2019-2020学年江苏省徐州市八年级下学期期末数学试卷 (解析版)
- 格式:doc
- 大小:837.05 KB
- 文档页数:21
第2章一元二次方程章末检测卷(浙教版)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分100分,考试时间90分钟,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共12小题,每小题3分,共36分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020ꞏ浙江杭州市ꞏ八年级模拟)下面关于x 的方程中①20ax bx c ++=;②223(9)(1)1x x --+=;③2150x x++=;④232560x x -+-=;⑤2233(2)x x =-;⑥12100x -=是一元二次方程的个数是()A .1B .2C .3D .4【答案】A【分析】根据一元二次方程的定义对各小题进行逐一判断即可.【详解】解:①当0a =时,20ax bx c ++=是一元一次方程,故错误;②223(9)(1)1x x --+=是一元二次方程,故正确;③2150x x++=是分式方程,故错误;④232560x x -+-=是一元三次方程,故错误;⑤2233(2)x x =-可化为12120x -=是一元一次方程,故错误;⑥12100x -=是一元一次方程,故错误.故选:A .【点睛】本题考查的是一元二次方程的定义,熟知只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程是解答此题的关键.2.(2020ꞏ浙江鄞州初二期末)把一元二次方程()2(3)31x x x +=-化成一般形式,正确的是()A .22790x x --=B .2 2590x x --=C .24790x x ++=D .2 26100x x --=【答案】A【分析】方程左边利用完全平方公式将原方程的左边展开,右边按照整式乘法展开,然后通过合并同类项将原方程化为一般形式.【解析】由原方程,得x 2+6x+9=3x 2-x ,即2x 2-7x-9=0,故选A .【点睛】本题主要考查了一元二次方程的一般形式.一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.3.(2020ꞏ浙江上虞初二期末)如图,某小区规划在一个长40m 、宽26m 的长方形场地ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草.要使每一块草坪的面积都为2144m ,那么通道的宽x 应该满足的方程为()A .(402)(26)4026x x ++=⨯B .(40)(262)1446x x --=⨯C .214464022624026x x x ⨯++⨯+=⨯D .(402)(26)1446x x --=⨯【答案】D【分析】设道路的宽为xm ,将6块草地平移为一个长方形,长为(40-2x )m ,宽为(26-x )m .根据长方形面积公式即可列方程(40-2x )(26-x )=144×6.【解析】解:设道路的宽为xm ,由题意得:(40-2x )(26-x )=144×6.故选:D .【点睛】本题考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解题的关键.4.(2020ꞏ安徽省初三二模)若关于x 的一元二次方程x 2﹣4x +m +2=0有两个不相等实数根,且m 为正整数,则此方程的解为()A .x 1=﹣1,x 2=3B .x 1=﹣1,x 2=﹣3C .x 1=1,x 2=3D .x 1=1,x 2=﹣3【答案】C【分析】由根的情况,依据根的判别式得出m 的范围,结合m 为正整数得出m 的值,代入方程求解可得.【解析】∵关于x 的一元二次方程x 2﹣4x +m +2=0有两个不相等实数根,∴△=(﹣4)2﹣4×1×(m +2)>0,解得:m <2,∵m 为正整数,∴m =1,则方程为x 2﹣4x +3=0,解得:x 1=1,x 2=3,故选:C .【点睛】本题考查了一元二次方程根的判别式以及一元二次方程求解,熟练掌握相关知识点是解题关键.5.(2020ꞏ山东省初三期中)已知4是关于x 的方程x 2-(m +1)x +2m =0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为()A .7B .10C .11D .10或11【答案】D【分析】把x=4代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【解析】把x=4代入方程得16−4(m+1)+2m=0,解得m=6,则原方程为x2−7x+12=0,解得x1=3,x2=4,∵这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10;综上所述,该△ABC的周长为10或11.故选:D.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.6.(2020ꞏ杭州市八年级期中)若关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,则一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为()A.2017B.2020C.2019D.2018【答案】B【分析】对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1得到at2+bt+2=0,利用at2+bt+2=0有一个根为t=2019得到x﹣1=2019,从而可判断一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.【详解】解:对于一元二次方程a(x﹣1)2+b(x﹣1)+2=0,设t=x﹣1,所以at2+bt+2=0,而关于x的一元二次方程ax2+bx+2=0(a≠0)有一根为x=2019,所以at2+bt+2=0有一个根为t=2019,则x﹣1=2019,解得x=2020,所以一元二次方程a(x﹣1)2+b(x﹣1)=﹣2必有一根为x=2020.故选:B.【点睛】本题考查的是一元二次方程的根,考查方程中的整体未知数,掌握以上知识是解题的关键.7、(2020年成都市初三半期)根据下列表格对应值:x 3.24 3.25 3.262++‐0.020.010.03ax bx c判断关于x的方程20(0)++=≠的一个解x的范围是()ax bx c aA.x<3.24B.3.24<x<3.25C.3.25<x<3.26D.3.25<x<3.28【答案】B【解析】当3.24<x <3.25时,2ax bx c ++的值由负连续变化到正,说明在3.24<x <3.25范围内一定有一个x 的值,使20ax bx c ++=,即是方程20ax bx c ++=的一个解.故选B .【考点】利用夹逼法求近似解8.(2020ꞏ江苏省初三期中)古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如下图1,2,他们研究过图1中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似的,称图2中的1,4,9,16,…这样的数为正方形数.下列数中既是三角形数又是正方形数的是()A .289B .1225C .1024D .1378【答案】B【分析】图1中求出1、3、6、10,…,第n 个图中点的个数是1+2+3+…+n ,即12n n +();图2中1、4、9、16,…,第n 个图中点的个数是n 2.然后把各数分别代入,若解出的n 是正整数,则说明符合条件是所求.【解析】根据题意得:三角形数的第n 个图中点的个数为12n n +();正方形数第n 个图中点的个数为n 2.A 、令12n n +()=289,解得:n =12-(不合题意);再令n 2=289,n =±17;不符合条件,错误;B .令12n n +()=1225,解得n 1=49,n 2=﹣50(不合题意);再令n 2=1225,n 1=35,n 2=﹣35(不合题意,舍去),符合条件,正确.C .令12n n +()=1024,解得:n =12-±(都不合题意);再令n 2=1024,n =±32;不符合条件,错误;D .令12n n +()=1378,解得n 1=52,n 2=﹣53(不合题意);再令n 2=1378,n =(不合题意,舍去),不符合条件,错误.故选B .【点睛】主要考查了学生通过特例分析从而归纳总结出一般结论的能力.9.(2020ꞏ浙江杭州市ꞏ八年级期末)已知关于x 的方程2(21)(1)0kx k x k +++-=有实数根,则k 的取值范围为()A .18k ≥-B .18k >-C .18k ≥-且0k ≠D .18k <-【答案】A【分析】由于k 的取值不确定,故应分k=0(此时方程化简为一元一次方程)和k≠0(此时方程为二元一次方程)两种情况进行解答.【详解】解:当k=0时,x-1=0,解得:x=1;当k≠0时,此方程是一元二次方程,∵关于x 的方程kx 2+(2k+1)x+(k-1)=0有实根,∴△=(2k+1)2-4k×(k-1)≥0,解得18k ≥-且k≠0,综上:k 的取值范围是18k ≥-,故选A .【点睛】本题考查的是根的判别式,注意掌握一元二次方程ax 2+bx+c=0(a≠0)的根与△=b 2-4ac 有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.同时解答此题时要注意分k=0和k≠0两种情况进行讨论.10.(2020ꞏ绵阳市初三期末)关于x 的方程0122=-++k kx x 的根的情况描述正确的是.A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【答案】B。
2019-2020年八年级下学期期末考试数学试题(解析版)一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.63.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=1826.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.57.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx二、填空题11.一元二次方程x2=x的解是.12.数据﹣2、﹣1、0、1、2的方差是.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B (1,1),则关于x的方程ax2﹣bx﹣c=0的解为.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?27.如图1,已知抛物线经过坐标原点O和x轴上另一点E,顶点M的坐标为(2,4);矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3.(1)求该抛物线的函数解析式;(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图2所示).①当t=2秒时,判断点P是否在直线ME上,并说明理由;②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.xx学年江苏省南通市田家炳中学八年级(下)期末数学试卷参考答案与试题解析一、选择题1.直线y=2x+3不经过第()象限.A.一B.二C.三D.四【考点】一次函数的性质.【分析】由条件可分别求得直线与两坐标轴的交点,则可确定出其所在的象限,可求得答案.【解答】解:在y=2x+3中,令y=0可求得x=﹣1.5,令x=0可得y=3,∴直线与x轴交于点(﹣1.5,0),与y轴交于点(0,3),∴直线经过第一、二、三象限,∴不经过第四象限,故选D.【点评】本题主要考查一次函数的性质,利用直线与两坐标轴的交点即可确定出直线所在的象限.2.如图,四边形ABCD是菱形,对角线AC=8,DB=6,DE⊥BC于点E,则DE的长为()A.2.4 B.3.6 C.4.8 D.6【考点】菱形的性质.【分析】首先根据已知可求得OA,OD的长,再根据勾股定理即可求得BC的长,再由菱形的面积等于底乘以高也等于两对角线的乘积,根据此不难求得DE的长.【解答】解:∵四边形ABCD是菱形,对角线AC=8,DB=6,∴BC==5,∵S菱形ABCD=AC×BD=BC×DE,∴×8×6=5×DE,∴DE==4.8,故选C.【点评】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.3.二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,则m的值为()A.3 B.﹣3 C.3或﹣3 D.以上都不对【考点】抛物线与x轴的交点.【分析】利用已知将原式变形得出x12+x22=(x1+x2)2﹣2x1x2,进而利用根与系数关系求出即可.【解答】解:∵二次函数y=2x2+mx﹣5的图象与x轴交于点A(x1,0)、B(x2,0),且x12+x22=,∴x12+x22=(x1+x2)2﹣2x1x2=﹣2×(﹣)=,解得:m=±3,故选:C.【点评】此题主要考查了根与系数的关系,得出x12+x22=(x1+x2)2﹣2x1x2是解题关键.4.二次函数y=a(x+m)2+n的图象如图,则一次函数y=mx+n的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【考点】二次函数的图象;一次函数的性质.【分析】根据抛物线的顶点在第四象限,得出n<0,m<0,即可得出一次函数y=mx+n的图象经过二、三、四象限.【解答】解:∵抛物线的顶点在第四象限,∴﹣m>0,n<0,∴m<0,∴一次函数y=mx+n的图象经过二、三、四象限,故选C.【点评】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n、m的符号.5.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x)2=182 B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182 D.50+50(1+x)+50(1+2x)2=182【考点】由实际问题抽象出一元二次方程.【专题】增长率问题;压轴题.【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂五、六月份平均每月的增长率为x,那么可以用x分别表示五、六月份的产量,然后根据题意可得出方程.【解答】解:依题意得五、六月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=182.故选B.【点评】增长率问题,一般形式为a(1+x)2=b,a为起始时间的有关数量,b 为终止时间的有关数量.6.某篮球队12名队员的年龄如表:年龄(岁)18192021人数5412则这12名队员年龄的众数和平均数分别是()A.18,19 B.19,19 C.18,19.5 D.19,19.5【考点】众数;加权平均数.【分析】根据众数及平均数的概念求解.【解答】解:年龄为18岁的队员人数最多,众数是18;平均数==19.故选:A.【点评】本题考查了众数及平均数的知识,掌握众数及平均数的定义是解题关键.7.运动会上,某运动员掷铅球时,所掷铅球的高y(m)与水平距离x(m)之间的函数关系为y=﹣x2+x+,则该运动员的成绩是()A.6 m B.12 m C.8 m D.10 m【考点】二次函数的应用.【分析】依题意,该二次函数与x轴的交点的x值为所求.即在抛物线解析式中.令y=0,求x的正数值.【解答】解:把y=0代入y=﹣x2+x+得:﹣ x2+x+=0,解之得:x1=10,x2=﹣2.又x>0,∴x=10,故选:D.【点评】本题主要考查二次函数的实际应用,熟练掌握二次函数的图象和性质是解题的关键.8.若关于x的方程(k﹣1)x2﹣(k﹣1)x+=0有两个相等的实数根,则k的值为()A.1 B.2 C.1或2 D.以上都不对【考点】根的判别式.【分析】若方程有两相等根,则根的判别式△=b2﹣4ac=0,建立关于k的等式,求出k的值,再把不合题意的解舍去,即可得出答案.【解答】解:∵方程有两相等的实数根,∴△=b2﹣4ac=[﹣(k﹣1)]2﹣4(k﹣1)×=0,且k﹣1≠0,解得:k=1(舍去)或k=2,∴k的值为2;故选B.【点评】本题考查了根的根判别式,掌握当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根是本题的关键.9.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,t=或.其中正确的结论有()A.1个B.2个C.3个D.4个【考点】一次函数的应用.【分析】观察图象可判断①②,由图象所给数据可求得甲、乙两车离开A城的距离y与时间t的关系式,可求得两函数图象的交点,可判断③,再令两函数解析式的差为50,可求得t,可判断④,可得出答案.【解答】解:由图象可知A、B两城市之间的距离为300km,甲行驶的时间为5小时,而乙是在甲出发1小时后出发的,且用时3小时,即比甲早到1小时,∴①②都正确;设甲车离开A城的距离y与t的关系式为y甲=kt,把(5,300)代入可求得k=60,∴y甲=60t,设乙车离开A城的距离y与t的关系式为y乙=mt+n,把(1,0)和(4,300)代入可得,解得,∴y乙=100t﹣100,令y甲=y乙可得:60t=100t﹣100,解得t=2.5,即甲、乙两直线的交点横坐标为t=2.5,此时乙出发时间为1.5小时,即乙车出发1.5小时后追上甲车,∴③不正确;令|y甲﹣y乙|=50,可得|60t﹣100t+100|=50,即|100﹣40t|=50,当100﹣40t=50时,可解得t=,当100﹣40t=﹣50时,可解得t=,又当t=时,y甲=50,此时乙还没出发,当t=时,乙到达B城,y甲=250;综上可知当t的值为或或或t=时,两车相距50千米,∴④不正确;综上可知正确的有①②共两个,故选B.【点评】本题主要考查一次函数的应用,掌握一次函数图象的意义是解题的关键,特别注意t是甲车所用的时间.10.如图,在平面直角坐标系中,正方形A1B1C1D1、D1E1E2B2、A2B2C2D2、D2E3E4B3、A 3B3C3D3,…,按图示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E 4、C3,…,在x轴上,已知正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,…,则正方形AxxB2016CxxDxx的边长是()A.()xx B.()2016C.()xx D.()xx【考点】正方形的性质;坐标与图形性质.【专题】规律型.【分析】利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.【解答】解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1sin30°=,则B2C2=()1,同理可得:B3C3==()2,故正方形An BnCnDn的边长是:()n﹣1.则正方形Axx B2016CxxDxx的边长是:()xx.故选:D.【点评】此题主要考查了正方形的性质、锐角三角函数;熟练掌握正方形的性质,得出正方形的边长变化规律是解题关键.二、填空题11.一元二次方程x2=x的解是x=0或x= .【考点】解一元二次方程﹣因式分解法.【分析】移项后因式分解法求解可得.【解答】解:∵x2=x,∴x2﹣x=0,即x(x﹣)=0,∴x=0或x﹣=0,解得:x=0或x=,故答案为:x=0或x=.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.12.数据﹣2、﹣1、0、1、2的方差是 2 .【考点】方差.【分析】根据题目中的数据可以求得这组数据的平均数,然后根据方差的计算方法可以求得这组数据的方差.【解答】解:由题意可得,这组数据的平均数是:,∴这组数据的方差是: =2,故答案为:2.【点评】本题考查方差,解题的关键是明确方差的计算方法.13.将直线y=﹣2x﹣3向上平移4个单位长度得到的直线的解析式为y=﹣2x+1 .【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,把直线y=﹣2x﹣3向上平移4个单位长度后所得直线的解析式为:y=﹣2x﹣3+4,即y=﹣2x+1.故答案为:y=﹣2x+1【点评】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.14.若矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两根,则矩形的周长为16 .【考点】根与系数的关系;矩形的性质.【分析】设矩形的长和宽分别为x、y,由矩形的长和宽是方程2x2﹣16x+m=0(0<m≤32)的两个根,根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x+y=8;xy=,然后利用矩形的性质易求得到它的周长.【解答】解:设矩形的长和宽分别为x、y,根据题意得x+y=8;所以矩形的周长=2(x+y)=16.故答案为:16.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=﹣,x1•x2=.也考查了矩形的性质.15.如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1 .【分析】由图象得到直线y=kx+b与直线y=4x+2的交点A的坐标(﹣1,﹣2)及直线y=kx+b与x轴的交点坐标,观察直线y=4x+2落在直线y=kx+b的下方且直线y=kx+b落在x轴下方的部分对应的x的取值即为所求.【解答】解:∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故答案为:﹣2<x<﹣1.【点评】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.16.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),则关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1 .【考点】二次函数的性质.【专题】数形结合.【分析】根据二次函数图象与一次函数图象的交点问题得到方程组的解为,,于是易得关于x的方程ax2﹣bx﹣c=0的解.【解答】解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣2,4),B(1,1),∴方程组的解为,,即关于x的方程ax2﹣bx﹣c=0的解为x1=﹣2,x2=1.故答案为x1=﹣2,x2=1.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣.也考查了二次函数图象与一次函数图象的交点问题.17.已知二次函数y=x2﹣2ax+3(a为常数)图象上的三点:A(x1,y1)、B(x2,y 2)、C(x3,y3),其中x1=a﹣3,x2=a+1,x3=a+2,则y1,y2,y3的大小关系是y 2<y3<y1.【考点】二次函数图象上点的坐标特征.【分析】把点的坐标代入可求得y1,y2,y3的值,比较大小即可.【解答】解:∵A(x1,y1)、B(x2,y2)、C(x3,y3)在抛物线上,∴y1=(a﹣3)2﹣2a(a﹣3)+3=﹣a2+12,y2=(a+1)2﹣2a(a+1)+3=﹣a2+4,y3=(a+2)2﹣2a(a+2)+3=﹣a2+7,∵﹣a2+4<﹣a2+7<﹣a2+12,∴y2<y3<y1,故答案为:y2<y3<y1.【点评】本题主要考查二次函数图象上点的坐标特征,掌握函数图象上的点的坐标满足函数解析式是解题的关键.18.若二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M(x,y)在x轴下方,对于以下说法:①b2﹣4ac>0;②x=x0是方程ax2+bx+c=y的解;③x1<x<x2;④a(x0﹣x1)(x﹣x2)<0.其中正确的是①②④.【考点】抛物线与x轴的交点;二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对③④选项讨论即可得解.【解答】解:①∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的交点坐标分别为(x1,0),(x2,0),∴△=b2﹣4ac>0,故本选项正确;②∵点M(x0,y)在二次函数y=ax2+bx+c(a≠0)的图象上,∴x=x0是方程ax2+bx+c=y的解,故本选项正确;③若a>0,则x1<x<x2,若a<0,则x0<x1<x2或x1<x2<x,故本选项错误;④若a>0,则x0﹣x1>0,x﹣x2<0,所以,(x0﹣x1)(x﹣x2)<0,∴a(x0﹣x1)(x﹣x2)<0,若a<0,则(x0﹣x1)与(x﹣x2)同号,∴a(x0﹣x1)(x﹣x2)<0,综上所述,a(x0﹣x1)(x﹣x2)<0正确,故本选项正确.故①②④正确,故答案为①②④【点评】本题考查了二次函数与x轴的交点问题,熟练掌握二次函数图象以及图象上点的坐标特征是解题的关键,③④选项要注意分情况讨论.三、解答题(共96分)19.解下列方程(1)x2﹣2x+1=0;(2)﹣2x2+4x﹣1=0.【考点】解一元二次方程﹣公式法;解一元二次方程﹣配方法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵(x﹣1)2=0,∴x﹣1=0,即x=1;(2)∵a=﹣2,b=4,c=﹣1,∴△=16﹣4×(﹣2)×(﹣1)=8>0,∴x==﹣2.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的基本方法是解题的关键.20.为了推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的学生人数为40 ,图①中m的值为15 ;(Ⅱ)求本次调查获取的样本数据的众数和中位数;(Ⅲ)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双?【考点】条形统计图;用样本估计总体;扇形统计图;中位数;众数.【专题】图表型.【分析】(Ⅰ)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(Ⅱ)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(Ⅲ)根据题意列出算式,计算即可得到结果.【解答】解:(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100﹣30﹣25﹣20﹣10=15;故答案为:40;15;(Ⅱ)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为36,∴中位数为=36;(Ⅲ)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.21.已知一次函数的图象经过A(﹣2,﹣3),B(1,3)两点.(1)求这个一次函数的解析式;(2)求这个一次函数的图象与两坐标轴围成的三角形的面积.【考点】待定系数法求一次函数解析式.【专题】作图题;待定系数法.【分析】(1)利用待定系数法求函数解形式即可;(2)先求一次函数图象与两坐标轴的交点坐标,再利用三角形的面积公式求解即可.【解答】解:(1)设一次函数解析式为y=kx+b,则,解得,∴这个一次函数的解析式为y=2x+1;(2)当y=0时,x=﹣,当x=0时,y=1,所以函数图象与坐标轴的交点为(﹣,0)(0,1),∴三角形的面积=×|﹣|×1=.【点评】本题主要考查待定系数法求一次函数解析式;先求出函数图象与坐标轴的交点坐标是求三角形面积的关键.22.关于x的一元二次方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,问是否存在x1+x2<x1x2的情况,若存在,求k的取值范围,若不存在,请说明理由.【考点】根与系数的关系;根的判别式.【分析】根据方程有两个实数根结合根的判别式即可得出△=8k+8≥0,解之即可得出k的取值范围,再结合根与系数的关系以及x1+x2<x1x2,即可得出4<2﹣2k,解之即可得出k的取值范围,取两个k的取值范围的交集即可得出结论.【解答】解:不存在,理由如下:∵方程x2﹣4x﹣2(k﹣1)=0有两个实数根x1,x2,∴△=(﹣4)2﹣4×1×[﹣2(k﹣1)]=8k+8≥0,解得:k≥﹣1.∵x1+x2=4,x1x2=2﹣2k,x1+x2<x1x2,∴4<2﹣2k,解得:k<﹣1.∵k≥﹣1和k<﹣1没有交集,∴不存在x1+x2<x1x2的情况.【点评】本题考查了根的判别式以及根与系数的关系,根据根的判别式以及根与系数的关系找出关于k的一元一次不等式是解题的关键.23.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.【考点】矩形的判定;全等三角形的判定与性质.【专题】证明题.【分析】求出∠BAE=∠CAD,证△BAE≌△CAD,推出∠BEA=∠CDA,BE=CD,得出平行四边形BCDE,根据平行线性质得出∠BED+∠CDE=180°,求出∠BED,根据矩形的判定求出即可.【解答】证明:∵∠BAD=∠CAE,∴∠BAD﹣∠BAC=∠CAE﹣∠BAC,∴∠BAE=∠CAD,∵在△BAE和△CAD中∴△BAE≌△CAD(SAS),∴∠BEA=∠CDA,BE=CD,∵DE=CB,∴四边形BCDE是平行四边形,∵AE=AD,∴∠AED=∠ADE,∵∠BEA=∠CDA,∴∠BED=∠CDE,∵四边形BCDE是平行四边形,∴BE∥CD,∴∠CDE+∠BE D=180°,∴∠BED=∠CDE=90°,∴四边形BCDE是矩形.【点评】本题考查了矩形的判定,平行四边形的性质和判定,平行线的性质全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力,注意:有一个角是直角的平行四边形是矩形.24.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t (小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是120 千米,甲到B市后 5 小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.【考点】一次函数的应用.【分析】(1)从图中看,甲车3小时到达B市,则3×40=120千米,即A、B 两市的距离是120千米,根据乙车往返的速度都为20千米/时,那么乙车去时所用的时间为:120÷20=6小时,6+2=8,则8小时后乙到达,所以甲到B市后5小时乙到达B市;(2)分别表示A、B两点的坐标,利用待定系数法求解析式,并写t的取值;(3)先分别求出C、D两点的坐标,再求CD的解析式,求直线AB与CD的交点,即此时两车相遇,时间为12小时,计算甲车从第10小时开始返回,则再经过2小时两车相遇.【解答】解:(1)3×40=120,乙车所用时间: =6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.【点评】本题是一次函数的应用,考查了利用待定系数法求一次函数的解析式,本题属于行程问题,明确路程、时间、速度的关系,注意图形中S所表示的实际意义:两车距A市的路程(千米);理解题意,弄清两直线的交点即为两车相遇所表示的点,并注意自变量t的取值范围.25.如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.【考点】菱形的判定与性质;全等三角形的判定与性质;三角形中位线定理;正方形的判定.【专题】几何综合题;压轴题.【分析】(1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH 是菱形,则四边形EFGH是正方形.【解答】解:(1)四边形EFGH是菱形.(2分)(2)成立.理由:连接AD,BC.(4分)∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.(6分)∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=BC,FG=AD,GH=BC,EH=AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(7分)(3)补全图形,如答图.判断四边形EFGH是正方形.(9分)理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.(11分)∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.(12分)【点评】此题主要考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.26.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y只,y与x满足如下关系式:y=.(1)李明第几天生产的粽子数量为420只?(2)如图,设第x天每只粽子的成本是P元,P与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大值是多少元?(3)设(2)小题中第m天利润达到最大值,若要使第(m+1)天的利润比第m 天的利润至少多48元,则第(m+1)天每只粽子至少应提价几元?。
2019-2020学年江苏省徐州市邳州市八年级(下)期中数学试卷一、选择题(本大题共8小题,每小题4分,共32分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(4分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.2.(4分)某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是()A.2000B.200C.20D.23.(4分)下面调查方式中,合适的是()A.试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B.了解一批袋装食品是否含有防腐剂,选择普查方式C.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D.调查某新型防火材料的防火性能,采用普查的方式4.(4分)一组数据的样本容量是50,若其中一个数出现的频率为0.5,则该数出现的频数为()A.20B.25C.30D.1005.(4分)“抛掷一枚均匀硬币,落地后正面朝上”这一事件是()A.确定事件B.必然事件C.随机事件D.不可能事件6.(4分)下列说法正确的是()A.矩形的对角线相等垂直B.菱形的对角线相等C.正方形的对角线相等D.菱形的四个角都是直角7.(4分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论正确的是()A.AC=AD B.BC=DE C.AB⊥EB D.∠A=∠EBC 8.(4分)如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8B.7C.6D.5二、填空题(本大题共10小题,每小题4分,共40分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(4分)若正方形的对角线长为,则该正方形的边长为.10.(4分)如果用A表示事件“三角形的内角和为180°”,那么P(A)=.11.(4分)空气是混合物,为直观介绍空气各成分的百分比,宜选用统计图.12.(4分)如图,菱形ABCD的周长是16,∠ABC=60°,则对角线AC的长是.13.(4分)一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到(颜色)球的可能性最大.14.(4分)如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交AD、BC于E、F,则阴影部分的面积是.15.(4分)如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是°.16.(4分)如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为.17.(4分)如图,E、F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=1,则四边形BEDF的周长是.18.(4分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE,设▱ABCD的面积为S1,四边形AEDF的面积为S2,则的值是.三、解答题(本大题共8小题,共68分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF 分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.20.(8分)某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?21.(8分)为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B的扇形的圆心角度数为度;(4)在扇形统计图中表示观点E的百分比是.22.(8分)如图,在▱ABCD中,BC=6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t秒,当t为何值时,EF∥AB.23.(8分)如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB,A,B均为格点,按要求完成下列问题.(1)以AB为对角线画一个面积最小的菱形AEBF,且E,F为格点;(2)在(1)中该菱形的边长是,面积是;(3)以AB为对角线画一个菱形AEBF,且E,F为格点,则可画个菱形.24.(8分)如图,在△ABC中,DE∥BC,EF∥AB,BE平分∠ABC,试判断四边形DBFE 的形状,并说明理由.25.(10分)如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC延长线上一点,且CE=3,连结DE.(1)求证:四边形ACED为矩形.(2)连结OE,求OE的长.26.(10分)如图1,在正方形ABCD中,点E是边AB上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.2019-2020学年江苏省徐州市邳州市八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置)1.(4分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是中心对称图形,也是轴对称图形,故此选项符合题意;B、不是中心对称图形,是轴对称图形,故此选项不合题意;C、是中心对称图形,不是轴对称图形,故此选项不合题意;D、不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.(4分)某校共有2000名学生,为了解学生对“七步洗手法”的掌握情况,现采用抽样调查,如果按10%的比例抽样,则样本容量是()A.2000B.200C.20D.2【分析】一个样本包括的个体数量叫做样本容量.【解答】解:2000×10%=200,故样本容量是200.故选:B.【点评】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.3.(4分)下面调查方式中,合适的是()A.试航前对我国第一艘国产航母各系统的检查,选择抽样调查方式B.了解一批袋装食品是否含有防腐剂,选择普查方式C.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用普查方式D.调查某新型防火材料的防火性能,采用普查的方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、试航前对我国第一艘国产航母各系统的检查,零部件很重要,应全面检查;B、了解一批袋装食品是否含有防腐剂,适合抽样调查;C、为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,适合采用普查方式;D、调査某新型防火材料的防火性能,适合抽样调查.故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.(4分)一组数据的样本容量是50,若其中一个数出现的频率为0.5,则该数出现的频数为()A.20B.25C.30D.100【分析】根据频率、频数的关系:频数=频率×数据总和,可得这一小组的频数.【解答】解:∵容量是50,某一组的频率是0.5,∴样本数据在该组的频数=0.5×50=25.故选:B.【点评】本题考查频率、频数、总数的关系,属于基础题,比较简单,注意熟练掌握:频数=频率×数据总和.5.(4分)“抛掷一枚均匀硬币,落地后正面朝上”这一事件是()A.确定事件B.必然事件C.随机事件D.不可能事件【分析】根据事件发生的可能性大小判断即可.【解答】解:“抛掷一枚均匀硬币,落地后正面朝上”这一事件是随机事件,故选:C.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.(4分)下列说法正确的是()A.矩形的对角线相等垂直B.菱形的对角线相等C.正方形的对角线相等D.菱形的四个角都是直角【分析】根据矩形、菱形的性质和正方形的性质判断即可.【解答】解:A、矩形的对角线相等且平分,选项错误,不符合题意;B、菱形的对角线垂直且平分,选项错误,不符合题意;C、正方形的对角线相等,选项正确,符合题意;D、矩形的四个角都是直角,而菱形的四个角不是直角,选项错误,不符合题意;故选:C.【点评】此题考查正方形的性质,关键是根据矩形、菱形的性质和正方形的性质解答.7.(4分)如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论正确的是()A.AC=AD B.BC=DE C.AB⊥EB D.∠A=∠EBC 【分析】根据旋转的性质得到AC=CD,BC=CE,AB=DE,故A错误,B错误;可得出∠ACD=∠BCE,根据三角形的内角和得到∠A=∠ADC=,∠CBE=,求得∠A=∠EBC,故D正确;由于∠A+∠ABC不一定等于90°,于是得到∠ABC+∠CBE不一定等于90°,故C错误.【解答】解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故A错误,B错误;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故D正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故C错误.故选:D.【点评】本题考查了旋转的性质,等腰三角形的性质,正确的识别图形是解题的关键.8.(4分)如图,四边形ABCD中,∠A=90°,AB=8,AD=6,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为()A.8B.7C.6D.5【分析】连接DN,根据三角形中位线定理得到EF=DN,根据题意得到当点N与点B 重合时,DN最大,根据勾股定理计算,得到答案.【解答】解:连接DN,∵点E,F分别为DM,MN的中点,∴EF是△MND的中位线,∴EF=DN,∵点M,N分别为线段BC,AB上的动点,∴当点N与点B重合时,DN最大,此时DN==10,∴EF长度的最大值为:×10=5,故选:D.【点评】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.二、填空题(本大题共10小题,每小题4分,共40分.不需写出解答过程,请将答案直接填写在答题卡相应位置)9.(4分)若正方形的对角线长为,则该正方形的边长为1.【分析】利用正方形的性质,可得AD=CD,∠D=90°,再利用勾股定理求正方形的边长.【解答】解:如图所示:∵四边形ABCD是正方形,∴AD=CD,∠D=90°设AD=CD=x,在Rt△ADC中,∵AD2+CD2=AC2即x2+x2=2解得:x=1,(x=﹣1舍去)所以该正方形的边长为1故答案为:1【点评】本题考查了正方形的性质和勾股定理.通过正方形的性质设出未知数,利用勾股定理得方程是解决本题的关键.10.(4分)如果用A表示事件“三角形的内角和为180°”,那么P(A)=1.【分析】先判断出事件A是必然事件,再根据必然事件、随机事件及不可能事件的概率可得答案.【解答】解:∵事件“三角形的内角和为180°”是必然事件,∴P(A)=1,故答案为:1.【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数.11.(4分)空气是混合物,为直观介绍空气各成分的百分比,宜选用扇形统计图.【分析】反映各个部分占整体的百分比,因此选择扇形统计图比较合适.【解答】解:要反映空气中各成分所占的百分比,因此用扇形统计图比较合适,故答案为:扇形.【点评】考查统计图的选择,扇形统计图能比较直观地反映各个部分占整体的百分比.12.(4分)如图,菱形ABCD的周长是16,∠ABC=60°,则对角线AC的长是4.【分析】由于四边形ABCD是菱形,AC是对角线,根据∠ABC=60°,而AB=BC,易证△BAC是等边三角形,从而可求AC的长.【解答】解:∵四边形ABCD是菱形,AC是对角线,∴AB=BC=CD=AD,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=BC=AC,∵菱形ABCD的周长是16,∴AB=BC=AC=4.故答案为:4.【点评】本题考查了菱形的性质、等边三角形的判定和性质.菱形的对角线平分对角,解题的关键是证明△ABC是等边三角形.13.(4分)一个不透明袋子中装有3个红球,2个白球,1个蓝球,从中任意摸一球,则摸到红(颜色)球的可能性最大.【分析】分别计算出各球的概率,然后根据概率的大小进行判断.【解答】解:从中任意摸一球,摸到红球的概率==,摸到白球的概率==,摸到蓝球的概率=,所以从中任意摸一球,则摸到红球的可能性最大.故答案为红.【点评】本题考查了可能性的大小:某事件的可能性等于所求情况数与总情况数之比.14.(4分)如图,边长为2的正方形ABCD的对角线相交于点O,过点O的直线分别交AD、BC于E、F,则阴影部分的面积是1.【分析】由题可知△DEO≌△BFO,阴影面积就等于△BOC面积.【解答】解:由题意可知△DEO≌△BFO,∴S△DEO=S△BFO,阴影面积=三角形BOC面积=×2×1=1.故答案为:1.【点评】本题主要考查正方形的性质和三角形的判定,不是很难,会把两个阴影面积转化到一个图形中去.15.(4分)如图,△ABC中,∠BAC=20°,△ABC绕点A逆时针旋转至△AED,连接对应点C、D,AE垂直平分CD于点F,则旋转角度是40°.【分析】根据旋转的性质得出AD=AC,∠DAE=∠BAC=20°,求出∠DAE=∠CAE=20°,再求出∠DAC的度数即可.【解答】解:∵△ABC绕点A逆时针旋转至△AED,∠BAC=20°∴AD=AC,∠DAE=∠BAC=20°,∵AE垂直平分CD于点F,∴∠DAE=∠CAE=20°,∴∠DAC=20°+20°=40°,即旋转角度数是40°,故答案为:40.【点评】本题考查了等腰三角形的性质和旋转的性质,能求出∠DAE=∠CAE=20°是解此题的关键.16.(4分)如图所示,直线a经过正方形ABCD的顶点A,分别过顶点B、D作DE⊥a于点E、BF⊥a于点F,若DE=4,BF=3,则EF的长为7.【分析】因为ABCD是正方形,所以AB=AD,∠ABC=∠BAD=90°,则有∠ABF=∠DAE,又因为DE⊥a、BF⊥a,根据AAS易证△AFB≌△AED,所以AF=DE=4,BF=AE=3,则EF的长可求.【解答】解:∵ABCD是正方形∴AB=AD,∠ABC=∠BAD=90°∵∠ABC+∠ABF=∠BAD+∠DAE∴∠ABF=∠DAE在△AFB和△AED中∠ABF=∠DAE,∠AFB=∠AED,AB=AD∴△AFB≌△AED∴AF=DE=4,BF=AE=3∴EF=AF+AE=4+3=7.故答案为:7.【点评】此题把全等三角形的判定和正方形的性质结合求解.考查学生综合运用数学知识的能力.17.(4分)如图,E、F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=1,则四边形BEDF的周长是20.【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF=,由勾股定理得:DE=,∴四边形BEDF的周长=4DE=4×5=20,故答案为:20【点评】本题主要考查正方形的性质、菱形的判定和性质及勾股定理,掌握对角线互相垂直平分的四边形为菱形是解题的关键.18.(4分)如图,点E在▱ABCD内部,AF∥BE,DF∥CE,设▱ABCD的面积为S1,四边形AEDF的面积为S2,则的值是2.【分析】首先由ASA可证明:△BCE≌△ADF;由平行四边形的性质可知:S△BEC+S△AED =S▱ABCD,进而可求出的值.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ABC+∠BAD=180°,∵AF∥BE,∴∠EBA+∠BAF=180°,∴∠CBE=∠DAF,同理得∠BCE=∠ADF,在△BCE和△ADF中,,∴△BCE≌△ADF(ASA),∴S△BCE=S△ADF,∵点E在▱ABCD内部,∴S△BEC+S△AED=S▱ABCD,∴S四边形AEDF=S△ADF+S△AED=S△BEC+S△AED=S▱ABCD,∵▱ABCD的面积为S1,四边形AEDF的面积为S2,∴=2,故答案为:2.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练利用三角形和平行四边形边的关系得出面积关系是解题关键.三、解答题(本大题共8小题,共68分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF 分别与AB,CD交于点G,H,则BG与DH有怎样数量关系?证明你的结论.【分析】由平行四边形的性质得AD∥BC,根据平行线的性质证明∠E=∠F,角边角证明△AFG≌△CEH,其性质得AG=CH,进而可证明BG=DH.【解答】解:BG=DH,理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∠A=∠C,AB=DC,∴∠E=∠F,又∵BE=DF,AF=AD+DF,CE=CB+BE,∴AF=CE,在△CEH和△AFG中,∴△AFG≌△CEH(ASA),∴AG=CH,∴BG=DH.【点评】本题主要考查了平行四边形的性质、全等三角形的判定和性质,解题的关键是四边形转化为三角形,通过全等三角形找出线段间的关系.20.(8分)某路口红绿灯的时间设置为:红灯40秒,绿灯60秒,黄灯4秒.当人或车随意经过该路口时,遇到哪一种灯的可能性最大?遇到哪一种灯的可能性最小?根据什么?【分析】根据在这几种灯中,每种灯时间的长短,即可得出答案.【解答】.解:因为绿灯持续的时间最长,黄灯持续的时间最短,所以人或车随意经过该路口时,遇到绿灯的可能性最大,遇到黄灯的可能性最小.【点评】此题考查了可能性的大小,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.21.(8分)为更有效地开展“线上教学”工作,某市就学生参与线上学习的工具进行了电子问卷调查,并将调查结果绘制成图1和图2所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)本次调查的总人数是5000人;(2)请将条形统计图补充完整;(3)在扇形统计图中表示观点B的扇形的圆心角度数为18度;(4)在扇形统计图中表示观点E的百分比是4%.【分析】(1)根据选A的人数和所占的百分比,可以求得本次调查的总人数;(2)根据(1)中的结果,可以求得选C的人数,从而可以将条形统计图补充完整;(3)根据选B的人数为250,调查的总人数为5000,即可计算出在扇形统计图中表示观点B的扇形的圆心角度数;(4)根据统计图中的数据,可以计算出在扇形统计图中表示观点E的百分比.【解答】解:(1)本次调查的总人数是:2300÷46%=5000(人),故答案为:5000;(2)选用C的学生有:5000×30%=1500(人),补充完整的条形统计图如右图所示;(3)在扇形统计图中表示观点B的扇形的圆心角度数为:360°×=18°,故答案为:18;(4)在扇形统计图中表示观点E的百分比是:×100%=4%,故答案为:4%.【点评】本题考查条形统计图、扇形统计图,解答本题的关键是明确题意,利用数形结合的思想解答.22.(8分)如图,在▱ABCD中,BC=6cm,点E从点D出发沿DA边运动到点A,点F从点B出发沿BC边向点C运动,点E的运动速度为2cm/s,点F的运动速度为lcm/s,它们同时出发,设运动的时间为t秒,当t为何值时,EF∥AB.【分析】当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,由EF∥AB,BF∥AE可得出四边形ABFE为平行四边形,利用平行四边形的性质可得出关于t的一元一次方程,解之即可得出结论.【解答】解:当运动时间为t秒时,BF=tcm,AE=(6﹣2t)cm,∵EF∥AB,BF∥AE,∴四边形ABFE为平行四边形,∴BF=AE,即t=6﹣2t,解得:t=2.答:当t=2秒时,EF∥AB.【点评】本题考查了一元一次方程的应用以及平行四边形的判定与性质,利用平行四边形的性质,找出关于t的一元一次方程是解题的关键.23.(8分)如图,为6×6的正方形网格,每个小正方形的顶点均为格点,在图中已标出线段AB,A,B均为格点,按要求完成下列问题.(1)以AB为对角线画一个面积最小的菱形AEBF,且E,F为格点;(2)在(1)中该菱形的边长是,面积是6;(3)以AB为对角线画一个菱形AEBF,且E,F为格点,则可画3个菱形.【分析】(1)根据菱形的定义以及已知条件画出满足条件的菱形即可.(2)利用勾股定理,菱形的面积公式计算即可.(3)画出满足条件的菱形即可判断.【解答】解:(1)如图,菱形AEBF即为所求.(2)AE==,菱形AEBF的面积=×6×2=6,故答案为,6.(3)如图备用图可知:可以画3个菱形,故答案为3.【点评】本题考查作图﹣应用与设计,勾股定理,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.(8分)如图,在△ABC中,DE∥BC,EF∥AB,BE平分∠ABC,试判断四边形DBFE 的形状,并说明理由.【分析】根据平行四边形的判定得出四边形BDEF是平行四边形,再利用平行四边形的性质和等腰三角形的判定得出DE=BD,进而利用菱形的判定解答即可.【解答】解:四边形DBFE是菱形,理由如下:∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∴DE∥BC,∴∠DEB=∠EBF,∵BE平分∠ABC,∴∠DBE=∠EBF,∴∠DBE=∠DEB,∴BD=DE,∴平行四边形DBEF是菱形.【点评】此题考查等腰三角形的判定和性质,关键是根据平行四边形的判定得出四边形BDEF是平行四边形解答.25.(10分)如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC⊥BC,AC=2,BC=3.点E是BC延长线上一点,且CE=3,连结DE.(1)求证:四边形ACED为矩形.(2)连结OE,求OE的长.【分析】(1)根据平行四边形的性质得到AD=BC=3,AD∥BC,得到AD=CE,推出四边形ACED是平行四边形,由垂直的定义得到∠ACE=90°,于是得到结论;(2)根据三角形的中位线定理得到OC=DE=AC=1,由勾股定理即可得到结论.【解答】(1)证明:∵在平行四边形ABCD中,AD=BC=3,AD∥BC,∵CE=3,∴AD=CE,∴四边形ACED是平行四边形,∵AC⊥BC,∴∠ACE=90°,∴四边形ACED为矩形;(2)解:∵BO=DO,BC=CE,∴OC=DE=AC=1,∵∠ACE=90°,∴OE===.【点评】本题考查了矩形的判定和性质,平行四边形的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.26.(10分)如图1,在正方形ABCD中,点E是边AB上的一个动点(点E与点A,B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE;(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.【分析】(1)根据同角的余角相等得到∠GCB=∠FBA,利用ASA定理证明△ABF≌△BCE;(2)根据全等三角形的性质得到BF=CE=8,根据三角形的面积公式计算,得到答案;(3)作DH⊥CE,设AB=CD=BC=2a,根据勾股定理用a表示出CE,根据三角形的面积公式求出BG,根据勾股定理求出CG,证明△CHD≌△BGC,得到CH=BG,证明CH=GH,根据线段垂直平分线的性质证明结论.【解答】(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠CBG=90,∵四边形ABCD是正方形,∴∠CBE=90°=∠A,BC=AB,∴∠FBA+∠CBG=90,∴∠GCB=∠FBA,在△ABF和△BCE中,,∴△ABF≌△BCE(ASA);(2)解:∵△ABF≌△BCE,∴BF=CE=8,∴四边形BEFC的面积=△BCE的面积+△FCE的面积=×CE×FG+×CE×BG=×CE×(FG+BG)=×CE×BF=×8×8=32;(3)证明:如图3,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=AB=a,∴CE==a,在Rt△CEB中,BG•CE=CB•EB,∴BG==a,∴CG==a,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CHD=∠CGB=90°,∴△CHD≌△BGC(AAS),∴CH=BG=a,∴GH=CG﹣CH=a=CH,∵CH=GH,DH⊥CE,∴CD=GD;【点评】本题考查的是正方形的性质、全等三角形的判定和性质、等腰三角形的性质,掌握全等三角形的判定定理和性质定理、正方形的性质是解题的关键.。
2019-2020学年江苏省徐州市八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是( )A .清华大学B .北京大学C .中国人民大学D .浙江大学2.16的算术平方根是( )A .8B .8-C .4D .4±3.已知等腰ABC ∆中,120A ∠=︒,则底角的大小为( )A .60︒B .30︒或120︒C .120︒D .30︒4.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ∆的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点 5.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是( )A .ASAB .SASC .SSSD .AAS6.下列等式成立的是( )A 5=±B 3=C 4=-D .0.6=±7.下列三角形中,不是直角三角形的是( )A .ABC ∆中,ABC ∠=∠-∠B .ABC ∆中,::1:2:3a b c =C .ABC ∆中,222a c b =-D .ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>8.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a ,最大等边三角形的边长为b ,则a 与b 的关系为( )A .3b a =B .5b a =C .133b a =D .92b a = 二、选择题(每小题4分,共32分)9.直角三角形斜边上的中线长为5cm ,则斜边长为 cm .10.如图,在ABC ∆和DEF ∆中,点B ,F ,C ,E 在同一直线上,BF CE =,//AB DE ,请添加一个条件,使ABC DEF ∆≅∆,这个添加的条件可以是 (只需写一个,不添加辅助线).11.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,3AD =,则点D 到边BC 的距离 .12.已知等腰三角形的周长为16cm ,其中一边长为4cm ,则该等腰三角形的腰长是 cm .13.若29a =1=-,则a b -的值是 .14.如图,在Rt ABC ∆中,90B ∠=︒,ED 是AC 的垂直平分线,交AC 于点D ,交BC 于点E .已知35C ∠=︒,则BAE ∠的度数为 ︒.15.如图,已知ABC ∆中,90ABC ∠=︒,AB BC ==,三角形的顶点在相互平行的三条直线1l 、2l 、3l 上,且2l 、3l 之间的距离为2,则1l 、2l 之间的距离为 .16.如图的实线部分是由Rt ABC ∆经过两次折叠得到的,首先将Rt ABC ∆沿BD 折叠,使点C 落在斜边上的点C '处,再沿DE 折叠,使点A 落在DC '的延长线上的点A '处.若图中90C ∠=︒,3DE cm =,4BD cm =,则DC '的长为 .三、解答题(本大题共9小题,共84分)17.求下列各式的x 的值(1)24121x =;(2)3(2)8x -=-18.利用网格作图,(1)请你在图①中画出线段AB 关于线段CD 所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.19.已知:如图,ABC ∆中,90A ∠=︒,现要在AC 边上确定一点D ,使点D 到BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若10BC =,8AB =,则AC = ,AD = (直接写出结果).20.已知:如图点O在射线AP上,1215∠=︒.B∠=∠=︒,AB AC=,40(1)求证:ABO ACO∆≅∆;(2)求POC∠的度数.21.已知:如图,90∠=∠=︒,M,N分别是AC,BD的中点.求证:MN BD⊥.ABC ADC22.已知:如图,BE CD=,==,BC DA⊥垂足为E,8BE DE(1)求证:BEC DEA∆≅∆;(2)若MN是边AD的垂直平分线,分别交AD、CD于M、N,且5CE=,求AEN∆的周长.23.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯13=,梯子底端离墙角的距离AB m=.5BO m(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A 下滑4m 到点C ,那么梯子的底部B 在水平方向上滑动的距离4BD m =吗?为什么?24.如图,在长方形ABCD 中,5AB =,13AD =,点E 为BC 上一点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接DF 且12DF =.(1)试说明:ADF ∆是直角三角形;(2)求BE 的长.25.如图(1),7AB cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.2019-2020学年江苏省徐州市八年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.下列大学的校徽图案是轴对称图形的是( )A .清华大学B .北京大学C .中国人民大学D .浙江大学【解答】解:A 、不是轴对称图形,本选项错误;B 、是轴对称图形,本选项正确;C 、不是轴对称图形,本选项错误;D 、不是轴对称图形,本选项错误.故选:B .2.16的算术平方根是( )A .8B .8-C .4D .4±【解答】解:2(4)16±=,16∴的算术平方根是4,故选:C .3.已知等腰ABC ∆中,120A ∠=︒,则底角的大小为( )A .60︒B .30︒或120︒C .120︒D .30︒【解答】解:在等腰ABC ∆中,120A ∠=︒,A ∴∠为等腰三角形的顶角,B C ∴∠=∠,120A ∠=︒,30B C ∴∠=∠=︒;故选:D .4.在联欢会上,有A 、B 、C 三名选手站在一个三角形的三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC ∆的( )A .三边中线的交点B .三边垂直平分线的交点C .三条角平分线的交点D .三边上高的交点 【解答】解:三角形的三条垂直平分线的交点到三角形三个顶点的距离相等, ∴凳子应放在ABC ∆的三条垂直平分线的交点最适当.故选:B .5.如图,小明书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他的依据是( )A .ASAB .SASC .SSSD .AAS【解答】解:小周书上的三角形被墨水污染了,他根据所学知识画出了完全一样的一个三角形,他根据的定理是:两角及其夹边分别相等的两个三角形全等()ASA .故选:A .6.下列等式成立的是( )A 5=±B 3=C 4=-D .0.6=±【解答】解:A 、原式5=,不符合题意;B 、原式3=-,不符合题意;C 、原式|4|4=-=,不符合题意;D 、原式0.6=±,符合题意,故选:D .7.下列三角形中,不是直角三角形的是( )A .ABC ∆中,ABC ∠=∠-∠B .ABC ∆中,::1:2:3a b c =C .ABC ∆中,222a c b =-D .ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>【解答】解:A 、ABC ∆中,A B C ∠=∠-∠,是直角三角形,故此选项不合题意; B 、ABC ∆中,::1:2:3a b c =,设三边长为:x ,2x ,3x ,由222(2)(3)x x x +≠,故此三角形不是直角三角形,符合题意;C 、ABC ∆中,222a c b =-,符合勾股定理逆定理,是直角三角形,故此选项不合题意;D 、ABC ∆中,三边的长分别为22m n +,22m n -,2(0)mn m n >>,则2222222()(2)()m n mn m n -+=+,是直角三角形,故此选项不合题意; 故选:B .8.如图是由11个等边三角形拼成的六边形,若最小等边三角形的边长为a ,最大等边三角形的边长为b ,则a 与b 的关系为( )A .3b a =B .5b a =C .133b a =D .92b a = 【解答】解:设第二个小的等边三角形的边长为x ,则第三个小的等边三角形的边长为:x a +,第四个小的等边三角形的边长为:2x a +,最大的个小的等边三角形的边长3b x a =+, 又3b x =,33x x a ∴=+,32x a ∴=, 932b x a ∴==, 故选:D .二、选择题(每小题4分,共32分)9.直角三角形斜边上的中线长为5cm ,则斜边长为 10 cm .【解答】解:直角三角形中斜边上的中线等于斜边的一半,∴斜边长2510cm =⨯=.10.如图,在ABC ∆和DEF ∆中,点B ,F ,C ,E 在同一直线上,BF CE =,//AB DE ,请添加一个条件,使ABC DEF ∆≅∆,这个添加的条件可以是 AB ED = (只需写一个,不添加辅助线).【解答】解:添加AB ED =,BF CE =,BF FC CE FC ∴+=+,即BC EF =,//AB DE ,B E ∴∠=∠,在ABC ∆和DEF ∆中AB ED B E CB EF =⎧⎪∠=∠⎨⎪=⎩,()ABC DEF SAS ∴∆≅∆,故答案为:AB ED =.11.如图,在Rt ABC ∆中,90A ∠=︒,ABC ∠的平分线BD 交AC 于点D ,3AD =,则点D 到边BC 的距离 3 .【解答】解:过点D 作DE BC ⊥交BC 于点E ,如图所示:,90A∠=︒,DA AB∴⊥,又BD是ABC∠的平分线,DA DE∴=,又3AD=,3DE∴=,即点D到边BC的距离是3,故答案为3.12.已知等腰三角形的周长为16cm,其中一边长为4cm,则该等腰三角形的腰长是6cm.【解答】解:①4cm是腰长时,底边为:16428cm-⨯=,三角形的三边长分别为4cm、4cm、8cm,448+=,∴不能组成三角形,②4cm是底边长时,腰长为:1(164)62cm ⨯-=,三角形的三边长分别6cm、6cm、4cm,能组成三角形,综上所述,该等腰三角形的腰长是6cm.故答案为:6.13.若29a=1=-,则a b-的值是4或2-.【解答】解:29a=1=-,3a∴=±,1b=-,当3a=时,原式3(1)4=--=,当3a=-时,原式3(1)2=---=-,故答案为:4或2-14.如图,在Rt ABC∆中,90B∠=︒,ED是AC的垂直平分线,交AC于点D,交BC于点E.已知35C∠=︒,则BAE∠的度数为20︒.【解答】解:ED 是AC 的垂直平分线,AE CE ∴=,35EAC C ∴∠=∠=︒,在Rt ABC ∆中,90B ∠=︒,9055BAC C ∴∠=︒-∠=︒,20BAE BAC EAC ∴∠=∠-∠=︒.故答案为:20.15.如图,已知ABC ∆中,90ABC ∠=︒,AB BC ==,三角形的顶点在相互平行的三条直线1l 、2l 、3l 上,且2l 、3l 之间的距离为2,则1l 、2l 之间的距离为 1 .【解答】解:设1l 、2l 之间的距离为x ,过A 作3AG l ⊥于G ,过C 作3CH l ⊥于H ,由题意得:2AG =,2CH x =+,90ABC ∠=︒,90ABG CBH ∴∠+∠=︒,90ABG GAB ∠+∠=︒,CBH GAB ∴∠=∠,AB BC =,90AGB BHC ∠=∠=︒,()AGB BHC AAS ∴∆≅∆,2BH AG ∴==,2BG HC x ==+,222AB AG BG =+,2134(2)x ∴=++,解得:1x =,5x =(不合题意舍去),1l ∴、2l 之间的距离为1.16.如图的实线部分是由Rt ABC ∆经过两次折叠得到的,首先将Rt ABC ∆沿BD 折叠,使点C 落在斜边上的点C '处,再沿DE 折叠,使点A 落在DC '的延长线上的点A '处.若图中90C ∠=︒,3DE cm =,4BD cm =,则DC '的长为 5.【解答】解:ABC ∆是直角三角形,90C ∴∠=︒,由折叠的性质得:12BDC BDC CDC '∠=∠'=∠,12ADE A DE ADA ''∠=∠=∠,90BCD C ∠=∠=︒,1180902BDE BDC A DE '∴∠=∠+∠'=⨯︒=︒,DC AB '⊥,5()BE cm ∴===,BDE ∆的面积1122BE DC DE BD '=⨯=⨯, 3412()55DE BD DC cm BE ⨯⨯'∴===; 故答案为:125cm . 三、解答题(本大题共9小题,共84分)17.求下列各式的x 的值(1)24121x =;(2)3(2)8x -=-【解答】解:(1)24121x =,21214x ∴=, 112x ∴=±; (2)3(2)8x -=-,22x ∴-=-,0x ∴=;18.利用网格作图,(1)请你在图①中画出线段AB 关于线段CD 所在直线成轴对称的图形;(2)请你在图②中添加一条线段,使图中的3条线段组成一个轴对称图形.请画出所有情形.【解答】解:(1)、(2)如图所示:.19.已知:如图,ABC ∆中,90A ∠=︒,现要在AC 边上确定一点D ,使点D 到BA 、BC 的距离相等.(1)请你按照要求,在图上确定出点D 的位置(尺规作图,不写作法,保留作图痕迹);(2)若10BC =,8AB =,则AC = 6 ,AD = (直接写出结果).【解答】解:(1)如图,点D 即为所求.(2)作DH BC ⊥于H .在Rt ABC ∆中,10BC =,8AB =,6AC ∴===, BD 平分ABC ∠,ABD HBD ∴∠=∠,90A DHB ∠=∠=︒,BD BD =,()ABD HBD AAS ∴∆≅∆,8AB BH ∴==,AD DH =,设AD DH x ==,在Rt CDH ∆中,222CD DH CH =+,222(6)2x x ∴-=+,83x ∴=, 83AD ∴=, 故答案为6,83. 20.已知:如图点O 在射线AP 上,1215∠=∠=︒,AB AC =,40B ∠=︒.(1)求证:ABO ACO ∆≅∆;(2)求POC ∠的度数.【解答】(1)证明:在ABO ∆与ACO ∆中12AB AC AO AO =⎧⎪∠=∠⎨⎪=⎩,()ABO ACO SAS ∴∆≅∆;(2)解:ABO ACO ∆≅∆,40C B ∴∠=∠=︒,2154055POC C ∴∠=∠+∠=︒+︒=︒.21.已知:如图,90ABC ADC ∠=∠=︒,M ,N 分别是AC ,BD 的中点.求证:MN BD ⊥.【解答】证明:如图,连接BM 、DM ,90ABC ADC ∠=∠=︒,M 是AC 的中点,12BM DM AC ∴==, 点N 是BD 的中点,MN BD ∴⊥.22.已知:如图,BE CD ⊥垂足为E ,8BE DE ==,BC DA =,(1)求证:BEC DEA ∆≅∆;(2)若MN 是边AD 的垂直平分线,分别交AD 、CD 于M 、N ,且5CE =,求AEN ∆的周长.【解答】(1)证明:BE CD⊥,90BEC DEA∴∠=∠=︒,在Rt BEC∆与Rt DEA∆中BE DE BC DA=⎧⎨=⎩,Rt BEC Rt DEA(HL)∴∆≅∆;(2)解:Rt BEC Rt DEA∆≅∆,5AE CE∴==,MN是边AD的垂直平分线,AN DN∴=,AEN∴∆的周长5813AN EN AE AE DN EN AE DE=++=++=+=+=.23.如图,已知一架竹梯AB斜靠在墙角MON处,竹梯13AB m=,梯子底端离墙角的距离5BO m=.(1)求这个梯子顶端A距地面有多高;(2)如果梯子的顶端A下滑4m到点C,那么梯子的底部B在水平方向上滑动的距离4BD m=吗?为什么?【解答】解:(1)AO DO⊥,AO∴==,12m =,∴梯子顶端距地面12m 高;(2)滑动不等于4m ,4AC m =,8OC AO AC m ∴=-=,OD ∴===,54BD OD OB ∴=-=->,∴滑动不等于4m .24.如图,在长方形ABCD 中,5AB =,13AD =,点E 为BC 上一点,将ABE ∆沿AE 折叠,使点B 落在长方形内点F 处,连接DF 且12DF =.(1)试说明:ADF ∆是直角三角形;(2)求BE 的长.【解答】解:(1)根据折叠可知:5AB AF ==,13AD =,12DF =,22212513+=,即222FD AF AD +=,根据勾股定理的逆定理,得ADF ∆是直角三角形.(2)设BE x =,则EF x =,根据折叠可知:90AFE B ∠=∠=︒,90AFD ∠=︒,180DFE ∴∠=︒,D ∴、F 、E 三点在同一条直线上,12DE x ∴=+,13CE x =-,5DC AB ==,在Rt DCE ∆中,根据勾股定理,得222DE DC EC =+,即222(12)5(13)x x +=+-,解得1x =.答:BE 的长为125.如图(1),7AB cm =,AC AB ⊥,BD AB ⊥垂足分别为A 、B ,5AC cm =.点P 在线段AB 上以2/cm s 的速度由点A 向点B 运动,同时,点Q 在射线BD 上运动.它们运动的时间为()t s (当点P 运动结束时,点Q 运动随之结束).(1)若点Q 的运动速度与点P 的运动速度相等,当1t =时,ACP ∆与BPQ ∆是否全等,并判断此时线段PC 和线段PQ 的位置关系,请分别说明理由;(2)如图(2),若“AC AB ⊥,BD AB ⊥”改为“60CAB DBA ∠=∠=︒”,点Q 的运动速度为/xcm s ,其他条件不变,当点P 、Q 运动到某处时,有ACP ∆与BPQ ∆全等,求出相应的x 、t 的值.【解答】解:(1)ACP BPQ ∆≅∆,AC AB ⊥,BD AB ⊥90A B ∴∠=∠=︒2AP BQ ==,5BP ∴=,BP AC ∴=,在ACP ∆和BPQ ∆中,AP BQ A B AC BP =⎧⎪∠=∠⎨⎪=⎩,ACP BPQ ∴∆≅∆;(2)存在x 的值,使得ACP ∆与BPQ ∆全等, ①若ACP BPQ ∆≅∆,则AC BP =,AP BQ =,可得:572t =-,2t xt = 解得:2x =,1t =;②若ACP BQP ∆≅∆,则AC BQ =,AP BP =,可得:5xt =,272t t =- 解得:207x =,74t =.。
专题12必考必刷解答题之复数1.【北京市通州区2019-2020学年(下)期末】已知复数1(z i i =-是虚数单位).(1)求2z z -;(2)如图,复数1z ,2z 在复平面上的对应点分别是A ,B ,求12z z z+. 【答案】(1)1i --;(2)15i 22-+. 解:(1)1z i =-,222(1)(1)1211z z i i i i i i ∴-=---=-+-+=--;(2)12z i =,22z i =+,∴122223(23)(1)1511(1)(1)22z z i i i i i i z i i i i ++++++====-+---+. 2.【江苏省常州市教育学会2019-2020学年下学期期末】已知22(815)(56)i z m m m m =-++-+,其中i 是虚数单位,m 为实数.(1)当z 为纯虚数时,求m 的值;(2)当复数z ·i 在复平面内对应的点位于第二象限时,求m 的取值范围. 【答案】(1)m =5;(2)(-∞,2)(5,+∞).(1)因为z 为纯虚数,所以2235815023560m m m m m m m m ⎧==⎧-+=⇒⎨⎨≠≠-+≠⎩⎩或且 综上可得,当z 为纯虚数时m =5;(2)因为22i (815)i (56)z m m m m ⋅=-+--+在复平面内对应的点位于第二象限,()2281505332560m m m m m m m m ⎧-+>><⎧⎪⇒⎨⎨><--+<⎩⎪⎩或或,即m <2或者m >5, 所以m 的取值范围为(-∞,2)(5,+∞).3.【山东省泰安市2018-2019学年下学期期末】已知复数1z 与21(2)8z i +-都是纯虚数,复数21z i =-,其中i 是虚数单位. (1)求复数1z ; (2)若复数z 满足12111z z z =+,求z . 【答案】(1)12z i =-;(2)2455i -. (1)设1()z bi b R =∈,则()22128(2)8z i bi i +-=+-()24(48)b b i =-+-由题意得240480b b ⎧-=⎨-≠⎩. ∴2b =- ∴12z i =-(2)∵12111z z z =+ ∴1212(2)(1)(2)(1)z z i i z z z i i -⨯-==+-+- 2213i i--=-(22)(13)(13)(13)i i i i --+=-+2455i =- 4.【江苏省南京市秦淮中学2019-2020学年(美术班)上学期期末】莱昂哈德·欧拉(),1707.4.151783.9.18Leonhard Euler ,瑞士数学家、自然科学家.13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位,他是数学史上最多产的数学家.其中之一就是他发现并证明欧拉公式cos sin i e i θθθ=+,从而建立了三角函数和指数函数的关系.若将其中的θ取作π就得到了欧拉恒等式10i e π+=,它是数学里令人着迷的一个公式,它将数学里最重要的几个量联系起来:两个超越数:自然对数的底数e ,圆周率π;两个单位:虚数单位i 和自然数单位1;以及被称为人类伟大发现之一的0,数学家评价它是“上帝创造的公式”请你根据欧拉公式:cos sin i e i θθθ=+,解决以下问题:(1)试将复数3i e π写成a bi +(a 、b R ∈,i 是虚数单位)的形式; (2)试求复数312+πi e的模. 【答案】(1)122+;(2)2. (1)根据欧拉公式可得31cossin 3322πππ=+=+i ei ; (2)由题意可知31112212πi e ++=+=,因此,312πi e +==. 5.【上海市理工大附中2018-2019学年下学期期末】设复数z 1=2+ai (其中a ∈R ),z 2=3-4i .(1)若z 1+z 2是实数,求z 1·z 2的值; (2)若12z z 是纯虚数,求|z 1|. 【答案】(1)224i +;(2)52. 解:(1)12z ai =+(其中)a R ∈,234z i =-, 125(4)z z a i ∴+=+-,由12z z +是实数,得4a =.124z i ∴=+,234z i =-,则12(24)(34)224z z i i i =+-=+; (2)由122(2)(34)643834(34)(34)2525z ai ai i a a i z i i i +++-+===+--+是纯虚数, 得640380a a -=⎧⎨+≠⎩,即32a =.135|||2|22z i ∴=+==.6.【辽宁省辽阳市2019-2020学年(下)期末】设复数2312iz i-=+. (1)求z 的共轭复数z ;(2)设a R ∈,1z ai +=,求a 的值.【答案】(1)4755z i =-+;(2)45a =或2a =.解:(1)因为()()()()2231223243647471212125555i i i i i i i z i i i i -----+--=====--++-; 所以4755z i =-+; (2)因为47475555z ai i ai a i ⎛⎫+=--+=-+- ⎪⎝⎭,所以1z ai +==,解得45a =或2a =. 7.【陕西省西安市蓝田县2019-2020学年下学期期末】已知0m ≠,复数()()229z m m i =-+-.(Ⅰ)若z 在复平面内对应的点在第一象限,求m 的取值范围; (Ⅱ)若z 的共轭复数z 与复数85i m+相等,求m 的值. 【答案】(Ⅰ)3m >;(Ⅱ)2m =-.解:(Ⅰ)由题意,22090m m ->⎧⎨->⎩,解得3m >;(Ⅱ)由()()229z m m i =-+-,得()()229z m m i =---,又z 与复数85i m+相等,28295m m m ⎧=-⎪∴⎨⎪-=⎩,解得2m =-.8.【福建省龙岩市一级达标校2019-2020学年下学期期末质检】已知复数241miz i-=+(m R ∈,i 是虚数单位). (1)若z 是纯虚数,求m 的值;(2)设z 是z 的共轭复数,若复数2z i +在复平面上对应的点位于第四象限,求m 的取值范围.【答案】(1)12m =;(2)32m <-.解:(1)241mi z i -=+=()()24(1)(24)(24)(12)(12)1(1)2mi i m m im m i i i ----+==--++- 若z 是纯虚数,则120,120m m -=⎧⎨+≠⎩12m ∴=. (2)由(1)得,(12)(12),z m m i =--+(12)(12)z m m i ∴=-++,2(12)(32)z i m m i +=-++,又因为复数2z i +在复平面上对应的点位于第四象限,120,320m m ->⎧∴⎨+<⎩∴32m <-.9.【吉林省辽源市田家炳高级中学等友好学校2019-2020学年下学期期末】已知复数()()11z m m i m R =++-∈.(1)m 取什么值时,z 为实数; (2)m 取什么值时,z 为纯虚数. 【答案】(1)1m =(2)1m =- (1)复数()()11z m m i m R =++-∈, 若z 为实数,则10m -=,即1m =(2)若z 为纯虚数,则1010m m +=⎧⎨-≠⎩,解得1m =-10.【山东省潍坊市2019-2020学年第二学期期末】在①z 为实数,②z 为虚数,③z 为纯虚数,这三个条件中任选一个,补充在下面问题中. 已知复数:()()2221z m m m i =--+- (1)若________,求实数m 的值;(2)当z 在复平面内对应的点位于第三象限时,求m 的取值范围.【答案】(1)选择①:1m =-或1m =;选择②:1m ≠-或1m ≠;选择③:2m =;(2)()1,1-.选择①,当z 为实数时,有210m -=, 解得1m =-或1m =,选择②,当z 为虚数时,有210m -≠, 解得1m ≠-或1m ≠,选择③,当z 为纯虚数时,有222010m m m ⎧--=⎨-≠⎩,解得211m m m ==-⎧⎨≠±⎩或,∴2m =;(2)因为z 在复平面内对应的点位于第三象限,所以222010m m m ⎧--<⎨-<⎩,解得11m -<<,所以m 的取值范围为()1,1-.11.【上海市徐汇区2019-2020学年下学期期末】已知关于x 的一元二次方程210()x kx k -+=∈R 的两根为12,x x .(1)若1x 为虚数,求k 的取值范围; (2)若12||2x x ,求k 的值.【答案】(1)22k -<<;(2)k 的值为±或0. 解:(1)依题意可得240k ∆=-<,解得22k -<<; (2)因为210x kx -+= 所以12x x k +=,121=x x①0∆≥时,222121212||()444x x x x x x k -=+-=-=,解得k =± ②∆<0时,222121212||[()4]44x x x x x x k -=-+-=-=,解得0k =;综上,k 的值为±或0.12.【江苏省盐城中学2018-2019学年上学期期末】若复数()()12i mi ++为纯虚数,其中i 为虚数单位,m R ∈ (1)求实数m 的值;(2)若用mi 为实系数方程()2220x a x a +-+=的根,求实数a 的值.【答案】(1)2;(2)2. (1)(1)(2)2(2)i mi m m i ++=-++为纯虚数,∴2020m m -=⎧⎨+≠⎩,解得2m =.∴实数m 的值是2;(2)mi 为实系数方程22(2)0x a x a +-+=的根,实系数方程虚根成对, 由韦达定理可知,2220a i i -+=-=,且2(2)(2)i i a ⋅-=,即2a =.∴实数a 的值是2.13.【宁夏银川三沙源上游学校2019-2020学年上学期期末】已知1234iz i+=-. (1)求z ;(2)已知23i -是关于x 的一元二次实系数方程20x px q ++=的一个根,求实数p ,q 的值.【答案】(1)5z =;(2)4p =-,13q =. (1)由()()()()123451012343425512354i i i i i i z i i ++-+=+=-==-+-+,得z ==;(2)把23i -代入方程20x px q ++=中,得到:()()521230p q p i -++++=, 即520p q -++=且1230p +=,解得4p =-,13q =.14.【陕西省宝鸡市渭滨区2018-2019学年下学期期末】已知复数1az i i=++,其中i 为虚数单位,a R ∈.(1)若z R ∈,求实数a 的值;(2)若z 在复平面内对应的点位于第一象限,求实数a 的取值范围. 【答案】(1)2a =(2)(0,2)a ∈解:(1)由题意,根据复数的运算,可得()()()1(1)11122a i a a a z i i i i i i -=+=+=+-++-, 由z R ∈,则102a-=,解得2a =. (2)由z 在复平面内对应的点位于第一象限,则02a >且102a->,解得02a <<,即(0,2)a ∈.15.【山东省临沂市沂水县2018-2019学年上学期期末】已知复数2()z m mi m R =-∈,若||z z 在复平面内对应的点位于第四象限.(1)求复数z ;(2)若21z az b i ++=+,求实数a ,b 的值. 【答案】(1)z =1﹣i ;(2)a =﹣3,b =4.解:(1)2z m mi =-,||z =422m m ∴+=,得21m =.又z 在复平面内对应的点位于第四象限,1m ∴=-,即1z i =-;(2)由(1)得1z i =-, 21z az b i ∴++=+,2(1)(1)1i a i b i ∴-+-+=-,()(2)1a b a i i ∴+-+=+,∴121a b a +=⎧⎨+-⎩解得3a =-,4b =.16.【上海市上海中学2019-2020学年上学期期末】已知复数()221iz i m i =++-(其中i 是虚数单位,m R ∈).(1)若复数z 是纯虚数,求m 的值; (2)求1z -的取值范围.【答案】(1)12m =-;(2)1z -5≥(1)()()()()()2i i 12i2i 2i i 1i 1i 1z m m +=++=++--+ ()()2i i i 121(1)i m m m =+-+=++-,若复数z 是纯虚数,则210,10m m +=-≠,所以12m =-. (2)由(1)得21(1)i z m m =++-,12(1)i z m m -=+-,1z -==因为2521y m m =-+是开口向上的抛物线,有最小值45;所以1z -≥17.【宁夏贺兰县景博中学2020-2021学年上学期期末】已知复数241miz i+=-,(,m R i ∈是虚数单位).(1)若z 是纯虚数,求m 的值;(2)设z 是z 的共轭复数,复数2z z +在复平面上对应的点在第一象限,求m 的取值范围. 【答案】(1)12;(2)11,22⎛⎫- ⎪⎝⎭. (1)()()()()()241241221111mi i mi z m m i i i i +++===-++--+, ∵z 是纯虚数,∴120m -=,且210m +≠, 解得12m =. (2)∵z 是z 的共轭复数,所以()1221z m m i =--+, ∴()()2122121221z z m m i m m i +=--++-++⎡⎤⎣⎦()3621m m i =-++,复数2z z +在复平面上对应的点在第一象限,∴360210m m ->⎧⎨+>⎩,解得1122m -<<,即实数m 的取值范围为11,22⎛⎫-⎪⎝⎭. 18.【福建省泉州市2018-2019学年下学期期末教学质量跟踪监测】已知复数1i z a b =+(a ,b ∈R ),2i zcd =+(c ,d ∈R ).(1)当1a =,2b =,3c =,4d =时,求1z ,2z ,12z z ⋅;(2)根据(1)的计算结果猜想12z z ⋅与12z z ⋅的关系,并证明该关系的一般性【答案】(1)1z =25z =,12z z ⋅=2)猜想1212z z z z ⋅=⋅,见解析(1)由题知1z ==,25z ==,所以()()1212i 34i 510i z z ⋅=+⨯+=-+所以12z z ⋅===(2)猜想1212z z z z ⋅=⋅证明:因为1z =2z =,所以12z z ⋅==因为()()()()12i i i z z a b c d ac bd ad bc ⋅=+⨯+=-++,所以12z z ⋅====,所以1212z z z z ⋅=⋅猜想成立.19.【重庆市2019-2020学年(下)期末】(1)已知z C ∈,解关于z 的方程(3)13z i z i -⋅=+; (2)已知32i +是关于x 的方程220x ax b ++=在复数集内的一个根,求实数a ,b 的值.【答案】(1)1z =-或13i -+;(2)12,26a b =-=.(1)设z a bi =+,则(3)()13a bi i a bi i +--=+,即223313a b b ai i +--=+ ∴223133a b b a ⎧+-=⎨-=⎩,解得10a b =-⎧⎨=⎩,或13a b =-⎧⎨=⎩∴1z =-或13i -+; (2)由题知方程在复数集内另一根为32i -,故323262(32)(32)132a i ib i i ⎧-=++-=⎪⎪⎨⎪=+-=⎪⎩, 即12,26a b =-=.20.【山东省烟台市莱州一中2018-2019学年(下)第三次质检】已知复数1212,34,z i z i i =-=+为虚数单位.(1)若复数21z az +对应的点在第四象限,求实数a 的取值范围;(2)若()1212z z z z z +=-,求z 的共轭复数.【答案】(1)0a >;(2)1z i =-+【解析】(I )=,由题意得解得(2)()()()()12121234261,123442i i z z i z i z z i i i--+---====--+-+++ 1.z i =-+21.【江苏省徐州市2019-2020学年下学期期末】复数()()()2152615z i m i m i =++-+-. (1)实数m 取什么数时,z 是实数;(2)实数m 取什么数时,z 是纯虚数;(3)实数m 取什么数时,z 对应的点在直线70x y ++=上.【答案】(1)5m =或3-;(2)2m =-;(3)12m =或2- 解:复数222(1)(52)(615)(56)(215)z i m i m i m m m m i =++-+-=+++--.(1)由22150m m --=,解得5m =或3-.5m ∴=或3-时,复数z 为实数.(2)由225602150m m m m ⎧++=⎨--≠⎩,解得2m =-. 2m ∴=-时,复数z 为纯虚数.(3)由22(56)(215)70m m m m +++--+=.化为:22320m m +-=, 解得12m =或2-. 12m ∴=或2-,z 对应点在直线70x y ++=上. 22.【上海市曹杨二中2019-2020学年下学期期末】设,αβ分别是方程220x x a ++=()a R ∈的两个虚数根.(1)求a 的取值范围及αβ+的值;(2)若4αβ-=,求a 的值.【答案】(1)1a >,(2)5.(1)由方程220x x a ++=()a R ∈有两个虚数根所以440a ∆=-<,解得1a >由,αβ是方程220x x a ++=()a R ∈的两个虚数根.可得,αβ,不妨设1α==-+,1β==-所以αβ+(2)由(1)可得αβ-==根据4αβ-=,即4=,解得5a =23.【江苏省宿迁市2018-2019学年下学期期末】已知复数()112z m mi =++,()21z i =+,其中m R ∈,i 为虚数单位.(1)若复数12z z 为纯虚数,求实数m 的值;(2)在复平面内,若复数12z z =对应的点在第四象限,求实数m 的取值范围.【答案】(1)1m =.(2)()3,0-(1)由()112z m mi =++,21z i =+得()()12131z z m m i =-+++,又12z z 为纯虚数,所以10m -+=,且310m +≠, 所以1m =.(2)()1232z z m mi ==++,又复数12z z =对应的点在第四象限,所以30m +>,且20m ,所以m 的取值范围是()3,0-.24.【广东省中山市2018-2019学年下学期期末】已知复数2(),43z a i w i =+=-其中a 是(1)若在复平面内表示复数z 的点位于第一象限,求a 的范围; (2)若z w是纯虚数,a 是正实数, ①求a ,②求232019()()...()z z z z w w w w++++; 【答案】(1)1a >;(2)①2;②-1.(1)由题可得:221()2z a i a ai -=+=+,因为复数z 在第一象限,所以21020a a ⎧->⎨>⎩,解得1a >.(2)依题意得:22()()(43)43(43)(43)za i a i i i i i ω+++==--+ ()2222223222(43)4843634(3)16(9)a ai i i a ai i a i ai i i ++++++++==--- ()()2246438325a a a a i--++-= 因为z w 是纯虚数,则:2246403830a a a a ⎧--=⎨+-≠⎩, 即122133a a a a ⎧==-⎪⎪⎨⎪≠-≠⎪⎩或或, 又因为a 是正实数,则2a =.当2a =时,22464833161232525za a ai a i i i i i i ω--++-+-===, 232019232019()()()z z z z i i i i ωωωω⎛⎫⎛⎫⎛⎫++++=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()201911i i i -=-25.【北京市大兴区2018-2019学年第二学期期末】已知复数1z a i =+,21z i =-,a R ∈. (Ⅰ)当1a =时,求12z z ⋅的值;(Ⅱ)若12z z -是纯虚数,求a 的值;(Ⅲ)若12z z 在复平面上对应的点在第二象限,求a 的取值范围. 【答案】(Ⅰ)2i ;(Ⅱ)1;(Ⅲ)(1,1)-. (Ⅰ)由题意12z z ⋅2(1)(1)122i i i i i =++=++=;(Ⅱ)由题意12(1)2z z a i -=-+为纯虚数,则10a -=,所以1a =; (Ⅲ)212()(1)111(1)(1)222z a i a i i a ai i i a a i z i i i ++++++-+====+--+,对应点11(,)22a a -+,它是第二象限点,则102102a a -⎧<⎪⎪⎨+⎪>⎪⎩,解得11a -<<.故a 的范围是(1,1)-.。
……………………:______江苏省2019-2020学年上学期期末原创卷(二)七年级数学(考试时间:120分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:苏科版七上全册。
第Ⅰ卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.结果为正数的式子是 A .6(1)- B .25-C .|3|--D .31()3-2.下列各组中的两个单项式,属于同类项的一组是 A .23a b 与23ab B .2x 与2xC .23与2aD .4与12-3.如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是A .点A 和点CB .点B 和点DC .点A 和点DD .点B 和点C4.如图,是小明同学在数学实践课上,所设计的正方体盒子的平面展开图,每个面上都有一个汉字,请你判断,正方体盒子上与“善”字相对的面上的字是A .文B .明C .诚D .信5.如图所示,AC ⊥BC 于C ,CD ⊥AB 于D ,图中能表示点到直线(或线段)的距离的线段有A .1条B .2条C .3条D .5条6.某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人 A .赚16元 B .赔16元C .不赚不赔D .无法确定第Ⅱ卷二、填空题(本大题共10小题,每小题2分,共20分) 7.比较大小,4-__________3(用“>”“<”或“=”填空).8.小明家的冰箱冷冻室的温度为﹣5℃,调高4℃后的温度是__________℃. 9.多项式2526235x y x y --+的一次项系数、常数项分别是__________.10.已知2(3)30m m xm --+-=是关于x 的一元一次方程,则m =__________.11.如果21a -与()22b +互为相反数,那么ab 的值为__________. 12.已知3x =是方程()427k x k x +--=的解,则k 的值是__________.13.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD =56°23′,则∠BOC 的度数为__________.……○………………内……………… 此……○………………外………………14.如图,长方形纸片的长为6cm ,宽为4cm ,从长方形纸片中剪去两个形状和大小完全相同的小长方形卡片,那么余下的两块阴影部分的周长之和是__________.15.小颖按如图所示的程序输入一个正整数x ,最后输出的结果为656,请写出符合条件的所有正整数x 的值为__________.16.观察下列图中所示的一系列图形,它们是按一定规律排列的,依照此规律,第2020个图形中共有__________个〇.三、解答题(本大题共11小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分7分)计算:(1)212(3(24)2-÷---; (2)﹣24+16÷(﹣2)3×|﹣3﹣1|. 18.(本小题满分7分)解方程:(1)98512x x -+-+=; (2)11(2)(3)32x x +=+. 19.(本小题满分7分)先化简,再求值:()22234232322⎛⎫--++- ⎪⎝⎭xy x xy y x xy ,其中x =3,y =–1. 20.(本小题满分8分)如图,已知线段a ,b ,用尺规作一条线段c ,使c =2b –a .21.(本小题满分8分)如图,已知∠AOB =90°,∠EOF =60°,OE 平分∠AOB ,OF 平分∠BOC ,求∠COB 和∠AOC 的度数.22.(本小题满分7分)某船从A 地顺流而下到达B 地,然后逆流返回,到达A 、B 两地之间的C 地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A 、C 两地之间的路程为10千米,求A 、B 两地之间的路程.23.(本小题满分8分)有8袋大米,以每袋25kg 标准,超过的千克数记作正数,不足的千克数记作负数,称后记录如下:1.2+,0.1-, 1.0+,0.6-,0.5-,0.3+,0.4-,0.2+.(1)这8袋大米中,最轻和最重的这两袋分别是多少千克? (2)这8袋大米一共多少千克?24.(本小题满分82(10y -=).(1)求x y ,的值;(2)求()()()()()()1111112220192019xy x y x y x y +++⋯+++++++的值.25.(本小题满分8分)老师在黑板上出了一道解方程的题212134x x -+=-,小明马上举手,要求到黑板上做,他是这样做的:()()421132x x -=-+⋯①,84136x x -=--⋯②, 83164x x +=-+⋯③, 111x =-⋯④,111x =-⋯⑤, 老师说:小明解一元一次方程的一般步骤都知道却没有掌握好,因此解题时有一步出现了错误,请你指出他错在__________(填编号);然后,你自己细心地接下面的方程: (1)()()335221x x +=-;(2)2157146y y ---=.26.(本小题满分9分)网上办公,手机上网已成为人们日常生活的一部分,我县某通信公司为普及网络使用,特推出以下两种电话拨号上网收费方式,用户可以任选其一. 收费方式一(计时制):0.05元/分;收费方式二(包月制):50元/月(仅限一部个人电话上网); 同时,每一种收费方式均对上网时间加收0.02元/分的通信费. 某用户一周内的上网时间记录如下表:(1)计算该用户一周内平均每天上网的时间.(2)设该用户12月份上网的时间为x 小时,请你分别写出两种收费方式下该用户所支付的费用.(用含x 的代数式表示)(3)如果该用户在一个月(30天)内,按(1)中的平均每天上网时间计算,你认为采用哪种方式支付费用较为合算?并说明理由.27.(本小题满分11分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折. (1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和(10)a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若60a =,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?2019-2020学年上学期期末原创卷A 卷七年级数学·全解全析1.【答案】A【解析】A 、6(1)-=1,故A 正确;B 、25-=–25,–52表示5的2次幂的相反数,为负数,故B 错误;C 、|3|--=–3,故错误;D 、31(3-=–127,故错误.故选A . 2.【答案】D【解析】A .23a b 与23ab ,字母相同,但各字母次数不同,故错误; B .2x 与2x,字母相同,但各字母次数不同,故错误; C .23与2a ,一个为常数项,一个的次数是2,故错误; D .4与12-,均为常数项,故正确;所以答案为:D 3.【答案】C【解析】由A 表示–2,B 表示–1,C 表示0.75,D 表示2. 根据相反数和为0的特点,可确定点A 和点D 表示互为相反数的点. 故答案为C . 4.【答案】A【解析】这是一个正方体的平面展开图,共有六个面,其中面“文"与“善"相对,面“明"与面“信"相对,“诚”与面“友"相对.故选A . 5.【答案】D【解析】表示点C 到直线AB 的距离的线段为CD ,表示点B 到直线AC 的距离的线段为BC ,表示点A 到直线BC 的距离的线段为AC ,表示点A 到直线DC 的距离的线段为AD ,表示点B 到直线DC 的距离的线段为BD ,共五条.故选D . 6.【答案】B【解析】设此商人赚钱的那件衣服的进价为x 元,则(125%)120x +=,得96x =;设此商人赔钱的那件衣服进价为y 元,则(125%)120y -=,解得160y =; 所以他一件衣服赚了24元,一件衣服赔了40元, 所以卖这两件衣服总共赔了4024=16-(元). 故选B . 7.【答案】<【解析】4 3.-<故答案为:.< 8.【答案】–1【解析】根据题意得:–5+4=–1(℃),∴调高4℃后的温度是–1℃.故答案为:–1. 9.【答案】3-,5【解析】多项式2526235x y x y --+的一次项的系数是–3,常数项是5.故答案为:–3,5. 10.【答案】–3【解析】根据一元一次方程满足的条件可得:21m -=且m –3≠0,解得:m =–3. 11.【答案】–1【解析】由题意可得:221(2)0a b -++=,∴210,20a b -=+=,解得1,22a b ==-, ∴1(2)12ab =⨯-=-.故答案为:–1. 12.【答案】2【解析】把x =3代入方程得:7k ﹣2k ﹣3=7,解得k =2.故答案为:2. 13.【答案】146°23′【解析】∵EO ⊥AB 于点O ,∴∠EOA =90°,又∵∠EOD =56°23′,∴∠COB =∠AOD =∠EOD +∠EOA =90°+56°23′=146°23′.故答案为:146°23′.14.【答案】16【解析】设剪去的长方形的长为a ,宽为b ,a +b =6, 则左下角长方形的长为a ,宽为4–b ,周长为8+2a –2b , 右上角长方形的长为b ,宽为4–a ,周长为8+2b –2a , 所以阴影部分周长和为:8+2a –2b +8+2b –2a =16, 故答案为:16. 15.【答案】5、26、131【解析】由题意得:运行一次程序5x +1=656,解得x =131;运行二次程序5x +1=131,解得x =26;运行三次程序5x +1=26,解得x =5;运行四次程序5x +1=5,解得x =0.8(不符合,即这次没有运行), ∴符合条件的所有正整数x 的值为131、26、5. 故答案为:131、26、5. 16.【答案】6061【解析】观察图形可知:第1个图形共有:1+1×3,第2个图形共有:1+2×3,第3个图形共有:1+3×3,…, 第n 个图形共有:1+3n ,∴第2020个图形共有1+3×2020=6061,故答案为:6061. 17.【解析】(1)原式54(2)2=-÷-- 2425=-⨯+825=-+25=;(3分) (2)原式=–16+16÷(–8)×4 =–16+(–2)×4 =–16–8 =–24.(7分)18.【解析】(1)去分母得:–10x +2=–9x +8,移项合并得:–x =6, 解得x =–6;(3分) (2)去分母得:2x +4=3x +9, 解得x =–5.(7分)19.【解析】原式=4xy –3x 2+6xy –4y 2+3x 2–6xy =4xy –4y 2.(4分)当x =3,y =–1时,原式=4×3×(–1)–4×(﹣1)2 =–12–4 =–16.(7分)20.【解析】如图所示,线段AD 即为所求.……○………………○…………(8分)21.【解析】90AOB ∠=,OE 平分AOB ∠,45BOE ∴∠=,又60EOF ∠=,604515FOB ∴∠=-=,(4分)OF 平分BOC ∠,21530COB ∴∠=⨯=,3090120AOC BOC AOB ∴∠=∠+∠=+=.(8分)22.【解析】设A 、B 两码头之间的航程为x 千米,则B 、C 间的航程为(x –10)千米,由题意得,1078282x x -+=+-,(4分) 解得x =32.5.答:A 、B 两地之间的路程为32.5千米.(7分)23.【解析】(1)这8袋大米中,最轻和最重的这两袋分别是24.4千克,26.2千克;(4分)(2)258( 1.2)(0.1)( 1.0)(0.6)(0.5)(0.3)(0.4)(0.2)⨯+++-+++-+-+++-+201.1=(千克). 答:这8袋大米一共201.1千克.(8分)24.【解析】(1)根据题意得2010x y -=-=,,解得21x y ==,;(4分) (2)原式111121324320212020=+++⋯+⨯⨯⨯⨯ 111111112233420202021=-+-+-+⋯+-112021=-20202021=.(8分) 25.【解析】小明错在①;故答案为:①;(2分)(1)去括号得:91542x x +=-, 移项合并得:517x =-, 解得 3.4x =-;(5分)(2)去分母得:()()32125712y y ---=, 去括号得:63101412y y --+=, 移项合并得:41y -=,解得0.25y =-.(8分)26.【解析】(1)该用户一周内平均每天上网的时间:354033503474048++++++=40(分钟).答:该用户一周内平均每天上网的时间是40分钟;(3分)(2)采用收费方式一(计时制)的费用为:0.05×60x +0.02×60x =4.2x (元), 采用收费方式二(包月制)的费用为:50+0.02×60x =(50+1.2x )(元);(6分) (3)40分钟=23h . 若一个月内上网的时间为30x =20小时,则计时制应付的费用为4.2×20=84(元),包月制应付的费用为50+1.2×20=74(元). 由84>74,所以包月制合算.(9分)27.【解析】(1)设每个足球的定价是x 元,则每套队服是(x +50)元,根据题意得2(x +50)=3x ,解得x =100,x +50=150.答:每套队服150元,每个足球100元;(4分) (2)到甲商场购买所花的费用为:150×100+100(a ﹣10010)=(100a +14000)元, 到乙商场购买所花的费用为:150×100+0.8×100•a =(80a +15000)元;(8分) (3)当60a =时,到甲商场购买所花的费用为:100×60+14000=20000(元), 到乙商场购买所花的费用为:80×60+15000=19800(元), 所以到乙商场购买合算.(11分)。
2019-2020学年江苏省苏州市吴中区八年级第二学期期末数学试卷一、选择题(共10小题).1.下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列调查中,适宜采用普查方式的是()A.了解我省初中学生的家庭作业时间B.了解某市居民对废旧电池的处理情况C.了解某区学生的家庭1周内丢弃塑料袋的数量D.了解某校新冠肺炎防控期间全体师生当天的体温情况3.计算+,正确的结果是()A.1B.C.a D.4.下列事件中,是必然事件的是()A.3天内下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.抛掷1个均匀的骰子,出现4点向上5.分式可变形为()A.B.C.D.6.下列各式中,与是同类二次根式的是()A.B.C.D.7.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.对角线相等的菱形是正方形D.一组对边平行的四边形是平行四边形8.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10 A.B.C.D.9.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC 的面积为()A.16B.12C.10D.810.如图,在正方形ABCD中,E是BC边上的一点,BE=2,EC=4,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AG.现在有如下四个结论:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=3.6.其中结论正确的个数是()A.1B.2C.3D.4二、填空题(共8小题).11.若在实数范围内有意义,则x的取值范围是.12.当x=时,分式的值为零.13.已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为cm.14.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是.15.已知反比例函数(k是常数,k≠3)的图象有一支在第二象限,那么k的取值范围是.16.如图,a∥b∥c,直线m分别交直线a、b、c于点A、B、C,直线n分别交直线a、b、c于点D、E、F.若AB=2,CB=4,DE=3,则EF=.17.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,在B'C′上取点F,使B'F=AB.则∠FBB'的度数为°.18.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=6,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为.三、解答题(本大题共10小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)19.计算(+2)×.20.解方程:.21.先化简,再求值:(1﹣)÷,其中a=1+.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画出△A1B1C1,使它与△ABC 的相似比为2,且它与△ABC在位似中心O的两侧,并写出点B的对应点B1的坐标是.23.在苏州,主要城区已实现移动5G网络覆盖,除了关键交通枢纽和重要商圈,苏州众多景区也正在加速5G智慧旅游落地,为市民及游客带去更好的观景体验.现5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求5G网络的峰值速率.24.如图,在菱形ABCD中,对角线AC、BD相交于点O.(1)若∠BAD=120°,AC=8.求菱形ABCD的周长.(2)若DE∥AC,AE∥BD.求证:四边形AODE是矩形.25.某市为增强学生的卫生防疫意识,组织全市学生参加卫生防疫知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.(1)一共抽取了个参赛学生的成绩,表中a=;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)某校共有2000人,卫生防疫意识不强的学生(指成绩在70分以下)估计有多少人?组别成绩x/分频数A组60≤x<70aB组70≤x<808C组80≤x<9012D组90≤x<1001426.如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为点E,连接CE,F为线段CE上一点,且∠DFE=∠A.(1)求证:△DFC∽△CBE;(2)若AD=4,CD=6,DE=3,求DF的长.27.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)在第一象限交于点A、B,且该直线与x轴正半轴交于点C,过A、B分别作x轴的垂线,垂足分别为E、D.已知A(4,1).(1)求双曲线的表达式;(2)若CD=4CE.求k,b的值;(3)在(2)的条件下,若点M为直线AB上的动点,则OM长度的最小值为.28.如图,在Rt△ABC中,∠C=90°,AC=8厘米,BC=10厘米,点D在BC上,且CD=6厘米.现有两个动点P,Q分别从点A和点B同时出发,其中点P以2厘米/秒的速度沿AC向终点C运动;点Q以2.5厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)EP=;(用t的代数式表示)(2)如图,连接DP,是否存在某一时刻t,使四边形EQDP是平行四边形,如果存在,请求出t,如果不存在,请说明理由;(3)当t为何值时,△EDQ为直角三角形.参考答案一、选择题(本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.)1.下列标志图中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,也不是中心对称图形.故选:B.2.下列调查中,适宜采用普查方式的是()A.了解我省初中学生的家庭作业时间B.了解某市居民对废旧电池的处理情况C.了解某区学生的家庭1周内丢弃塑料袋的数量D.了解某校新冠肺炎防控期间全体师生当天的体温情况【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:A、了解我省初中学生的家庭作业时间,适合抽样调查,故A选项不合题意;B、了解某市居民对废旧电池的处理情况,适合抽样调查,故B选项不合题意;C、了解某区学生的家庭1周内丢弃塑料袋的数量,适合抽样调查,故C选项不合题意;D、了解某校新冠肺炎防控期间全体师生当天的体温情况,适于全面调查,故D选项符合题意.故选:D.3.计算+,正确的结果是()A.1B.C.a D.【分析】直接利用分式的加减运算法则计算得出答案.解:原式==1.故选:A.4.下列事件中,是必然事件的是()A.3天内下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.抛掷1个均匀的骰子,出现4点向上【分析】根据事件发生的可能性大小判断相应事件的类型即可.解:A、3天内下雨是随机事件,故A不符合题意;B、打开电视,它正在播广告是随机事件,故B不符合题意;C、367人中有至少两人的生日相同是必然事件,故C符合题意;D、抛掷1个均匀的骰子,出现4点向上是随机事件,故D不符合题意;故选:C.5.分式可变形为()A.B.C.D.【分析】利用分式的基本性质化简即可.解:=﹣.故选:B.6.下列各式中,与是同类二次根式的是()A.B.C.D.【分析】将各个二次根式化成最简二次根式后,选被开方数为2的根式即可.解:=2,因此选项A不符合题意;=,因此选项B符合题意;=2,因此选项C不符合题意;显然与不是同类二次根式,因此选项D不符合题意;故选:B.7.下列说法正确的是()A.对角线互相垂直的四边形是菱形B.矩形的对角线互相垂直C.对角线相等的菱形是正方形D.一组对边平行的四边形是平行四边形【分析】利用菱形的判定,正方形的判定,平行四边形的判定和矩形的性质依次判断可求解.解:A、对角线互相垂直的平行四边形是菱形,故A选项不符合题意;B、矩形的对角线相等,故B选项不符合题意;C、对角线相等的菱形是正方形,故C选项符合题意;D、两组对边平行的四边形是平行四边形,故D选项不符合题意;故选:C.8.验光师测得一组关于近视眼镜的度数y(度)与镜片焦距x(米)的对应数据如下表,根据表中数据,可得y关于x的函数表达式为()近视眼镜的度数y(度)2002504005001000镜片焦距x(米)0.500.400.250.200.10 A.B.C.D.【分析】直接利用已知数据可得xy=100,进而得出答案.解:由表格中数据可得:xy=100,故y关于x的函数表达式为:y=.故选:B.9.如图,在△ABC中,点D、E分别是AB、AC的中点,若△ADE的面积为4,则△ABC 的面积为()A.16B.12C.10D.8【分析】根据相似三角形的性质即可求出答案.解:∵点D、E分别是AB、AC的中点,∴DE∥BC,DE=BC,∴△ADE∽△ABC,∴=()2=,∴=,∴△ABC的面积为16,故选:A.10.如图,在正方形ABCD中,E是BC边上的一点,BE=2,EC=4,将正方形边AB沿AE折叠到AF,延长EF交DC于G,连接AG.现在有如下四个结论:①∠EAG=45°;②FG=FC;③FC∥AG;④S△GFC=3.6.其中结论正确的个数是()A.1B.2C.3D.4【分析】①正确.证明∠GAF=∠GAD,∠EAB=∠EAF即可.②错误.可以证明DG =GC=FG,显然△GFC不是等边三角形,可得结论.③正确.证明CF⊥DF,AG⊥DF即可.④正确.证明FG:EG=3:5,求出△ECG的面积即可.解:如图,连接DF,∵四边形ABCD是正方形,∴AB=AD=BC=CD=BE+EC=6,∠ABE=∠BAD=∠ADG=∠ECG=90°,由翻折可知:AB=AF,∠ABE=∠AFE=∠AFG=90°,BE=EF=2,∠BAE=∠EAF,∵∠AFG=∠ADG=90°,AG=AG,AD=AF,∴Rt△AGD≌Rt△AGF(HL),∴DG=FG,∠GAF=∠GAD,∴∠EAG=∠EAF+∠GAF=(∠BAF+∠DAF)=45°,故①正确,设GD=GF=x,在Rt△ECG中,∵EG2=EC2+CG2,∴(2+x)2=42+(6﹣x)2,∴x=3,∴DG=FG=3,∴CG=CD﹣DG=3=GF,∴△GFC是等腰三角形,易知△GFC不是等边三角形,显然FG≠FC,故②错误,∵GF=GD=GC,∴∠DFC=90°,∴CF⊥DF,∵AD=AF,GD=GF,∴AG⊥DF,∴CF∥AG,故③正确,∵S△ECG=×3×4=6,FG:FE=3:2,∴FG:EG=3:5,∴S△GFC=×6=3.6,故④正确,故选:C.二、填空题(本大题共8小题,每小题3分,共24分.把答案填在答题卷相应位置上.)11.若在实数范围内有意义,则x的取值范围是x≥.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.解:由题意得,3x﹣1≥0,解得,x≥,故答案为:x≥.12.当x=5时,分式的值为零.【分析】分子为0且分母不等于0时,分式的值为0.解:由题意得,x﹣5=0且x+3≠0,即,x=5,当x=5时,x+3=8≠0,故答案为:5.13.已知线段a=4 cm,b=9 cm,则线段a,b的比例中项为6cm.【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.解:根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.设它们的比例中项是x,则x2=4×9,x=±6,(线段是正数,负值舍去),故填6.14.在一个不透明的盒子中装有n个球,它们除了颜色之外其它都没有区别,其中含有3个红球,每次摸球前,将盒中所有的球摇匀,然后随机摸出一个球,记下颜色后再放回盒中.通过大量重复试验,发现摸到红球的频率稳定在0.03,那么可以推算出n的值大约是100.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.解:由题意可得,=0.03,解得,n=100.故估计n大约是100.故答案为:100.15.已知反比例函数(k是常数,k≠3)的图象有一支在第二象限,那么k的取值范围是k<3.【分析】根据反比例函数(k是常数,k≠3)的图象有一支在第二象限,可以得到k﹣3<0,从而可以得到k的取值范围.解:∵反比例函数(k是常数,k≠3)的图象有一支在第二象限,∴该反比例函数的图象在第二、四象限,∴k﹣3<0,解得,k<3,故答案为:k<3.16.如图,a∥b∥c,直线m分别交直线a、b、c于点A、B、C,直线n分别交直线a、b、c于点D、E、F.若AB=2,CB=4,DE=3,则EF=6.【分析】根据平行线分线段成比例定理得出比例式,再代入求出即可.解:∵a∥b∥c,∴=,∵AB=2,CB=4,DE=3,∴=,解得:EF=6,故答案为:6.17.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,在B'C′上取点F,使B'F=AB.则∠FBB'的度数为15°.【分析】连接BB',由矩形的性质可得∠ABC=90°,由旋转的性质可得AB=AB',∠ABC=∠AB'C'=90°,由直角三角形的性质可得BB'=AB'=CB'=AB,可证△ABB'是等边三角形,可得∠AB'B=60°,由等腰三角形的性质可求解.解:如图,连接BB',∵四边形ABCD是矩形,∴∠ABC=90°,∵将矩形ABCD绕点A旋转得到矩形AB′C′D′,∴AB=AB',∠ABC=∠AB'C'=90°,∵AC=2AB,∴AC=2AB'=AB'+B'C,∴AB'=B'C,∵∠ABC=90°,∴BB'=AB'=CB'=AB,∴△ABB'是等边三角形,∴∠AB'B=60°,∴∠BB'F=150°,∵B'F=AB,∴BB'=B'F,∴∠B'BF=∠B'FB=15°,故答案为:15.18.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=6,点D在边BC上,点E在线段AD上,EF⊥AC于点F,EG⊥EF交AB于点G.若EF=EG,则CD的长为2.【分析】作DH∥AC交AB于H,如图,则EF∥BC,EG∥DH,利用平行线分线段成比例定理得到=,=,则DC=DH,设DC=DH=x,则BD=6﹣x,再利用DH∥AC得到=,然后解方程求出x即可.解:作DH∥AC交AB于H,如图,∵EF⊥AC,EG⊥EF,∴EF∥BC,EG∥DH,∴=,=,∵EF=EG,∴DC=DH,设DC=DH=x,则BD=6﹣x,∵DH∥AC,∴=,即=,解得x=2,即CD的长为2.故答案为2.三、解答题(本大题共10小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)19.计算(+2)×.【分析】直接利用分配律去括号,再根据二次根式乘法法则计算即可.解:(+2)×=×+2×=+2=+6.20.解方程:.【分析】方程两边都乘以x﹣1得出3x+2=5,求出方程的解,再进行检验即可.解:方程两边都乘以x﹣1得:3x+2=5,解得:x=1,检验:当x=1时,x﹣1=0,所以x=1不是原方程的解,即原方程无解.21.先化简,再求值:(1﹣)÷,其中a=1+.【分析】根据分式的混合运算法则把原式化简,代入计算即可.解:原式=•=,当a=1+时,原式===.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画出△A1B1C1,使它与△ABC 的相似比为2,且它与△ABC在位似中心O的两侧,并写出点B的对应点B1的坐标是(﹣4,﹣2).【分析】直接利用位似图形的性质进而得出对应点位置.解:如图所示:点B的对应点B1的坐标是(﹣4,﹣2).故答案为:(﹣4,﹣2).23.在苏州,主要城区已实现移动5G网络覆盖,除了关键交通枢纽和重要商圈,苏州众多景区也正在加速5G智慧旅游落地,为市民及游客带去更好的观景体验.现5G网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求5G网络的峰值速率.【分析】直接利用已知表示出5G和4G的峰值速率,再利用在峰值速率下传输500兆数据,5G网络比4G网络快45秒,进而得出等式求出答案.解:设4G网络的峰值速率为x,则5G网络的峰值速率为10x,根据题意可得:=+45,解得:x=100,经检验得:x=100是原方程的根,故10x=1000(兆/秒),答:5G网络的峰值速率为1000兆/秒.24.如图,在菱形ABCD中,对角线AC、BD相交于点O.(1)若∠BAD=120°,AC=8.求菱形ABCD的周长.(2)若DE∥AC,AE∥BD.求证:四边形AODE是矩形.【分析】(1)由菱形的性质得出AD=DC=BC=AB,∠BAO=∠BAD=60°,证出△ABC是等边三角形,得出AB=BC=AC=8,即可得出答案;(2)先证四边形AODE是平行四边形,由菱形的性质得出∠AOD=90°,即可得出结论.【解答】(1)解:∵四边形ABCD是菱形,∴AD=DC=BC=AB,∠BAO=∠BAD=60°,∴△ABC是等边三角形,∴AB=BC=AC=8,∴菱形ABCD的周长=4AB=32;(2)证明:∵DE∥AC,AE∥BD,∴四边形AODE是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠AOD=90°,∴四边形AODE是矩形.25.某市为增强学生的卫生防疫意识,组织全市学生参加卫生防疫知识竞赛,为了解此次知识竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并制作出如下的不完整的统计表和统计图,如图所示,请根据图表信息解答以下问题.(1)一共抽取了40个参赛学生的成绩,表中a=6;(2)补全频数分布直方图;(3)计算扇形统计图中“B”对应的圆心角度数;(4)某校共有2000人,卫生防疫意识不强的学生(指成绩在70分以下)估计有多少人?组别成绩x/分频数A组60≤x<70aB组70≤x<808C组80≤x<9012D组90≤x<10014【分析】(1)第5段的频数是14,占调查人数的35%,可求出调查人数,进而确定a 的值,(2)根据各个组的频数,即可补全频数分布直方图;(3)“B”占调查人数的,因此相应的圆心角度数占360°的;(4)样本估计总体,样本中“卫生防疫意识不强”的占,因此估计总体2000人的是“卫生防疫意识不强”的人数.解:(1)14÷35%=40(人),a=40﹣14﹣12﹣8=6(人),故答案为:40,6;(2)补全频数分布直方图如图所示:(3)360°×=72°,答:扇形统计图中“B”对应的圆心角度数为72°;(4)2000×=300(人),答:某校2000名学生中,卫生防疫意识不强(指成绩在70分以下)的大约有300人.26.如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为点E,连接CE,F为线段CE上一点,且∠DFE=∠A.(1)求证:△DFC∽△CBE;(2)若AD=4,CD=6,DE=3,求DF的长.【分析】(1)利用平行四边形的性质得AD∥BC,CD∥AB,则根据平行线的性质得到∠A+∠B=180°,∠DCE=∠BEC,再证明∠DFC=∠B,则可判断△DFC∽△CBE;(2)利用平行四边形的性质得到BC=AD=4,利用平行线的性质得DE⊥DC,则利用勾股定理可计算出CE=3,然后利用相似比求出DF的长.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,CD∥AB,∴∠A+∠B=180°,∠DCE=∠BEC,∵∠DFE=∠A,∴∠DFE+∠B=180°,而∠DFE+∠DFC=180°,∴∠DFC=∠B,而∠DCF=∠CEB,∴△DFC∽△CBE;(2)解:∵四边形ABCD为平行四边形,∴CD∥AB,BC=AD=4,∵DE⊥AB,∴DE⊥DC,∴∠EDC=90°,在Rt△DEC中,CE===3,∵△DFC∽△CBE,∴DF:BC=DC:CE,即DF:4=6:3,∴DF=.27.如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)在第一象限交于点A、B,且该直线与x轴正半轴交于点C,过A、B分别作x轴的垂线,垂足分别为E、D.已知A(4,1).(1)求双曲线的表达式;(2)若CD=4CE.求k,b的值;(3)在(2)的条件下,若点M为直线AB上的动点,则OM长度的最小值为.【分析】(1)用待定系数法解答便可;(2)先证明△AEC∽△BDC,则相似比求得BD,进而求得B点坐标,再用待定系数法便可求得结果;(3)当OM⊥AB时,OM的长度最小,先求出直线y═kx+b的解析式,再求得直线与坐标轴的交点坐标,进而根据等腰直角三角形斜边上的中线等于斜边的一半求得结果便可.解:(1)把A(4,1)代入双曲线中,得m=4,∴双曲线的表达式为;(2)∵AE⊥x轴,BD⊥x轴,∴AE∥BD,∴△ACD∽△BCD,∴,∵CD=4CE,AE=1,∴BD=4,把y=4代入中得,x=1,∴B(1,4),把A(4,1)和B(1,4)代入直线y=kx+b(k≠0)中,得,解得,;(3)由(2)知,直线AB的解析式是y=﹣x+5,令x=0,得y=﹣x+5=5,∴F(0,5),∴OF=5,令y=0,得y=﹣x+5═0,解得,x=5,∴C(5,0),∴OC=5,∴OC=OF,CF=5,当OM⊥AB于点M时,OM的值最小,此时,CM=FM,∵∠COF=90°,∴OM=CF=.故答案为:.28.如图,在Rt△ABC中,∠C=90°,AC=8厘米,BC=10厘米,点D在BC上,且CD=6厘米.现有两个动点P,Q分别从点A和点B同时出发,其中点P以2厘米/秒的速度沿AC向终点C运动;点Q以2.5厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0).(1)EP=t;(用t的代数式表示)(2)如图,连接DP,是否存在某一时刻t,使四边形EQDP是平行四边形,如果存在,请求出t,如果不存在,请说明理由;(3)当t为何值时,△EDQ为直角三角形.【分析】(1)连接CE,由平行线的性质可得S△PCD=S△CDE,由S△ACD=S△AEC+S△CDE,可求PE=t;(2)由平行四边形的性质可得QD=PE,可得t=4﹣2.5t,可求t的值;(3)分两种情况讨论,利用直角三角形的性质和面积和差关系可求解.解:(1)如图1,连接CE,∵PE∥CD,∴S△PCD=S△CDE,∵AP=2tcm,∴CP=AC﹣AP=(8﹣2t)cm,∵S△ACD=S△AEC+S△CDE,∴=+,∴PE=t,故答案为:t;(2)∵四边形EQDP是平行四边形,∴PE=DQ,∴t=4﹣2.5t,∴t=1,答:当t=1时,使四边形EQDP是平行四边形;(3)如图2,当∠EQD=90°时,∵∠C=∠EQD=90°,∴EQ∥CP,又∵EP∥CQ,∴四边形EPCQ是平行四边形,∴EP=CQ=t,∴t+t=10,∴t=;当∠DEQ=90°时,∵AC=8cm,CD=6cm,∴AD===10cm,∵S△ACD=S△ACQ+S△ADQ,∴×6×8=×8×(10﹣2.5t)+×10×QE,∴QE=2t﹣,∵AE===t,∴DE=10﹣t,∵DQ2=DE2+EQ2,∴(t﹣4)2=(10﹣t)2+(2t﹣)2,∴t1=3.1,t2=(不合题意舍去),综上所述:t=或3.1时,△EDQ为直角三角形.。
2019-2020学年江苏省苏州市相城区八年级第二学期期末数学试卷一、选择题(共10小题).1.式子在实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤12.下列调查中,适宜采用普查方式的是()A.了解卫星“嫦娥一号”零部件的质量情况B.了解一批灯泡的使用寿命C.了解江苏省中学生观看电影《厉害了,我的国》的情况D.了解苏州市中小学生的课外阅读时间3.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个4.使式子÷有意义的x值是()A.x≠3且x≠﹣5B.x≠3且x≠4C.x≠4且x≠﹣5D.x≠3且x≠4且x≠﹣55.下列整数中,与1+最接近的是()A.3B.4C.5D.66.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3;1,连接AE交BD于点F,则△DEF的面积与△DAF的面积之比为()A.9:16B.3:4C.9:4D.3:27.如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C 旋转180°得到△B′O′C′,则点A与点B′之间的距离为()A.6B.8C.10D.128.函数y=(k为常数)的图象经过点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y39.如图,已知点E是正方形ABCD的边AB边上的黄金分割点,且AE>EB,若S1表示AE为边长的正方形面积,S2表示以BC为长,BE为宽的矩形面积,S3表示正方形ABCD 除去S1和S2剩余的面积,则S3:S2的值为()A.B.C.D.10.如图,Rt△OAB中,∠OAB=90°,OB=6,反比例函数y=(k≠0)的图象经过点B,将Rt△OAB沿着x轴向右平移6个单位,得到Rt△CDE,反比例函数图象恰好经过CE的中点F,则k的值为()A.B.2C.4D.8二、填空题(共8小题).11.化简:=.12.在一幅比例尺为1:400000的地图上,某条道路的长度为1.5cm,则这条道路的实际长度为km.13.一个不透明的袋子里有5个红球和3个白球,每个球除颜色以外都相等,从袋中任意摸出一个球,是红球的可能性(填“大于”“小于”或“等于”)是白球的可能性.14.如果反比例函数y=(k为常数)的图象在二、四象限,那么k的取值范围是.15.实数a在数轴上的位置如图所示,则化简后为.16.如图,矩形OBCD的顶点C的坐标为(1,3),则BD=.17.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当AD平分∠BAC时,AP的长为.18.如图,在△ABC中,AB=AC=10,BC=12,点D是BC的中点,以点D为顶点作∠MDN=∠B,当△DEF的面积等于△ABC面积的时,线段EF=.三、解答题(本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:|﹣|﹣()2.20.解方程:=1﹣.21.(1)先化简,再求值:(1﹣)÷,其中x=﹣1.(2)已知m是的小数部分,求的值.22.某校组织八年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:成绩x/分频数频率第1段x<6020.04第2段60≤x<7060.12第3段70≤x<809b第4段80≤x<90a0.36第5段90≤x≤100150.30请根据所给信息,解答下列问题:(1)a=,b=;(2)请补全频数分布直方图;(3)样本中,第5段成绩对应的圆心角度数是°;(4)已知该年级有400名学生参加这次比赛,若成绩在80分以上(含80分)的为优,估计该年级成绩为优的有多少人?23.正比例函数y1=2x的图象与反比例函数y2=的图象有一个交点的横坐标是2.(1)求k的值和两个函数图象的另一个交点坐标;(2)直接写出y1<y2的解集.24.如图,在△ABC中,AB=AC,若AB2=BD•BC.求证:△ABD是等腰三角形.25.码头工人往一艘轮船上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图.(1)这批货物的质量是多少?(2)写出y与x之间的函数表达式;(3)轮船到达目的地后开始卸货,如果以5t/min的速度卸货,那么需要多少时间才能卸完货物?26.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是线段BC、AD、OB、OD的中点,连接EH、HF、FG、GE.(1)求证:四边形GEHF是平行四边形;(2)当EF和BD满足条件时,四边形GEHF是矩形;(3)当EF和BD满足条件时,四边形GEHF是菱形.27.如图,在平面直角坐标xOy中,直线y=2x+b经过点A(﹣2,0),与y轴交于点B,与反比例函数y=(x>0)的图形交于点C(m,6),过B作BD⊥y轴,交反比例函数y=(x>0)的图形于点D,连接AD、CD.(1)求b,k的值;(2)求△ACD的面积;(3)在坐标轴上是否存在点E(除点O),使得△ABE与△AOB相似,若存在,请求出点E的坐标;若不存在,请说明理由.28.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.①求证:△ABC∽△DCA;②求证:△ABC是比例三角形;(3)如图2,在(2)的条件下,当∠ADC=90°时,求出的值.参考答案一、选择题(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.式子在实数范围内有意义,则x的取值范围是()A.x>1B.x≥1C.x<1D.x≤1【分析】根据被开方数大于等于0列式计算即可得解.解:由题意得,x﹣1≥0,解得x≥1.故选:B.2.下列调查中,适宜采用普查方式的是()A.了解卫星“嫦娥一号”零部件的质量情况B.了解一批灯泡的使用寿命C.了解江苏省中学生观看电影《厉害了,我的国》的情况D.了解苏州市中小学生的课外阅读时间【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.解:A、了解卫星“嫦娥一号”零部件的质量情况,适合普查方式,故A选项正确;B、了解一批灯泡的使用寿命,适合抽样调查,故B选项错误;C、了解江苏省中学生观看电影《厉害了,我的国》的情况,适合抽样调查,故C选项错误;D、了解苏州市中小学生的课外阅读时间,适合抽样调查,故D选项错误;故选:A.3.下列图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【分析】根据轴对称图形与中心对称图形的概念求解.解:第1个图形,是轴对称图形,也是中心对称图形,符合题意;第2个图形,是轴对称图形,不是中心对称图形,不合题意;第3个图形,是轴对称图形,也是中心对称图形,符合题意;第4个图形,是轴对称图形,也是中心对称图形,符合题意.故选:C.4.使式子÷有意义的x值是()A.x≠3且x≠﹣5B.x≠3且x≠4C.x≠4且x≠﹣5D.x≠3且x≠4且x≠﹣5【分析】根据分式有意义的条件可得x﹣3≠0,x﹣4≠0,根据除数不能为零可得x+5≠0,再解即可.解:由题意得:x﹣3≠0,x﹣4≠0,x+5≠0,解得:x≠3,4,﹣5,故选:D.5.下列整数中,与1+最接近的是()A.3B.4C.5D.6【分析】先确定的范围和最接近的整数,再确定与1+最接近的整数.解:因为3.12=9.61,3.22=10.24,所以3.1<<3.2.所以接近整数3.所以1+最接近4.故选:B.6.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3;1,连接AE交BD于点F,则△DEF的面积与△DAF的面积之比为()A.9:16B.3:4C.9:4D.3:2【分析】先根据平行四边形的性质得到AB=CD,AB∥CD,则DE:AB=3:4,再证明△DEF∽△BAF,利用相似比得到=,然后根据三角形面积公式求△DEF的面积与△DAF的面积之比.解:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∵DE:EC=3;1,∴DE:AB=DE:DC=3:4,∵DE∥AB,∴△DEF∽△BAF,∴==,∴△DEF的面积与△DAF的面积之比=EF:AF=3:4.故选:B.7.如图,菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,将△BOC绕着点C 旋转180°得到△B′O′C′,则点A与点B′之间的距离为()A.6B.8C.10D.12【分析】根据菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,可得AC⊥BD,所以∠BOC=90°,根据△BOC绕着点C旋转180°得到△B′O′C,所以∠CO′B′=∠BOC=90°,AO′=6,OB′=8,再根据勾股定理即可求出点A与点B′之间的距离.解:∵菱形ABCD的对角线AC、BD交于点O,AC=4,BD=16,∴AC⊥BD,∴∠BOC=90°,∵△BOC绕着点C旋转180°得到△B′O′C,∴∠CO′B′=∠BOC=90°,∴O′C=OC=OA=AC=2,∴AO′=6,∵OB=OD=OB′=BD=8,在Rt△AO′B′中,根据勾股定理,得AB′==10.则点A与点B′之间的距离为10.故选:C.8.函数y=(k为常数)的图象经过点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据A、B、C三点横坐标的特点判断出三点所在的象限,由函数的增减性及四个象限内点的横纵坐标的特点即可解答.解:∵反比例函数y=(k为常数)中,则﹣k2﹣1<0,∴此函数的图象在二、四象限,在每一象限内y随x的增大而增大,∵x1<x2<0<x3,∴y1>0、y2>0,y3<0,∵x1<x2,∴y1<y2,∴y2>y1>y3.故选:C.9.如图,已知点E是正方形ABCD的边AB边上的黄金分割点,且AE>EB,若S1表示AE为边长的正方形面积,S2表示以BC为长,BE为宽的矩形面积,S3表示正方形ABCD 除去S1和S2剩余的面积,则S3:S2的值为()A.B.C.D.【分析】根据黄金分割的定义:把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB,进行计算即可.解:如图,设AB=1,∵点E是正方形ABCD的边AB边上的黄金分割点,且AE>EB,∴AE=GF=,∴BE=FH=AB﹣AE=,∴S3:S2=(GF•FH):(BC•BE)=(×):(1×)=.故选:A.10.如图,Rt△OAB中,∠OAB=90°,OB=6,反比例函数y=(k≠0)的图象经过点B,将Rt△OAB沿着x轴向右平移6个单位,得到Rt△CDE,反比例函数图象恰好经过CE的中点F,则k的值为()A.B.2C.4D.8【分析】设B(a,b),根据平移性质用a、b表示E、C点,进而由中点公式求得E点坐标,再将B、E坐标代入反比例函数解析式中,求得a的值,再用k表示B点坐标,进而由两点距离公式列出k的方程解得k便可.解:设B(a,b),由平移知,E(a+6,b),C(6,0),∵F是CE的中点,∴F(a+6,b),∵B、F点在双曲线y=上,∴k=ab=(a+6),∴a=4,∵B(4,),∴OB=∵OB=6,∴,∵k>0,∴k=故选:D.二、填空题(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上)11.化简:=.【分析】直接利用分式的性质分别化简得出答案.解:原式==.故答案为:.12.在一幅比例尺为1:400000的地图上,某条道路的长度为1.5cm,则这条道路的实际长度为6km.【分析】设这条道路的实际长度是xcm,利用比例尺的意义得到1.5:x=1:400000,然后利用比例性质求出x,再把单位化为km即可.解:设这条道路的实际长度是xcm,根据题意得1.5:x=1:400000,解得x=600000.600000cm=6km.所以这条道路的实际长度是6km.故答案为:6.13.一个不透明的袋子里有5个红球和3个白球,每个球除颜色以外都相等,从袋中任意摸出一个球,是红球的可能性大于(填“大于”“小于”或“等于”)是白球的可能性.【分析】根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可.解:∵袋子里有5个红球,3个白球,∴红球的数量大于白球的数量,∴从中任意摸出1只球,是红球的可能性大于白球的可能性.故答案为:大于.14.如果反比例函数y=(k为常数)的图象在二、四象限,那么k的取值范围是k >2.【分析】由反比例函数的图象位于第二、四象限,得出2﹣k<0,即可得出结果.解:∵反比例函数的图象位于第二、四象限,∴2﹣k<0,∴k>2,故答案为:k>2.15.实数a在数轴上的位置如图所示,则化简后为7.【分析】根据数轴得到a的范围,从而得到a﹣4与a﹣11的符号,然后利用二次根式的性质即可求解.解:根据数轴得:5<a<10,∴a﹣4>0,a﹣11<0,∴原式=a﹣4+11﹣a=7.故答案是:7.16.如图,矩形OBCD的顶点C的坐标为(1,3),则BD=.【分析】连接OC,因为四边形OBCD是矩形,所以OC=BD,C的坐标为(1,3),就可求出OC的长度,那么就可求出BD的长度.解:连接OC,∵顶点C的坐标为(1,3).∴OC==∵四边形OBCD是矩形.∴BD=OC=.17.如图,在Rt△ABC中,∠C=90°,AB=5,BC=4,P是边AC上一动点,过点P作PQ∥AB交BC于点Q,D为线段PQ的中点,当AD平分∠BAC时,AP的长为.【分析】根据勾股定理求出AC,根据角平分线的定义、平行线的性质得到∠ADP=∠PAD,得到PA=PD,根据相似三角形的性质列出比例式,计算即可.解:∵∠C=90°,AB=5,BC=4,∴AC==3,∵PQ∥AB,∴∠BAD=∠ADP,又∵AD平分∠BAC,∴∠BAD=∠PAD,∴∠ADP=∠PAD,∴PA=PD,∴QP=2PA,∵PQ∥AB,∴△CPQ∽△CAB,∴=,即=,解得PA=.故答案为:.18.如图,在△ABC中,AB=AC=10,BC=12,点D是BC的中点,以点D为顶点作∠MDN=∠B,当△DEF的面积等于△ABC面积的时,线段EF=5.【分析】利用已知首先求出∠BFD=∠CDE,即可得出△BDF∽△CED,再利用相似三角形的性质得出,进而得出△BDF∽△CED∽△DEF.利用△DEF的面积等于△ABC的面积的,求出DH的长,进而利用S△DEF的值求出EF即可.解:连接AD,过D点作DG⊥EF,DH⊥BF,垂足分别为G,H.∵AB=AC,D是BC的中点,∴AD⊥BC,BD=BC=6.在Rt△ABD中,AD2=AB2﹣BD2,∴AD=8,∴S△ABC=BC•AD=×12×8=48.S△DEF=S△ABC=×48=12.又∵AD•BD=AB•DH,∴DH=,∵∠B+∠BDF+∠BFD=180°,∠EDF+∠BDF+∠CDE=180°,又∵∠EDF=∠B,∴∠BFD=∠CDE,由AB=AC,得∠B=∠C,∴△BDF∽△CED,∴.∵BD=CD,∴.又∵∠C=∠EDF,∴△BDF∽△CED∽△DEF,∴∠DFB=∠EFD∵DG⊥EF,DH⊥BF,∴DH=DG=.∵S△DEF=×EF×DG=12,∴EF=5.故答案为:5.三、解答题(本大题共10小题,共76分,把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.19.计算:|﹣|﹣()2.【分析】直接利用二次根式的性质化简得出答案.解:原式=+2﹣=2.20.解方程:=1﹣.【分析】把分式方程化为整式方程,再求解.解:原方程即去分母得x=2x﹣1+2x=﹣1经检验:x=﹣1是原方程的解.所以原方程的解是x=﹣121.(1)先化简,再求值:(1﹣)÷,其中x=﹣1.(2)已知m是的小数部分,求的值.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)先根据题意得出m=﹣1,继而知=﹣1,再利用完全平方公式和二次根式的性质化简,最后将m、的值代入计算可得.解:(1)原式=(﹣)÷=•=x+1,当x=﹣1时,原式=﹣1+1=.(2)由题意知,m=﹣1,则==+1,∴m<,则原式==|m﹣|=﹣m=+1﹣(﹣1)=+1﹣+1=2.22.某校组织八年级学生参加汉字听写大赛,并随机抽取部分学生成绩作为样本进行分析,绘制成如下的统计表:成绩x/分频数频率第1段x<6020.04第2段60≤x<7060.12第3段70≤x<809b第4段80≤x<90a0.36第5段90≤x≤100150.30请根据所给信息,解答下列问题:(1)a=18,b=0.18;(2)请补全频数分布直方图;(3)样本中,第5段成绩对应的圆心角度数是108°;(4)已知该年级有400名学生参加这次比赛,若成绩在80分以上(含80分)的为优,估计该年级成绩为优的有多少人?【分析】(1)第1段的频数是2,对应的频率为0.04,可求出调查人数,进而求出a、b 的值;(2)求出a、b的值,即可补全频数分布直方图;(3)样本中“第5段”的人数占调查人数的,因此相应的圆心角的度数占360°的,(4)样本估计总体,样本中,成绩优秀的占调查人数的,因此估计总体400名的是成绩优秀的人数.解:(1)2÷0.04=50(人),a=50×0.36=18(人),b=9÷50=0.18,故答案为:18,0.18;(2)补全频数分布直方图如图所示:(3)360°×=108°,故答案为:108;(4)400×=264(人),答:该年级400名学生中成绩在80分以上(含80分)的有264人.23.正比例函数y1=2x的图象与反比例函数y2=的图象有一个交点的横坐标是2.(1)求k的值和两个函数图象的另一个交点坐标;(2)直接写出y1<y2的解集x<﹣2或0<x<2.【分析】(1)把x=2代入数y1=2x可求出交点坐标为(2,4),代入y=求得k的值,再根据反比例函数和正比例函数的对称性可得另一个交点坐标;(2)画出两个函数的图象,根据图象和交点坐标可得y1<y2的解集.解:(1)把x=2代入y=2x得,y=4,∴交点坐标为(2,4),代入数y=得,k=2×4=8,由反比例函数和正比例函数的对称性可得另一个交点坐标为(﹣2,﹣4),答:k的值为8,另一个交点坐标为(﹣2,﹣4);(2)正比例函数y1=2x的图象与反比例函数y2=的图象如图所示:从图象可知,y1<y2的解集为x<﹣2或0<x<2;故答案为:x<﹣2或0<x<2.24.如图,在△ABC中,AB=AC,若AB2=BD•BC.求证:△ABD是等腰三角形.【分析】由两边对应成比例夹角相等的两个三角形相似,证明△BAD∽△BCA,得∠BAD=∠C,进而由等腰三角形的性质得∠B=∠BAD,再由等腰三角形的判定得结论.解:∵AB2=BD•BC,∴,∵∠B=∠B,∴△BAD∽△BCA,∴∠BAD=∠C,∵AB=AC,∴∠B=∠C,∴∠B=∠BAD,∴AD=BD,∴△ABD是等腰三角形.25.码头工人往一艘轮船上装载货物,装完货物所需时间y(min)与装载速度x(t/min)之间的函数关系如图.(1)这批货物的质量是多少?(2)写出y与x之间的函数表达式;(3)轮船到达目的地后开始卸货,如果以5t/min的速度卸货,那么需要多少时间才能卸完货物?【分析】(1)根据函数图象中的数据可以求得这批货的质量;(2)设y与x的函数关系式是y=,代入函数图象中的数据即可得出结果;(3)利用函数关系式,当卸货速度x=5时,得到y=120即可.解:(1)由题意可得,这批货物的质量是:1.5×400=600(t),答:这批货物的质量是600t;(2)设y与x的函数关系式是y=,把(1.5,400)代入得:400=,解得:k=600,即y与x的函数关系式是y=;(3)当x=5时,y==120(min).答:需要120min才能卸完货物.26.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,E、F、G、H分别是线段BC、AD、OB、OD的中点,连接EH、HF、FG、GE.(1)求证:四边形GEHF是平行四边形;(2)当EF和BD满足条件EF=BD时,四边形GEHF是矩形;(3)当EF和BD满足条件EF⊥BD时,四边形GEHF是菱形.【分析】(1)证明FH=EG,FH∥EG即可.(2)根据对角线相等的平行四边形是矩形即可判断.(3)根据对角线垂直的平行四边形是菱形即可判断.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AF=DF,DH=OH,∴FH∥AC,FH=OA,∵BG=GO,BE=EC,∴EG∥AC,EG=OC,∴FH∥EG.FH=EG,∴四边形GEHF是平行四边形.(2)解:当EF=BD时,四边形GEHF是矩形.理由:∵EF=BD.BG=OG,OH=DH,∴GH=EF,∵四边形GEHF是平行四边形,∴四边形GEHF是矩形.故答案为:EF=BD.(3)解:当EF⊥BD时,四边形EGHF是菱形.理由:∵四边形GEHF是平行四边形,EF⊥GH,∴四边形GEHF是菱形.故答案为EF⊥BD.27.如图,在平面直角坐标xOy中,直线y=2x+b经过点A(﹣2,0),与y轴交于点B,与反比例函数y=(x>0)的图形交于点C(m,6),过B作BD⊥y轴,交反比例函数y=(x>0)的图形于点D,连接AD、CD.(1)求b,k的值;(2)求△ACD的面积;(3)在坐标轴上是否存在点E(除点O),使得△ABE与△AOB相似,若存在,请求出点E的坐标;若不存在,请说明理由.【分析】(1)把A点坐标代入一次函数解析式中求得b,把C点坐标代入求得的一次函数解析式求得m,得出C点坐标,再把求得的C点坐标代入反比例函数解析式中求得k;(2)由一次函数解析式求得其函数图象与y轴的交点B的坐标,再根据BD⊥y轴,得D点的纵坐标与B点纵坐标相等,将其纵坐标代入反比例函数解析式求得D点坐标,再根据三角形的面积公式求得△ABD和△BCD的面积,再求其和便可为△ACD的面积;(3)分两种情况:∠BAE=90°;∠ABE=90°.利用相似三角形的知识进行解答.解:(1)∵直线y=2x+b经过点A(﹣2,0),∴﹣4+b=0,∴b=4,∴直线y=2x+b为y=2x+4,把C(m,6)代入y=2x+4中,得6=2m+4,解得,m=1,∴C(1,6),把C(1,6)代入反比例函数y=中,得k=6;(2)令x=0,得y=2x+4=4,∴B(0,4),∵BD⊥y轴于B,∴D点的纵坐标为4,把y=4代入反比例函数y==中,得x=,∴D(,4),∴,∴4+×(6﹣4)=4.5;(3)当∠BAE=90°时,如图1,∵∠BAE=∠BOA=90°,∠ABE=∠OBA,∴此时△AOB∽△EAB,∴,即,∴BE=5,∴OE=1,∴E(0,﹣1),当∠ABE=90°时,如图2,∵∠ABE=∠AOB=90°,∠OAB=∠BAE,∴△AOB∽△ABE,∴,∴,∴OE=AE﹣AO=10﹣2=8,∴E(8,0),故存在点E(除点O),使得△ABE与△AOB相似,其坐标为E(8,0)或(0,﹣1).28.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.(1)已知△ABC是比例三角形,AB=2,BC=3,请直接写出所有满足条件的AC的长;(2)如图1,在四边形ABCD中,AD∥BC,对角线BD平分∠ABC,∠BAC=∠ADC.①求证:△ABC∽△DCA;②求证:△ABC是比例三角形;(3)如图2,在(2)的条件下,当∠ADC=90°时,求出的值.【分析】(1)根据比例三角形的定义分AB2=BC•AC、BC2=AB•AC、AC2=AB•BC 三种情况分别代入计算可得;(2)①先判断出∠ACB=∠CAD,得出△ABC∽△DCA;②由△ABC∽△DCA得出CA2=BC•AD,再由∠ADB=∠CBD=∠ABD知AB=AD 即可得;(3)作AH⊥BD,由AB=AD知,BH=BD,再证△ABH∽△DBC得AB•BC=BH •DB,即AB•BC=BD2,结合AB•BC=AC2推出BD2=AC2,据此可得答案.解:(1)∵△ABC是比例三角形,且AB=2、BC=3,①当AB2=BC•AC时,得:4=3AC,解得:AC=;②当BC2=AB•AC时,得:9=2AC,解得:AC=;③当AC2=AB•BC时,得:AC2=6,解得:AC=(负值舍去);所以当AC=或或时,△ABC是比例三角形;(2)①∵AD∥BC,∴∠ACB=∠CAD,又∵∠BAC=∠ADC,∴△ABC∽△DCA,②由①知,△ABC∽△DCA,∴,即CA2=BC•AD,∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AB=AD,∴CA2=BC•AB,∴△ABC是比例三角形;(3)如图,过点A作AH⊥BD于点H,∵AB=AD,∴BH=BD,∵AD∥BC,∠ADC=90°,∴∠BCD=90°,∴∠BHA=∠BCD=90°,又∵∠ABH=∠DBC,∴△ABH∽△DBC,∴,即AB•BC=BH•DB,∴AB•BC=BD2,又∵AB•BC=AC2,∴BD2=AC2,∴=.。
2019-2020学年江苏省苏州市常熟市八年级(上)期末数学试卷一.选择题1.(3分)下列四个图标中,是轴对称图形的是()A.B.C.D.2.(3分)下列实数中,无理数是()A.B.3πC.D.3.(3分)人的眼睛可以看见的红光的波长约为8×10﹣5cm,近似数8×10﹣5精确到()A.0.001cm B.0.0001cm C.0.00001cm D.0.000001cm 4.(3分)下列四组数,可作为直角三角形三边长的是()A.4cm、5cm、6cm B.1cm、2cm、3cmC.2cm、3cm、4cm D.1cm、cm、cm5.(3分)若分式的值为0,则x的值为()A.1B.﹣2C.﹣1D.26.(3分)已知点P(a,2a﹣1)在一、三象限的角平分线上,则a的值为()A.﹣1B.0C.1D.27.(3分)在平面直角坐标系中,把直线y=﹣3x+4沿x轴向左平移2个单位长度后,得到的直线函数表达式为()A.y=﹣3x+1B.y=﹣3x+2C.y=﹣3x﹣1D.y=﹣3x﹣2 8.(3分)如图,一次函数y=kx+b(k>0)的图象过点(0,2),则不等式kx+b﹣2>0的解集是()A.x>0B.x<0C.x<2D.x>29.(3分)如图,已知O为△ABC三边垂直平分线的交点,且∠A=50°,则∠BOC的度数为()A.80°B.100°C.105°D.120°10.(3分)如图,直线y=x+b(b>0)分别交x轴、y轴于点A、B,直线y=kx(k<0)与直线y=x+b(b>0)交于点C,点C在第二象限,过A、B两点分别作AD⊥OC于D,BE⊥OC于E,且BE+BO=8,AD=4,则ED的长为()A.2B.C.D.1二、填空题:本大题共8小题,每小题3分,共24分.11.(3分)计算:=.12.(3分)等腰三角形的两边长分别是2cm和5cm,则它的周长是.13.(3分)若代数式有意义,则x的取值范围是.14.(3分)在平面直角坐标系中,已知一次函数y=﹣x+1的图象经过P1(x1,y1),P2(x2,y2)两点,若x1>x2,则y1y2.15.(3分)已知点P(m,n)在一次函数y=3x﹣1的图象上,则9m2﹣6mn+n2=.16.(3分)若关于x的分式方程﹣=1有增根,则a的值.17.(3分)如图,点C坐标为(0,﹣1),直线y=x+3交x轴,Y轴于点A,点B,点D 为直线上一动点,则CD的最小值为.18.(3分)如图,已知直角三角形ABC中,∠ABC为直角,AB=12,BC=16,三角形ACD 为等腰三角形,其中AD=DC=,且AB∥CD,E为AC中点,连接ED,BE,BD,则三角形BDE的面积为.三、解答题:本大题共10小题,共76分.把解答过程写在答题卷相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔19.(5分)计算:++|1﹣|20.(5分)解方程:﹣=121.(6分)先化简,再求值(﹣x+3)÷,其中x=﹣22.(8分)在如图所示的正方形网格中,每个小正方形的边长都是1,已知三角形ABC的三个顶点的坐标分别为A(﹣3,6),B(﹣1,2),C(﹣5,4).(1)作出三角形ABC关于y轴对称的三角形A1B1C1.(2)点A1的坐标为.(3)①利用网络画出线段AB的垂直平分线l;②P为直线l上一动点,则P A+PC的最小值为.23.(6分)如图,△ABC为等边三角形,D为△ABC内一点,且∠ABD=∠DAC,过点C 作AD的平行线,交BD的延长线于点E,BD=EC,连接AE.(1)求证:△ABD≌△ACE.(2)求证:△ADE为等边三角形.24.(8分)小明用30元买水笔,小红用45元买圆珠笔,已知每支圆珠笔比水笔贵2元,那么小明和小红能买到相同数量的笔吗?25.(8分)如图,一次函数y1=x+b的图象与x轴y轴分别交于点A,点B,函数y1=x+b,与y2=﹣x的图象交于第二象限的点C,且点C横坐标为﹣3.(1)求b的值;(2)当0<y1<y2时,直接写出x的取值范围;(3)在直线y2=﹣x上有一动点P,过点P作x轴的平行线交直线y1=x+b于点Q,当PQ=OC时,求点P的坐标.26.(10分)在同一直线上有甲乙两地,小明,小红同学分别从甲乙两地同时出发,相向而行,当他们相遇后小明立即以原速返回,且他先达到甲地,小红继续前行到甲地.在整个行进过程中,他们之间的距离y(m)与行进的时间x(min)之间的函数关系如图所示,请结合图象信息解答下列问题.(1)a=,小明速度为m/min,小红速度为m/min;(2)求小明与小红从第一次相遇到小明到达甲地时,y与x之间的函数表达式;(3)他们第一次相遇后再过多长时间相距200m.27.(10分)直角三角形ABC中,∠ABC=90°,点D为AC的中点,点E为CB延长线上一点,且BE=CD,连接DE.(1)如图1,求证∠C=2∠E;(2)如图2,若AB=6,BE=5,△ABC的角平分线CG交BD于点F,求△BCF的面积.28.(10分)已如,在平面直角坐标系中,点A的坐标为(6,0)、点B的坐标为(0,8),点C在y轴上,作直线AC.点B关于直线AC的对称点B′刚好在x轴上,连接CB′.(1)写出一点B′的坐标,并求出直线AC对应的函数表达式;(2)点D在线段AC上,连接DB、DB′、BB′,当△DBB′是等腰直角三角形时,求点D坐标;(3)如图2,在(2)的条件下,点P从点B出发以每秒2个单位长度的速度向原点O 运动,到达点O时停止运动,连接PD,过D作DP的垂线,交x轴于点Q,问点P运动几秒时△ADQ是等腰三角形.参考答案一.选择题1.【解答】解:A、不是轴对称图案,故此选项错误;B、是轴对称图案,故此选项正确;C、不是轴对称图案,故此选项错误;D、不是轴对称图案,故此选项错误;故选:B.2.【解答】解:A、是有理数,不合题意;B、3π是无理数,符合题意;C、﹣=﹣2是有理数,不合题意;D、=3是有理数,不合题意;故选:B.3.【解答】解:8×10﹣5=0.00008,∴近似数8×10﹣5精确到0.00001cm.故选:C.4.【解答】解:A、∵42+52≠62,∴此组数据不能构成直角三角形,故本选项错误;B、12+22≠32,∴此组数据不能构成直角三角形,故本选项错误;C、∵22+32≠42,∴此组数据不能构成直角三角形,故本选项错误;D、∵12+()2=()2,∴此组数据能构成直角三角形,故本选项正确.故选:D.5.【解答】解:由题意得:1﹣x=0,且x+2≠0,解得:x=1,故选:A.6.【解答】解:∵点P(a,2a﹣1)在一、三象限的角平分线上,∴a=2a﹣1,解得:a=1.故选:C.7.【解答】解:由题意得:平移后的解析式为:y=﹣3(x+2)+4,即y=﹣3x﹣2.故选:D.8.【解答】解:∵一次函数y=kx+b(k>0)的图象过点(0,2),∴不等式kx+b﹣2>0即kx+b>2的解集是x>0,故选:A.9.【解答】解:连接OA,∵O为△ABC三边垂直平分线的交点,∴OA=OB=OC,∴∠OBA=∠OAB,∠OCA=∠OAC,∴∠OBA+∠OCA=∠BCA=50°,∵∠ABC+∠ACB=180°﹣∠BCA=130°,∴∠OBC+∠OCB=130°﹣50°=80°,∴∠BOC=180°﹣80°=100°,故选:B.10.【解答】解:当y=0时,x+b=0,解得,x=﹣b,∴直线y=x+b(b>0)与x轴的交点坐标A为(﹣b,0);当x=0时,y=b,∴直线y=x+b(b>0)与y轴的交点坐标B为(0,b);∴OA=OB,∵AD⊥OC于D,BE⊥OC于E,∴∠ADO=∠BEO=90°,∵∠DOA+∠DAO=90°,∠DOA+∠DOB=90°,∴∠DAO=∠EOB,在△DAO和△BOE中,∴△DAO≌△EOB,∴OD=BE,AD=OE=4,∵BE+BO=8,∴OB=8﹣BE,∵OB2=BE2+OE2,∴(8﹣BE)2=BE2+42,∴BE=3,∴DE=OE﹣OD=AD﹣BE=1,故选:D.二、填空题:本大题共8小题,每小题3分,共24分.11.【解答】解:∵42=16,∴=4,故答案为4.12.【解答】解:若2为腰,5为底边,此时2+2<5,不能构成三角形,故2不能为腰;若2为底边,5为腰,此时三角形的三边分别为2,5,5,周长为2+5+5=12,综上三角形的周长为12.故答案为:12cm13.【解答】解:代数式有意义,则2x+1≠0,解得:x≠﹣.故答案为:x≠﹣.14.【解答】解:∵一次函数y=﹣x+1中k=﹣<0,∴y随x的增大而减小,∵x1>x2,∴y1<y2.故答案为:<.15.【解答】解:∵点P(m,n)在一次函数y=3x﹣1的图象上,∴n=3m﹣1,即3m﹣n=1,∴9m2﹣6mn+n2=(3m﹣n)2=12=1.故答案为:1.16.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:x+x﹣a=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,2+2﹣a=2﹣2,解得a=4.故答案为:4.17.【解答】解:连接AC,过点C作CD⊥直线AB于点D,此时CD的长度最小,如图所示.当x=0时,y=x+3=3,∴点B的坐标为(0,3),OB=3;当y=0时,x+3=0,解得:x=﹣4,∴点A的坐标为(﹣4,0),OA=4,∴AB==5.∵S△ABC=OA•BC=AB•CD,∴CD==.故答案为:.18.【解答】解:∵∠ABC为直角,AB=12,BC=16,∴AC===20,∵AD=CD,E为AC中点,∴AE=EC=10,DE⊥AC,∴DE===∵S△ABC=×AB×BC=96,∴S△BEC=48,∵三角形BDE的面积=S△BDC﹣S△BEC﹣S△EDC,∴三角形BDE的面积=×16×﹣48﹣×10×=,故答案为:.三、解答题:本大题共10小题,共76分.把解答过程写在答题卷相应位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B铅笔或黑色墨水签字笔19.【解答】解:原式=3﹣2﹣1+=.20.【解答】解:方程两边同时乘以(x+2)(x﹣2)得:x﹣(1﹣x)(x﹣2)=(x+2)(x﹣2),解方程可得:x=3,经检验,x=3是原方程的根,∴原方程的解为x=3.21.【解答】解:原式=[﹣]•=•=,当x=﹣时,原式=.22.【解答】解:(1)如图所示,三角形A1B1C1即为所求;(2)由图可得,点A1的坐标为(3,6),故答案为:(3,6);(3)①如图所示,直线l即为所求;②直线l与BC的交点即为点P,P A+PC的最小值为线段BC的长,由勾股定理可得,BC===2,故答案为:2.23.【解答】证明:(1)∵△ABC是等边三角形,∴AB=AC,∠BAC=∠ACB=60°,∵AD∥CE,∴∠DAC=∠ACE,且∠ABD=∠DAC,∴∠ACE=∠ABD,且AB=AC,BD=CE,∴△ABD≌△ACE(SAS)(2)∵△ABD≌△ACE,∴AD=AE,∠BAD=∠CAE,∵∠BAD+∠DAC=∠BAC=60°,∴∠CAE+∠DAC=∠DAE=60°,且AD=AE,∴△ADE是等边三角形.24.【解答】解:设每支水笔的价格为x元,则每支圆珠笔的价格为(x+2)元,假设小明和小红能买到相同数量的笔,依题意,得:=,解得:x=4,经检验,x=4是原方程的解.当x=4时,=7.5,∵7.5不是整数,∴不符合题意,即假设不成立.答:小明和小红不能买到相同数量的笔.25.【解答】解:(1)将x=﹣3代入y2=﹣x,可得C(﹣3,4),再将C点代入y1=x+b,∴b=7;(2)﹣7<x<﹣3;(3)∵点P为直线y2=﹣x上一动点,设P(a,﹣a),∵PQ∥x轴,∴Q(﹣a﹣7,﹣a),∴PQ=|a+7|,∵C(﹣3,4),∴OC=5,∴PQ=OC=14,∴|a+7|=14,∴a=3或a=﹣9,∴P(3,﹣4)或P(﹣9,12).26.【解答】解:(1)小红速度为:2000÷50=40(m/min),小明速度为:40×(50﹣20)÷20=60(m/min),a=2000÷(60+40)=20.故答案为:20;60;40;(2)当x=40时,y=2000﹣40×40=400,∴点C的坐标为(40,400),设线段BC的函数表达式为y=k1+b1,把B(20,0),C(40,400)代入,得,解得,∴小明与小红从第一次相遇到小明到达甲地时,y与x之间的函数表达式为:y=﹣20x ﹣400(20≤x≤40);(3)设线段CD的函数表达式为y=k2+b2,把C(40,400),D(50,0)代入,得,解得,∴线段CD的函数表达式为:y=﹣40x+2000(40<x≤50),把y=200代入y=20x﹣400,得x=30,30﹣20=10;把y=200代入y=﹣40x+2000,得x=45,45﹣20=25.答:他们第一次相遇后再过10min或25min后相距200m.27.【解答】解:(1)证明:∵∠ABC=90°,点D为AC的中点,∴BD=AC=CD=AD,∵CD=BE,∴BE=BD,∴∠BDE=∠E,∵BD=CD,∴∠C=∠DBC,∴∠C=∠DBC=∠BDE+∠E=2∠E;(2)过点F作FM⊥BC,FN⊥AC∵CG平分∠ABC∴FM=FN∵BE=5∴CD=AD=BE=5,AC=10又∵AB=6∴在Rt△ABC中,AB2+BC2=AC2∴BC=8∵BD为△ABC的中线∴S△BCD=S△ABC=×AB×BC=××6×8=12又∵S△BCD=S△BCF+S△CDF∴12=CD•FN+BC•FM∴×5×FM+×8×FM=12∴FM=∴S△BCF=BC•FM=×8×=.28.【解答】解:(1)∵A的坐标为(6,0)、点B的坐标为(0,8),∴OA=6,OB=8,∵∠AOB=90°,∴AB=10,∵B与B'关于直线AC对称,∴AC垂直平分BB',∴BC=CB',AB'=AB=10,∴B'(﹣4,0),设点C(0,m),∴CB'=CB=8﹣m,∵在Rt△COB'中,∠COB'=90°,∴m2+16=(8﹣m)2,∴m=3,∴C(0,3),设直线AC的解析式为y=kx+b(k≠0),把A(6,0),C(0,3)代入可得k=﹣,b=3,∴y=﹣x+3;(2)∵AC垂直平分BB',∴DB=DB',∵△BDB'是等腰直角三角形,∴∠BDB'=90°,过点D作DE⊥x轴,DF⊥y轴,∴∠DFO=∠DFB=∠DEB'=90°,∵∠EDF=360°﹣∠DFB﹣∠DEO﹣∠EOF,∠EOF=90°,∴∠EDF=90°,∴∠EDF=∠BDB',∴∠BDF=∠EDB',∴△FDB≌△EDB'(AAS),∴DF=DE,设点D(a,a)代入y=﹣x+3中,∴a=2,∴D(2,2);(3)同(2)可得∠PDF=∠QDE,∵DF=DE=2,∠PDF=∠QDE=90°,∴△PDF≌△QDE(AAS),∴PF=QE,①当DQ=DA时,∴QE=AE=4,∴PF=QE=4,∴BP=BF﹣PF=2,∴点P运动时间为1秒;②当AQ=AD时,∵A(6,0)、D(2,2),∴AD=2,∴AQ=2﹣4,∴PF=QE=2﹣4,∴BP=BF﹣PF=10﹣2,∴点P的运动时间为5﹣秒;③当QD=QA时,设QE=n,则QD=QA=4﹣n,在Rt△DEQ中,∠DEQ=90°,∴4+n2=(4﹣n)2,∴n=1.5,∴PF=QE=1.5,∴BP=BF+PF=7.5,∴点P的运动时间为7.5秒;综上所述:点P的运动时间为1秒或5﹣秒或7.5秒.。
2019-2020学年江苏省无锡市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥52.(3分)下列事件中属于必然事件()A.射击一次,中靶B.明天会下雨C.太阳从东边升起D.公鸡下蛋3.(3分)下列平面图形中是中心对称图形的为()A.B.C.D.4.(3分)下列性质中,菱形具有而平行四边形不一定具有()A.对角线互相平分B.两组对角相等C.对角线互相垂直D.两组对边平行5.(3分)若点(2,y1)(4,y2)都在函数y=﹣的图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.(3分)为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.8.(3分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.9.(3分)如图,一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,点C在x轴上,点D为平面内一点,且四边形ABCD为矩形,则点D的坐标为()A.(2,﹣3)B.(4,3)C.(﹣4,﹣)D.(,﹣3)10.(3分)如图,平面直角坐标系中,已知A(2,0),B(4,0),p为y轴正半轴上一个动点,将线段P A绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是()A.3B.5C.D.2二、填空题(共8小题,每小题3分,满分24分)11.(3分)若分式的值为0,则x的值为.12.(3分)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为.13.(3分)若1<x<3,则化简+|x﹣3|=.14.(3分)矩形ABCD中,AB=3,AD=4,M、N分别为BC、CD的中点,则MN的长为.15.(3分)如图,在平行四边形ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为.16.(3分)如图,在△ABC中,已知AB=AC,∠C═50°,将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,若DE恰好经过点A,设BE与AC相交于点F,则∠AFB的度数为.17.(3分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是.18.(3分)如图,在矩形ABCD中,AB=5,E为边CD上一点,DE=2,将△BCE沿BE 折叠,点C落在F处,设BF交AD于点M,若∠MEB=45°,则BC的长为.三、解答题(共8小题,满分66分)19.(8分)(1)﹣+;(2)(2﹣)(2)﹣()2.20.(8分)(1)计算:+;(2)解方程:﹣5=.21.(6分)先化简,再求值:,其中a=﹣2,b=1.22.(8分)如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.23.(6分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为;(3)请将条形统计图补充完整.24.(10分)大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?25.(10分)如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.26.(10分)如图,已知正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,动点P从点B出发以每秒1cm的速度沿射线BC方向运动.把△EBP沿EP折叠,点B落在点B'处.设运动时间为t秒.(1)当t=时,∠B'PC为直角;(2)是否存在某一时刻t,使得点B'到直线AD的距离为3?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.2019-2020学年江苏省无锡市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.)1.(3分)要使二次根式有意义,则实数x的取值范围是()A.x>0B.x>5C.x≥0D.x≥5【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:∵二次根式有意义,∴x﹣5≥0,解得:x≥5.故选:D.2.(3分)下列事件中属于必然事件()A.射击一次,中靶B.明天会下雨C.太阳从东边升起D.公鸡下蛋【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.【解答】解:A、射击一次,中靶,属于随机事件,不合题意;B、明天会下雨,属于随机事件,不合题意;C、太阳从东边升起,属于必然事件,符合题意;D、公鸡下蛋,属于不可能事件,不合题意;故选:C.3.(3分)下列平面图形中是中心对称图形的为()A.B.C.D.【分析】根据中心对称图形的定义判断即可.【解答】解:A、是中心对称图形,符合题意;B、不是中心对称图形,不合题意;C、不是中心对称图形,不合题意;D、不是中心对称图形,不合题意;故选:A.4.(3分)下列性质中,菱形具有而平行四边形不一定具有()A.对角线互相平分B.两组对角相等C.对角线互相垂直D.两组对边平行【分析】根据平行四边形的性质和菱形的性质对各选项进行判断即可.【解答】解:A、菱形、平行四边形的对角线互相平分,故A选项不符合题意;B、菱形、平行四边形的两组对角分别相等,故B选项不符合题意;C、菱形的对角线互相垂直平分,平行四边形的对角线互相平分,故C选项符合题意;D、菱形、平行四边形的两组对边分别平行,故D选项不符合题意;故选:C.5.(3分)若点(2,y1)(4,y2)都在函数y=﹣的图象上,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.无法确定【分析】根据函数的解析式和反比例函数的性质得出函数y=﹣的图象,在每个象限内,y随x的增大而增大,再比较即可.【解答】解:∵y=﹣中年k=﹣3<0,∴函数y=﹣的图象,在每个象限内,y随x的增大而增大,∵点(2,y1)(4,y2)都在函数y=﹣的图象上,2<4,∴y1<y2,故选:B.6.(3分)为了解某市6万名八年级学生每天做家庭作业所用的时间,从该市八年级学生中抽取1000名学生进行调查,下列说法正确的是()A.6万名八年级学生是总体B.其中的每名八年级学生每天做家庭作业所用的时间是个体C.所调查的1000名学生是总体的一个样本D.样本容量是1000名学生【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、该校八年级全体学生每天做家庭作业所用的时间是总体,故A不符合题意;B、其中的每名八年级学生每天做家庭作业所用的时间是个体,故B符合题意;C、从中抽取的1000名学生每天做家庭作业所用的时间是总体的一个样本,故C不符合题意;D、样本容量是1000,故D不符合题意;故选:B.7.(3分)分式﹣可变形为()A.﹣B.C.﹣D.【分析】先提取﹣1,再根据分式的符号变化规律得出即可.【解答】解:﹣=﹣=,故选:D.8.(3分)一次函数y=kx﹣k与反比例函数y=在同一直角坐标系中的图象可能是()A.B.C.D.【分析】分k>0及k<0两种情况考虑,根据一次函数图象与系数的关系、反比例函数的图象对照四个选项即可得出结论.【解答】解:当k>0时,一次函数y=kx﹣k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,当k<0时,一次函数y=kx﹣k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴A、C、D不符合题意,B符合题意;故选:B.9.(3分)如图,一次函数y=﹣x+3的图象与x轴、y轴分别交于点A、B,点C在x轴上,点D为平面内一点,且四边形ABCD为矩形,则点D的坐标为()A.(2,﹣3)B.(4,3)C.(﹣4,﹣)D.(,﹣3)【分析】利用一次函数图象上点的坐标特征可求出点A,B的坐标,进而可得出OA,OB 的长,由四边形ABCD为矩形可得出∠ABC=90°,结合同角的余角相等可得出∠OBC =∠OAB,结合∠BOC=∠AOB=90°可得出△BOC∽△AOB,利用相似三角形的性质可求出OC的长,进而可得出点C的坐标,再利用矩形的性质(对角线互相平分),即可求出点D的坐标.【解答】解:当x=0时,y=﹣×0+3=3,∴点B的坐标为(0,3),OB=3;当y=0时,﹣x+3=0,解得:x=4,∴点A的坐标为(4,0),OA=4.∵四边形ABCD为矩形,∴∠ABC=90°.∵∠OAB+∠OBA=90°,∠OBA+∠OBC=90°,∴∠OBC=∠OAB,又∵∠BOC=∠AOB=90°,∴△BOC∽△AOB,∴=,即=,∴OC=,∴点C的坐标为(﹣,0).又∵四边形ABCD为矩形,A(4,0),B(0,3),C(﹣,0),∴点D的坐标为(4﹣﹣0,0+0﹣3),即(,﹣3).故选:D.10.(3分)如图,平面直角坐标系中,已知A(2,0),B(4,0),p为y轴正半轴上一个动点,将线段P A绕点P逆时针旋转90°,点A的对应点为Q,则线段BQ的最小值是()A.3B.5C.D.2【分析】设P(0,m),则OP=m,通过证得△AOP≌△PMQ求得Q的坐标,然后根据勾股定理得到BQ=,即可求得当m=1时,BQ有最小值3.【解答】解:∵A(2,0),∴OA=2,设P(0,m),则OP=m,作QM⊥y轴于M,∵∠APQ=90°,∴∠OAP+∠APO=∠APO+∠QPM,∴∠OAP=∠QPM,∵∠AOP=∠PMQ=90°,P A=PQ,∴△AOP≌△PMQ(AAS),∴MQ=OP=m,PM=OA=2,∴Q(m,m+2),∵B(4,0),∴BQ==,∴当m=1时,BQ有最小值3,故选:A.二、填空题(共8小题,每小题3分,满分24分)11.(3分)若分式的值为0,则x的值为﹣3.【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:由题意,知x+3=0且x﹣1≠0.解得x=﹣3.故答案是:﹣3.12.(3分)我们把一个样本的40个数据分成4组,其中第1、2、3组的频数分别为6、12、14,则第4组的频率为0.2.【分析】首先计算出第4组的频数,然后再计算出第4组的频率即可.【解答】解:第4组的频数为:40﹣6﹣12﹣14=8,频率为:=0.2,故答案为:0.2.13.(3分)若1<x<3,则化简+|x﹣3|=2.【分析】直接利用二次根式的性质结合绝对值的性质化简得出答案.【解答】解:∵1<x<3,∴+|x﹣3|=x﹣1+3﹣x=2.故答案为:2.14.(3分)矩形ABCD中,AB=3,AD=4,M、N分别为BC、CD的中点,则MN的长为2.5.【分析】连接BD,由矩形的性质得CD=AB=3,BC=AD=4,∠C=90°,由勾股定理得BD=5,证MN是△BCD的中位线,由三角形中位线定理即可得出答案.【解答】解:连接BD,如图:∵四边形ABCD是矩形,∴CD=AB=3,BC=AD=4,∠C=90°,∴BD===5,∵M、N分别为BC、CD的中点,∴MN是△BCD的中位线,∴MN=BD=2.5;故答案为:2.5.15.(3分)如图,在平行四边形ABCD中,AB=5,AD=6,将▱ABCD沿AE翻折后,点B 恰好与点C重合,则折痕AE的长为4.【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=6,∴BE=3,∴AE=.故答案为:4.16.(3分)如图,在△ABC中,已知AB=AC,∠C═50°,将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,若DE恰好经过点A,设BE与AC相交于点F,则∠AFB的度数为70°.【分析】直接利用等腰三角形的性质结合旋转的性质得出∠BAD=∠CBE=20°,进而利用三角形的外角得出答案.【解答】解:∵AB=AC,∠C═50°,∴∠ABC=∠C=50°,∠BAC=80°,∵将△ABC绕点B按逆时针方向旋转一定的角度后得到△DBE,DE恰好经过点A,∴BD=AB,∴∠D=∠BAD=∠BAC=80°,∴∠BAD=∠CBE=20°,∴∠AFB=∠CBF+∠C=20°+50°=70°.故答案为:70°.17.(3分)如图,一次函数y=k1x+b与反比例函数y=的图象交于A、B两点,其横坐标分别为1和5,则关于x的不等式k1x+b﹣<0的解集是x<0或1<x<5.【分析】根据k1x+b﹣<0,则反比例函数大于一次函数,进而结合图象得出答案.【解答】解:如图所示:关于x的不等式k1x+b﹣<0的解集是:x<0或1<x<5.故答案为:x<0或1<x<5.18.(3分)如图,在矩形ABCD中,AB=5,E为边CD上一点,DE=2,将△BCE沿BE 折叠,点C落在F处,设BF交AD于点M,若∠MEB=45°,则BC的长为15.【分析】过M点作MN⊥BE,交BC于点N,设BC=x,根据折叠的性质,结合矩形的性质,通过证明△EMD≌△NEC可表示AM=x﹣3,BM=x﹣2,再根据勾股定理列式计算即可求解.【解答】解:过M点作MN⊥BE,交BC于点N,由折叠可知:△MNE和△BMN均为等腰三角形,∴BM=BN,ME=NE,∵∠MEB=45°,∴∠MEN=90°,∴∠MED+∠NEC=90°,在矩形ABCD中,∠D=∠C=90°,CD=AB=5,∴∠MED+∠EMD=90°,∴∠EMD=∠NEC,∴△EMD≌△NEC,∴DE=CN,MD=EC,∵DE=2,∴CN=2,MD=EC=3,设BC=x,则AD=x,∴AM=x﹣3,BM=BN=x﹣2,在Rt△ABM中,AB2+AM2=BM2,即52+(x﹣3)2=(x﹣2)2,解得x=15,故BC的长为15.三、解答题(共8小题,满分66分)19.(8分)(1)﹣+;(2)(2﹣)(2)﹣()2.【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式进而计算得出答案.【解答】解:(1)原式=5﹣3+=2+2=4;(2)原式=(2)2﹣()2﹣2=8﹣3﹣2=3.20.(8分)(1)计算:+;(2)解方程:﹣5=.【分析】(1)先通分,再因式分解,约分后即可求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)+=+==;(2)﹣5=,去分母得:4+x﹣5﹣(x﹣1)=2x,解得:x=,经检验,x=是分式方程的解.21.(6分)先化简,再求值:,其中a=﹣2,b=1.【分析】首先算括号里面的加法(通分),再算除法,把除法变成乘法(除以一个数等于乘以它的倒数)再把分式的分子、分母分解因式约分,化成最简分式即可.【解答】解:,=,=,=,当a=﹣2,b=1时,原式=.22.(8分)如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD=BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.【分析】(1)根据已知条件推出四边形ABCD是平行四边形,求得AO=AC,BO=BD,等量代换得到AC=BD,于是得到四边形ABCD是矩形;(2)连接OE,设EC与BD交于F,根据垂直的定义得到∠CFD=90°,根据平行四边形的性质得到AE∥BO,根据直角三角形的性质得到EO=AO,推出△AEO是等边三角形,于是得到结论.【解答】(1)证明:∵OC=AO,OD=BO,∴四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AO=BO,∴AC=BD,∴四边形ABCD是矩形;(2)解:连接OE,设EC与BD交于F,∵EC⊥BD,∴∠CFD=90°,∵四边形AEBO是平行四边形,∴AE∥BO,∴∠AEC=∠CFD=90°,即△AEC是直角三角形,∵EO是Rt△AEC中AC边上的中线,∴EO=AO,∵四边形AEBO是平行四边形,∴OB=AE,∵OA=OB,∴AE=OA=OE,∴△AEO是等边三角形,∴∠OAE=60°,∵∠OAE+∠AOB=180°,∴∠AOB=120°.23.(6分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了580名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为108°;(3)请将条形统计图补充完整.【分析】(1)由“优秀”的人数及其所占百分比可得调查的总人数;(2)由360°乘以学习效果“良好”的学生人数所占的比例即可;(3)求出“一般”的学生人数为82名,从而补全条形统计图.【解答】解:(1)这次活动共抽查的学生人数为232÷40%=580(名);故答案为:580;(2)在扇形统计图中,“良好”所对应的圆心角的度数为360°×=108°;故答案为:108°;(3)“一般”的学生人数为580﹣92﹣174﹣232=82(名),将条形统计图补充完整如图:24.(10分)大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?【分析】(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得等量关系:第一次购进大浮杨梅数量×3=第二次购进大浮杨梅数量,根据等量关系,列出方程,再解即可;(2)首先计算出两次购进大浮杨梅的数量,然后再计算卖完后的总收入,然后再减去两次的总进价即可.【解答】解:(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得:×3=,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,答:第一次所购大浮杨梅的进货价是每千克18元;(2)540÷18=30,30×3=90,30×(30×90%+90×85%)﹣540﹣1710=855(元),答:该水果店售完这两批杨梅共可获利855元.25.(10分)如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.【分析】(1)把点A坐标代入反比例函数y=求得k的值,将点B坐标代入反比例函数的解析式求出a的值即可;(2)由题意得点D的横坐标为6,设D(6,m),连接BD,过A作EF∥y轴,作DE ⊥EF,BF⊥EF,则E(2,m),F(2,2),由S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD得出方程,解方程即可.【解答】解:(1)∵点A(2,4)在反比例函数y=的图象上,∴k=2×4=8,∵B(4,a)在反比例函数y=的图象上,∴a==2;(2)∵A(2,4),B(4,2),点C的横坐标为8,∴点D的横坐标为6,设D(6,m),连接BD,过A作EF∥y轴,作DE⊥EF,BF⊥EF,如图所示:则E(2,m),F(2,2),∵▱ABCD的面积为10,∴S△ABD=×10=5,∵S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD,或S梯形DEFB+S△DEA﹣S△AFB=S△ABD,∴(2+4)(m﹣2)﹣×4×(m﹣4)﹣×2×2=5,或(2+4)(m﹣2)+×4×(4﹣m)﹣×2×2=5,解得:m=5,∴点D的坐标为:(6,5).26.(10分)如图,已知正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,动点P从点B出发以每秒1cm的速度沿射线BC方向运动.把△EBP沿EP折叠,点B落在点B'处.设运动时间为t秒.(1)当t=5时,∠B'PC为直角;(2)是否存在某一时刻t,使得点B'到直线AD的距离为3?若存在,请求出所有符合题意的t的值;若不存在,请说明理由.【分析】(1)根据当∠B'PC=90°时,∠BPB'=90°,即可得到△BEP为等腰直角三角形,进而得到BP=BE=5cm,再根据点P从点B出发以每秒1cm的速度沿射线BC方向运动,即可得到t的值;(2)过B'作MN∥AB,交AD,BC于点M,N,过E作EH∥AD,交MN于H,进而得出四边形ABNM是矩形,四边形AEHM是矩形.再分两种情况进行讨论:①如图1,若点B'在AD下方;②如图2,若点B'在AD上方,分别根据Rt△PB'N中,B'P2=PN2+B'N2,即可得到t的值为秒或15秒.【解答】解:(1)∵正方形ABCD的边长为6cm,E为边AB上一点且AE长为1cm,∴BE=5cm,当∠B'PC=90°时,∠BPB'=90°,∴由折叠可得,∠BPE=∠BPB'=45°,又∵∠B=90°,∴∠BEP=45°,∴BP=BE=5cm,∵点P从点B出发以每秒1cm的速度沿射线BC方向运动,∴t=5÷1=5(秒),故答案为:5;(2)存在,过B'作MN∥AB,交AD,BC于点M,N,过E作EH∥AD,交MN于H,∵AD∥BC,MN∥AB,∴四边形ABNM是平行四边形,又∵∠A=90°,∴四边形ABNM是矩形,同理可得:四边形AEHM是矩形.①如图1,若点B'在AD下方,则B'M=3cm,B'N=3cm,∵MH=AE=1cm,∴B'H=2cm,由折叠可得,EB'=EB=5cm,∴Rt△EB'H中,EH==(cm),∴BN=AM=EH=cm,∵BP=t,∴PB'=t,PN=﹣t,∵Rt△PB'N中,B'P2=PN2+B'N2,∴t2=(﹣t)2+32,解得t=.②如图2,若点B'在AD上方,则B'M=3cm,B'N=9cm,同理可得,EH=3cm,∵BP=t,∴B'P=t,PN=t﹣3,∵Rt△PB'N中,B'P2=PN2+B'N2,∴t2=(t﹣3)2+92,解得t=15.综上所述,t的值为秒或15秒.。
2019-2020学年江苏省徐州市八年级第二学期期末数学试卷一、选择题(共8小题).1.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.2.在下列调查中,不适宜采用普查的是()A.云龙区百岁老人的健康状况B.某班级学生的课外读书时间C.检测一批炮弹的杀伤半径D.对运载火箭的零部件进行检查3.矩形具有而菱形不一定具有的性质是()A.对角线相等B.对角线相互垂直C.对角线相互平分D.对角互补4.下列事件中,是必然事件的是()A.掷一次般子,向上一面的点数是2B.买一张电影票座位号是奇数C.菱形的对角线互相垂直D.射击运动员射击一次,命中靶心5.与根式﹣x的值相等的是()A.﹣B.﹣x2C.﹣D.6.甲、乙两个学校统计人数,分别绘制了扇形统计图(如图),下列说法正确的是()A.甲校的男女生人数一样多B.甲、乙两个学校的人数一样多C.甲校的男生人数比乙校的男生人数多D.乙校的女生人数比甲校的女生人数多7.如图,点P是反比例函数y=图象上的一个点,过P作PA⊥x轴,PC⊥y轴,则矩形OAPC的面积是()A.2B.C.4D.8.在反比例函数y=图象上,到x轴和y轴的距离相等的点()A.1个B.2个C.4个D.无数多个二、填空题(每小题4分,共32分)9.化简:=.10.分式和的最简公分母是.11.式子有意义,则x的取值范围是.12.如图,△ABC中,∠ACB=30°,将△ABC绕点A按顺时针方向旋转85°得到△ADE,则∠AED的度数为°.13.已知一个三角形的周长为10cm,则连接各边中点所得的三角形的周长为cm.14.一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是.15.如图,在矩形ABCD中,AB=4,AD=2,E为边CD的中点,点P在线段AB上运动,F是CP的中点,则△CEF的周长的最小值是.16.如图,若反比例函数y1=与一次函数y2=ax+b交于A、B两点,当y1>y2时,则x 的取值范围是.三、解答题(共84分)17.计算:(1)﹣﹣;(2)(2+)5(2﹣)5.18.(1)化简:(1+)(﹣1);(2)解方程:+=.19.学校准备购买一批课外读物,学校就“我最喜爱的课外读物”从“文学”、“艺术”、“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)学校共调查了名同学;(2)条形统计图中,m=,n=;(3)求扇形统计图中,“艺术”类读物所在扇形的圆心角的度数.20.已知y是x的反比例函数,且当x=4时,y=﹣1,(1)求y与x之间的函数表达式;(2)求当﹣3≤x≤﹣时,y的取值范围;(3)求当x>1时,y的取值范围.21.已知y=y1+y2,y1与x2成正比例,y2与x﹣1成反比例,当x=﹣1时,y=3;当x=2时,y=﹣3,求y与x之间的函数关系式.22.某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的压强不大于多少?23.已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP.将△AEF绕点A逆时针旋转.(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为,数量关系为.(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立.(3)若AB=3,AE=1,则线段AP的取值范围为.24.甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用的时间与甲加工服装20件所用的时间相同,求甲乙二人每天各加工服装多少件?25.已知,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,D为边BC上的点,反比例函数y=在第一象限内的图象经过点D(m,2)和边AB上的点E(4,1).(1)求反比例函数的表达式和m的值;(2)若将矩形OABC进行折叠,使点O与点D重合,折痕分别与x轴、y轴正半轴交于点F、G,求折痕FG所在直线的函数表达式.参考答案一、选择题(共8小题).1.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念判断即可.解:A、不是中心对称图形,是轴对称图形;B、是中心对称图形,但不是轴对称图形;C、既是中心对称图形,又是轴对称图形;D、不是中心对称图形,是轴对称图形;故选:B.2.在下列调查中,不适宜采用普查的是()A.云龙区百岁老人的健康状况B.某班级学生的课外读书时间C.检测一批炮弹的杀伤半径D.对运载火箭的零部件进行检查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断.解:A、调查云龙区百岁老人的健康状况情况适合普查,故A不符合题意;B、某班级学生的课外读书时间情况适合普查,故B不符合题意;C、检测一批炮弹的杀伤半径,调查具有破坏性,适合抽样调查,故C符合题意;D、对运载火箭的零部件进行检查适合全面调查,故D不符合题意;故选:C.3.矩形具有而菱形不一定具有的性质是()A.对角线相等B.对角线相互垂直C.对角线相互平分D.对角互补【分析】由矩形的性质和菱形的性质即可得出结论.解:∵矩形具有的性质:对角线互相平分且相等,对角相等;菱形具有的性质:对角线互相垂直平分,对角相等;∴矩形具有而菱形不一定具有的性质是:对角线相等.故选:A.4.下列事件中,是必然事件的是()A.掷一次般子,向上一面的点数是2B.买一张电影票座位号是奇数C.菱形的对角线互相垂直D.射击运动员射击一次,命中靶心【分析】直接利用随机事件以及必然事件的定义分别分析得出答案.解:A、掷一次般子,向上一面的点数是2,是随机事件,不合题意;B、买一张电影票座位号是奇数,是随机事件,不合题意;C、菱形的对角线互相垂直,是必然事件,符合题意;D、射击运动员射击一次,命中靶心,是随机事件,不合题意;故选:C.5.与根式﹣x的值相等的是()A.﹣B.﹣x2C.﹣D.【分析】将原式进行化简后即可确定正确的选项.解:∵有意义,∴x<0,∴﹣x>0,∴﹣x=﹣x•=,故选:D.6.甲、乙两个学校统计人数,分别绘制了扇形统计图(如图),下列说法正确的是()A.甲校的男女生人数一样多B.甲、乙两个学校的人数一样多C.甲校的男生人数比乙校的男生人数多D.乙校的女生人数比甲校的女生人数多【分析】根据扇形统计图的特点和反应的数量之间的关系,男从甲校的扇形统计图中,可以看男生、女生各占甲校总人数的50%因此甲校的男女生人数一样多是正确的,其它选项都是不正确的.解:从甲校的扇形统计图中,可以看出男生、女生各占甲校总人数的50%,因此甲校的男女生人数一样多是正确的,不知道甲、乙两校的总人数,依靠男、女生所占的百分比,不能判断各校男女人数的多少,B、C、D均不正确故选:A.7.如图,点P是反比例函数y=图象上的一个点,过P作PA⊥x轴,PC⊥y轴,则矩形OAPC的面积是()A.2B.C.4D.【分析】直接根据反比例函数y=(k≠0)系数k的几何意义求解.解:∵PA⊥x轴,PC⊥y轴,∴矩形OAPB的面积=|﹣4|=4,故选:C.8.在反比例函数y=图象上,到x轴和y轴的距离相等的点()A.1个B.2个C.4个D.无数多个【分析】根据反比例函数的性质和函数的解析式得出函数的图象在第一、三象限,即在每个象限内的点的横、纵坐标的符号相同,根据距离相等得出x=y,代入函数解析式求出即可.解:∵y=中k=6>0,∴函数的图象在第一、三象限,即在每个象限内的点的横、纵坐标的符号相同,当点到x轴、y轴的距离相等时,x=y,代入函数解析式得:x=,解得:x=,即点的坐标是(,)或(﹣,﹣),共2个点,故选:B.二、填空题(每小题4分,共32分)9.化简:=.【分析】在分子和分母中同时乘以即可化简.解:==.故答案是:.10.分式和的最简公分母是9a2b2.【分析】根据最简公分母的定义求解.解:分式和的最简公分母为9a2b2.故答案为9a2b2.11.式子有意义,则x的取值范围是全体实数.【分析】根据非负数的性质和被开方数大于等于0解答.解:∵x2≥0,∴x2+1≥0,∴x的取值范围是全体实数.故答案为:全体实数.12.如图,△ABC中,∠ACB=30°,将△ABC绕点A按顺时针方向旋转85°得到△ADE,则∠AED的度数为30°.【分析】由旋转的性质可得△ABC≌△ADE,可得∠ACB=∠AED=30°.解:∵将△ABC绕点A按顺时针方向旋转85°得到△ADE,∴△ABC≌△ADE,∴∠ACB=∠AED=30°,故答案为:30°.13.已知一个三角形的周长为10cm,则连接各边中点所得的三角形的周长为5cm.【分析】根据三角形中位线的性质,即三角形的中位线等于第三边的一半求解即可.解:∵D、E、F分别为AB、BC、AC的中点,∴DE=AC,EF=AB,DF=BC,∵AB+BC+AC=10,∴DE+EF+FD=(AB+BC+AC)=5cm,故答案为:5.14.一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是0.32.【分析】大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.解:一个事件经过500次的试验,某种结果发生的频率为0.32,那么在这一次试验中,该种结果发生的概率估计值是0.32.故答案为:0.32.15.如图,在矩形ABCD中,AB=4,AD=2,E为边CD的中点,点P在线段AB上运动,F是CP的中点,则△CEF的周长的最小值是2+2.【分析】根据三角形的中位线的性质得到EF=PD,得到C△CEF=CE+CF+EF=CE+(CP+PD)=(CD+PC+PD)=C△CDP,当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;如图,作D关于AB的对称点D′,连接CD′交AB于P,于是得到结论.解:∵E为CD中点,F为CP中点,∴EF=PD,∴C△CEF=CE+CF+EF=CE+(CP+PD)=(CD+PC+PD)=C△CDP∴当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;如图,作D关于AB的对称点T,连接CT,则PD=PT,∵AD=AT=BC=2,CD=4,∠CDT=90°,∴CT===4,∵△CDP的周长=CD+DP+PC=CD+PT+PC,∵PT+PC≥CT,∴PT+PC≥4,∴PT+PC的最大值为4,∴△PDC的最大值为4+4,∴C△CEF=C△CDP=2+2,故答案为:2+2.16.如图,若反比例函数y1=与一次函数y2=ax+b交于A、B两点,当y1>y2时,则x 的取值范围是﹣1<x<0或x>2.【分析】写出反比例函数的图象在一次函数的图象上方的自变量的取值范围即可.解:观察图象可知,当y1>y2时,则x的取值范围是﹣1<x<0或x>2.故答案为﹣1<x<0或x>2.三、解答题(共84分)17.计算:(1)﹣﹣;(2)(2+)5(2﹣)5.【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用积的乘方运算法则将原式变形进而计算得出答案.解:(1)原式=2﹣3﹣4=﹣5;(2)原式=[(2+)(2﹣)]5=15=1.18.(1)化简:(1+)(﹣1);(2)解方程:+=.【分析】(1)先通分,再因式分解,再约分计算即可求解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:(1)(1+)(﹣1)=×=×[﹣]=﹣;(2)+=,2(3x﹣1)+3x=1,6x﹣2+3x=1,解得x=,经检验,x=是原方程的解.19.学校准备购买一批课外读物,学校就“我最喜爱的课外读物”从“文学”、“艺术”、“科普”和“其他”四个类别进行了抽样调查(每位同学只选一类),根据调查结果绘制的两幅不完整的统计图如下:请你根据统计图提供的信息,解答下列问题:(1)学校共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)求扇形统计图中,“艺术”类读物所在扇形的圆心角的度数.【分析】(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(2)根据艺术类读物所在扇形的圆心角等于360度乘以其所占比例.解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°.20.已知y是x的反比例函数,且当x=4时,y=﹣1,(1)求y与x之间的函数表达式;(2)求当﹣3≤x≤﹣时,y的取值范围;(3)求当x>1时,y的取值范围.【分析】(1)利用待定系数法确定反比例函数的解析式即可;(2)根据自变量的取值范围确定函数值的取值范围即可;(3)根据自变量的取值范围确定函数值的取值范围即可.解:(1)设反比例函数的解析式为y=,∵当x=4,y=﹣1,∴k=﹣1×4=﹣4,∴反比例函数的解析式为y=﹣;(2)当x=﹣3时,y=,当x=﹣时,y=8,∴当﹣3≤x≤﹣时,y的取值范围是≤y≤8;(3)当x=1时,y=﹣4,∵k=﹣4,在每一象限内y随着x的增大而增大,∴当x>1时,y的取值范围是﹣4<y<0.21.已知y=y1+y2,y1与x2成正比例,y2与x﹣1成反比例,当x=﹣1时,y=3;当x=2时,y=﹣3,求y与x之间的函数关系式.【分析】根据题意设出函数关系式,把x=﹣1时y=3,当x=2时,y=﹣3.代入y与x间的函数关系式便可求出未知数的值,从而求出其解析式.解:∵y1与x2成正比例,∴y1=k1x2.∵y2与x﹣1成反比例,∴y2=.y=k1x2+.当x=﹣1时,y=3;x=2时,y=﹣3;∴.解得:.∴y=x2﹣.22.某气球内充满了一定量的气体,当温度不变时,气球内气体的压强P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这一函数的表达式;(2)当气体压强为48kPa时,求V的值;(3)当气球内的体积小于0.6m3时,气球将爆炸,为了安全起见,气体的压强不大于多少?【分析】(1)设函数解析式为P=,把点(0.8,120)的坐标代入函数解析式求出k 值,即可求出函数关系式;(2)将P=48代入(1)中的函数式中,可求气球的体积V.(3)依题意V=0.6,即=0.6,求解即可.解:(1)设P与V的函数关系式为P=,则k=0.8×120,解得k=96,∴函数关系式为P=.(2)将P=48代入P=中,得=48,解得V=2,∴当气球内的气压为48kPa时,气球的体积为2立方米.(3)当V=0.6m3时,气球将爆炸,∴V=0.6,即=0.6,解得P=160kpa故为了安全起见,气体的压强不大于160kPa.23.已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),连接DE、BF,P是DE的中点,连接AP.将△AEF绕点A逆时针旋转.(1)如图①,当△AEF的顶点E、F恰好分别落在边AB、AD时,则线段AP与线段BF的位置关系为PA⊥BF,数量关系为BF=2PA.(2)当△AEF绕点A逆时针旋转到如图②所示位置时,证明:第(1)问中的结论仍然成立.(3)若AB=3,AE=1,则线段AP的取值范围为1≤PA≤2.【分析】(1)根据正方形的性质得到AB=AD,∠DAB=∠FAB=∠EAD=90°,根据全等三角形的性质得到BF=DE,根据直角三角形的斜边中线的性质即可得到结论;(2)如图2,延长AP到G,使AP=PG,连接EG,DG,推出四边形EADG是平行四边形,根据平行四边形的性质得到DG=AE=AF,∠EAD+∠ADG=180°,根据全等三角形的性质即可得到结论.(3)利用三角形的三边关系即可解决问题.解:(1)结论:BF=2PA,BF⊥AP.理由:如图1中,设BF交PA于点O.∵四边形ABCD是正方形,∴AB=AD,∠DAB=∠EAF=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(SAS),∴BF=DE,∠ABF=∠ADE,在Rt△AED中,∵EP=PD,∴AP=DE,∴AP=BF;,∴BF=2AP,∵PA=PD,∴∠PAD=∠PDA,∴∠ABF=∠PAD,∵∠ABF+∠AFB=90°,∴∠PAD+∠AFB=90°,∴∠AOF=90°,∴PA⊥BF.故答案为:PA⊥BF,BF=2PA.(2)结论成立.理由:如图2中,延长AP到G,使AP=PG,连接EG,DG,延长PA交BF于点O.∵EP=PD,AP=PG,∴四边形EADG是平行四边形,∴DG=AE=AF,∠EAD+∠ADG=180°,AP=AG,∵∠FAB+∠EAD=180°,∴∠FAB=∠ADG,在△FAB与△GDA中,,∴△FAB≌△GDA(SAS),∴AG=FB,∠ABF=∠GAD,∴AP=BF,∴BF=2PA,∵∠BAD=90°,∴∠GAD+∠BAO=90°,∴∠ABF+∠BAO=90°,∴∠AOB=90°,∴PA⊥BF.(3)∵AE=AF=1,BA=3,∴2≤BF≤4,∴2≤2PA≤4,∴1≤PA≤2,故答案为1≤PA≤2.24.甲、乙两人加工同一种服装,乙每天比甲多加工1件,乙加工服装24件所用的时间与甲加工服装20件所用的时间相同,求甲乙二人每天各加工服装多少件?【分析】设甲每天加工服装x件,则乙每天加工服装(x+1)件,根据“乙加工服装24件所用的时间与甲加工服装20件所用的时间相同”列出方程,再解即可.解:设甲每天加工服装x件,则乙每天加工服装(x+1)件,由题意得:=,解得:x=5,经检验:x=5是原分式方程的解,且符合题意,x+1=6,答:甲每天加工服装5件,则乙每天加工服装6件.25.已知,矩形OABC的顶点A、C分别在x轴、y轴的正半轴上,D为边BC上的点,反比例函数y=在第一象限内的图象经过点D(m,2)和边AB上的点E(4,1).(1)求反比例函数的表达式和m的值;(2)若将矩形OABC进行折叠,使点O与点D重合,折痕分别与x轴、y轴正半轴交于点F、G,求折痕FG所在直线的函数表达式.【分析】(1)由点E的坐标利用反比例函数图象上点的坐标特征即可求出k值,再由点B在反比例函数图象上,代入即可求出m值;(2)设OG=x,利用勾股定理即可得出关于x的一元二次方程,解方程即可求出x值,从而得出点G的坐标.再过点F作FH⊥CB于点H,由此可得出△GCD∽△DHF,根据相似三角形的性质即可求出线段DF的长度,从而得出点F的坐标,结合点G、F的坐标利用待定系数法即可求出结论.解:(1)∵反比例函数y=(k≠0)在第一象限内的图象经过点E(4,1),∴k=4×1=4,∴反比例函数的表达式为y=.又∵点D(m,2)在反比例函数y=的图象上,∴2m=4,解得:m=2.(2)设OG=x,则CG=OC﹣OG=2﹣x,∵点D(2,2),∴CD=2.在Rt△CDG中,∠DCG=90°,CG=2﹣x,CD=2,DG=OG=x,∴CD2+CG2=DG2,即4+(2﹣x)2=x2,解得:x=2,∴点G(0,2).∴点F的坐标为(2,0).设折痕FG所在直线的函数关系式为y=ax+b,∴有,解得.∴折痕FG所在直线的函数关系式为y=﹣x+2.。