒++=+-⨯+-b c bx axc x b x a …………………5分(2)由(1)知0=b ,则c ax x f +=2)( …………………6分a c c a c a f -=⇒=+⇒=+⨯=001)1(2…………………7分∵对于任意的R x ∈,1)(≤x f 恒成立∴1)(2≤-=a ax x f 即012≤--a ax 恒成立 …………………8分 ∴0<a 且0)1(4≤---=∆a a 01≤≤-⇒a …………………10分 又∵Z a ∈∴1-=a ,1=c …………………11分 ∴1)(2+-=x x f …………………12分 23.解:(1)依题意得63422)17(77117=+⇒=-+=d a d a S ① ……………………2分 573385732)19(995711149=+⇒++=-+⇒+=d a d a d a a S ② …………4分由①②解得:31=a ,1=d ……………………7分 (2)由(1)知31=a ,1=d ,则21)1(3+=⨯-+=n n a n ……………………8分∴)2(323211++⨯=⇒⨯=---n b a b n n n n n ………………10分∴)]2(53[)323232(110+++++⨯++⨯+⨯=-n T n n …………11分2)]2(3[31)31(2+++--=n n n……………………13分1252132-++=n n n……………………14分24.解:由题设知所求的双曲线方程是标准方程,且焦点在x 轴上,可设双曲线的标准方程为12222=-by ax ,则242=⇒=a a ……………………1分62262626=⨯==⇒==a c ac e ……………………2分∴22)6(2222=-=-=ac b ……………………3分∴所求的双曲线方程为12422=-yx……………………4分(2)设交点为m PF =1,n PF =2,且n m >,则由题设知424)62()2(422222=⇒⎩⎨⎧===+==-mn c n m a n m ……………………8分∴21PF F ∆的面积221==∆mn S ……………………9分(3)设直线l 的斜率为k ,A 、B 的坐标分别为),(11y x 、),(22y x ,则直线l 的方程为)1()1(1k kx y x k y -+=⇒-=- ……………………10分 由04)1(2)1(4)21(124)1(22222=----+-⇒⎪⎩⎪⎨⎧=--+=k x k k x k yx k kx y ………………11分 ∴22121)1(4kk k x x ---=+ ……………………12分又∵M 为线段AB 的中点 ∴21121)1(2)(21221=⇒=---=+k kk k x x ……………………13分∴直线l 的方程为)1(211-=-x y 即012=+-y x ……………………14分。