第3章无机化学热力学
- 格式:pdf
- 大小:956.24 KB
- 文档页数:47
第三章 化学热力学基础思考题与习题2-1 何谓物质的标准状态?答:物质的标准状态是在温度为T 及标准压力Pө(Pө=100 kpa )下的状态。
2-2 计算下列各体系由状态A 变化到状态B 时热力学能的变化(1) 吸收了2000KJ 热量,并对环境做功300KJ 。
(2) 向环境放出了12.54KJ 热量,并对环境做功31.34KJ 。
(3) 从环境吸收了7.94KJ 热量,环境对体系做功31.34KJ 。
(4) 向环境放出了24.5KJ 热量,环境对体系做功26.15KJ 。
解:(1)1700KJ 300KJ -KJ 2000==+=∆W Q U(2) -43.88KJ 31.34KJ -KJ 4.512=-=+=∆W Q U(3) KJ 8.293KJ 4.331KJ 4.97=+=+=∆W Q U(4) 1.64KJ 26.15KJ .5KJ 24=+-=+=∆W Q U2-3 某体系由状态Ⅰ沿途径A 变到状态Ⅱ时从环境吸热314.0 J ,同时对环境做功117.0 J 。
当体系由状态Ⅱ沿另一途径B 变到状态Ⅰ时体系对环境做功44.0 J ,问此时体系吸收热量为多少? 解:(1)由状态Ⅰ变到状态Ⅱ:J 0.197J 0.117J 0.3141=-=+=∆W Q U(2)由状态Ⅱ变到状态Ⅰ:122U J,0.44U W ∆-=∆-=J 0.1971222-=∆-=-=∆U W Q U J 0.1532-=Q2-4、在1标准压力下,100℃时1mol 液态水体积为18.8mL ,而1mol 水蒸气的体积为30.2ml ,水的汽化热为40.67KJ ·mol -1,计算100℃时在标准压力下由30.2g 液态水蒸发为水蒸气时的△H 和△U 。
解:68.23KJ l 40.67KJ.mo mol 18.030.2H1-P =⨯==∆Q()63.02KJ 103738.314mol 18.030.2-68.23KJ RT n -H U 3-=⨯⨯⨯=∆∆=∆ 2-5、甲苯,CO 2和水在298K 时的标准生成焓分别为48.0KJ·mol -1、-393.5KJ·mol -1和-286.0KJ·mol -1,计算298K 和恒压下10gCH 4 (g)完全燃烧时放出的热量。
无机化学部分第一章 物质存在的状态一、气体1、气体分子运动论的基本理论①气体由分子组成,分子之间的距离>>分子直径;②气体分子处于永恒无规则运动状态;③气体分子之间相互作用可忽略,除相互碰撞时;④气体分子相互碰撞或对器壁的碰撞都是弹性碰撞。
碰撞时总动能保持不变,没有能量损失。
⑤分子的平均动能与热力学温度成正比。
2、理想气体状态方程①假定前提:a 、分子不占体积;b 、分子间作用力忽略②表达式:pV=nRT ;R ≈8.314kPa ·L ·mol 1-·K 1-③适用条件:温度较高、压力较低使得稀薄气体④具体应用:a 、已知三个量,可求第四个;b 、测量气体的分子量:pV=M W RT (n=MW ) c 、已知气体的状态求其密度ρ:pV=M W RT →p=MV WRT →ρMVRT =p 3、混合气体的分压定律①混合气体的四个概念a 、分压:相同温度下,某组分气体与混合气体具有相同体积时的压力;b 、分体积:相同温度下,某组分气体与混合气体具有相同压力时的体积c 、体积分数:φ=21v v d 、摩尔分数:xi=总n n i ②混合气体的分压定律a 、定律:混合气体总压力等于组分气体压力之和;某组分气体压力的大小和它在混合气体中体积分数或摩尔数成正比 b 、适用范围:理想气体及可以看作理想气体的实际气体c 、应用:已知分压求总压或由总压和体积分数或摩尔分数求分压、4、气体扩散定律①定律:T 、p 相同时,各种不同气体的扩散速率与气体密度的平方根成反比: 21u u =21p p =21M M (p 表示密度) ②用途:a 、测定气体的相对分子质量;b 、同位素分离二、液体1、液体①蒸发气体与蒸发气压A、饱和蒸汽压:与液相处于动态平衡的气体叫饱和气,其气压叫做饱和蒸汽压简称饱和气;B、特点:a、温度恒定时为定值;b、气液共存时不受量的变化而变化;c、物质不同,数值不同②沸腾与沸点A、沸腾:当温度升高到蒸汽压与外界压力相等时,液体就沸腾,液体沸腾时的温度叫做沸点;B、特点:a、沸点的大小与外界压力有关;外界压力等于101kPa时的沸点为正常沸点;b、沸腾是液体表面和内部同时气化的现象2、溶液①溶液与蒸汽压a、任何物质都存在饱和蒸汽压;b、纯物质的饱和蒸汽压只与物质本身的性质和温度有关;c、一定温度下饱和蒸汽压为常数;d、溶液蒸汽压的下降:△p=p纯液体-p溶液=K·m②溶液的沸点升高和凝固点的下降a、定量描述:沸点升高△Tb =Kb·m凝固点下降△Tf =Kf·m仅适用于非电解质溶液b、注意:①Tb 、Tf的下降只与溶剂的性质有关②Kb 、Kf的物理意义:1kg溶剂中加入1mol难挥发的非电解质溶质时,沸点的升高或凝固点下降的度数c、应用计算:i、已知稀溶液的浓度,求△Tb 、△Tfii、已知溶液的△Tb 、△Tf求溶液的浓度、溶质的分子量d、实际应用:i、制冷剂:电解质如NaCl、CaCl2ii、实验室常用冰盐浴:NaCl+H2O→22°CCaCl2+H2O→-55°Ciii、防冻剂:非电解质溶液如乙二醇、甘油等③渗透压a、渗透现象及解释:渗透现象的原因:半透膜两侧溶液浓度不同;渗透压:为了阻止渗透作用所需给溶液的额外压力b、定量描述:Vant'Hoff公式:∏V=nRT ∏=VnRT 即∏=cRT ∏为溶液的渗透压,c 为溶液的浓度,R 为气体常量,T 为温度。
第3章 化学热力学3.1 10 g 水在373K 和100 kPa 下汽化,所做的功多大?(设水蒸气为理想气体)解: 液态水的体积可忽略不计,并设水蒸气为理想气体111108.314373172318g W p V pV nRT J mol K K J g mol---====⨯⋅⋅⨯=⋅气 答: 10 g 水在373K 和100 kPa 下汽化,所做的功为1723 J 。
3.2 反应CaC 2( s ) + 2H 2O(l) = Ca(OH)2(s) + C 2H 2(g) 298 K 下的标准摩尔热力学能变量为-128.0 kJ/mol ,求该反应的标准摩尔焓变。
解: ∵ H =U + pV 且压强不变∴ ΔH =ΔU + Δ(p V) = ΔU + p ΔV忽略固体和液体的体积变化则,ΔH = ΔU + pΔV 气=ΔU + pΔV 乙烯=-128.0 kJ ·mol -1 + 1.01×103 Pa ×22.4×10-3 m -3·mol -3=-125.7 kJ ·mol -1答: 该反应的标准摩尔焓变为-125.7 kJ ·mol -1评注:此题告诉我们,对于包含气体总量变化的化学反应,其焓变和热力学能变(内能变化)是不同的。
3.3人类登月使用的阿波罗火箭的第一级火箭使用了550 吨煤油在2.5 分钟内与氧气发生燃烧反应产生巨大推力。
以C 12H 26(l) 为煤油的平均分子式的燃烧热为-7513 kJ/mol ,试计算这个燃烧反应的功率 [1马力=754.7瓦(即J/s )]解: 功率 Q W P t t-==燃烧 61550101(7513)170 2.560g P kJ mol g mol s-⨯∴=⋅-⋅⋅⋅⨯ = 1.62×108千瓦=2.15×108马力答:这个燃烧反应的功率是2.15×108马力评注:1 (米制)马力(hp)=735.499瓦(W)。