高中数学竞赛训练题(0530)
- 格式:doc
- 大小:372.50 KB
- 文档页数:4
高中数学竞赛赛题精选(带答案)高中数学竞赛是中学生竞赛中最重要的一部分,它不仅需要智力,还需要充分发挥数学能力和思维能力。
以下是一些高中数学竞赛赛题的精选和解答。
1. 设$a_n=x^n$+5的前n项和为S(n),求S(n+1)-S(n)的值。
解:S(n+1)-S(n)=(x^n+1+5)-(x^n+5)=(x^n+1)-(x^n)=x^n(x-1)。
由于$a_n=x^n+5$,所以S(n)=a_0+a_1+...+a_n=(x^0+5)+(x^1+5)+...+(x^n+5)=(x^0+x^1+...+x^n)+5(n+1),因此S(n+1)-S(n)=x^n(x-1)=(S(n+1)-S(n)-5(n+2))/(x^0+x^1+...+x^n)。
2. 已知函数f(x)=sin(x)+cos(x),0≤x≤π/2,求f(x)在[0,π/4]上的最小值。
解:f(x)=sin(x)+cos(x)=√2sin(x+π/4),当0≤x≤π/4时,x+π/4≤π/2,sin(x+π/4)不小于0,因此f(x)的最小值由sin(x+π/4)的最小值决定。
sin(x+π/4)的最小值为-√2/2,因此f(x)的最小值为-1。
3. 已知正整数n,设P(n)是n的质因数分解中所有质因数加起来的和,Q(n)是n的数字分解中所有数位加起来的和。
给定P(n)+Q(n)=n,求最小的n。
解:P(n)的范围是2到9×log_10n之间,因此可以枚举P(n)和Q(n),判断它们之和是否等于n。
当P(n)取到最小值2时,Q(n)的最大值为9log_10n,因此n的最小值为11。
4. 已知函数f(x)=2cos^2x-3cosx+1,x∈[0,2π],求f(x)的最小值。
解:由于f(x)=2cos^2x-3cosx+1=2(cosx-1/2)^2-1/2,因此f(x)的最小值为-1/2,且取到最小值的x为0或2π。
5. 已知正整数n,求使得3^n的末2位是9的最小正整数n。
2023高中数学竞赛决赛试题2023高中数学竞赛决赛试题一、选择题设集合A = {x | x = 3k + 1, k Z}∈,B = {x | x = 3k + 2, k Z}∈,则集合A 和B 的关系是:A. A B ⊆B. B A ⊆C. A = B D. A ∩ B = ∅已知 x > 1,则函数 y = x + (1/x) 的最小值为:A. 2√2B. √2C. 4D. 不存在若函数 f(x) = (x - a)/(x^2 + 1) 在区间 (-2,2) 上是奇函数,则 a 的取值范围是:A. a = ±√2B. a = -√2C. a = ±1D. a = -1下列各组中的两个函数是同一函数的是:A. f(x) = x^2 和 g(x) = (√x)^2B. f(x) = x 和 g(x) = √x^2C. f(x) = |x| 和 g(x) = (√(x^2))D. f(x) = x 和 g(x) = (√(x))^2在等差数列 {an} 中,a3 + a8 > 0,则有:A. a1 + a10 > 0B. a2 + a9 > 0C. a4 + a7 > 0D. a5 + a6 > 0若实数 x, y 满足 x^2 + y^2 = 1,则 (x + 2)^2 + (y + 2)^2 的最小值为:A. 4√5/5B. √5 - 1C. √5 + 1D. 5/4下列各式中正确的是:A. lim(x→∞) (sin x/x) = 0B .lim(x→∞) (x·sin x/x) = 1C .lim(x→∞) (sin x/x^2) = 0D .lim(x→∞) ((sin x)/x)^x = e^(-1)下列说法中正确的是:A. “直线 l 在平面 α 内”等价于“直线 l 与平面 α 有公共点”B. “直线 l 与直线 l' 在平面 α 内相交”等价于“直线 l 与直线 l' 有公共点”C. “直线 l 与平面 α 的平行”等价于“直线 l 与平面 α 没有公共点”D. “直线 l 与直线 l' 在平面 α 内平行”等价于“直线 l 与直线 l' 没有公共点”一个袋子中有大小形状相同的红、黄、蓝三种颜色的球各一个,现有放回地依次取出三个球,则取到红、黄、蓝三种颜色的球各一个的概率为:A. 1/8B. 1/6C. 1/4D. 1/3在等比数列 {an} 中,a7 · a11 = 6,a3 + a13 = 5,则 a23 + a27 的值为:A. -5/6 B. -1 C. -6 D. -5/4二、填空题11. 若 f(n) = (n - a)/(n + a),则 f(4) + f(9) + ... + f(99) + f(104) 的值为 _______。
高一数学竞赛试题及答案一、选择题(每题5分,共50分)1. 已知函数\( f(x) = x^2 - 4x + 3 \),求\( f(1) \)的值。
A. -2B. -1C. 0D. 12. 圆的半径为5,圆心到直线的距离为3,求圆与直线的位置关系。
A. 相切B. 相交C. 相离D. 内切3. 集合\( A = \{1, 2, 3\} \),\( B = \{2, 3, 4\} \),求\( A \cup B \)。
A. \( \{1, 2, 3, 4\} \)B. \( \{1, 2, 3\} \)C. \( \{2, 3, 4\} \)D. \( \{1, 4\} \)4. 已知等差数列的第1项为2,公差为3,求第5项的值。
A. 14B. 17C. 20D. 235. 已知正弦函数\( y = \sin x \)的周期为2π,求\( y = \sin 2x\)的周期。
A. πB. 2πC. 4πD. 8π6. 已知三角形ABC的三边长分别为3, 4, 5,求三角形ABC的面积。
A. 6B. 9C. 12D. 157. 函数\( g(x) = \frac{1}{x} \)在区间(1, 2)上的单调性是?A. 单调递增B. 单调递减C. 先减后增D. 先增后减8. 已知\( a^2 + b^2 = 13 \),\( a + b = 5 \),求ab的值。
A. 12B. 10C. 8D. 69. 已知\( \cos x = \frac{3}{5} \),\( \sin x \)的值在区间[-1,1]内,求\( \sin x \)的值。
A. \( -\frac{4}{5} \)B. \( \frac{4}{5} \)C. \( -\frac{3}{5} \)D. \( \frac{3}{5} \)10. 已知\( \log_2 8 = 3 \),求\( \log_{16} 8 \)的值。
A. \( \frac{3}{4} \)B. \( \frac{1}{2} \)C. \( \frac{3}{2} \)D. \( \frac{4}{3} \)二、填空题(每题5分,共30分)11. 已知函数\( h(x) = x^3 - 6x^2 + 11x - 6 \),求\( h(2) \)的值。
2023年高中数学竞赛试题
2023年高中数学竞赛试题指的是由中国数学会等机构主办的全国性高中数学竞赛的考试题目。
这类竞赛通常是为了选拔数学成绩优异的学生,并为其提供更深入的数学学习机会。
以下是 2023年高中数学竞赛试题示例:
1、已知函数 f(x) = x^3 + ax^2 + bx + c 在 x = 1 和 x = -1 时取极值,且 f(-
2) = -4,求函数 f(x) 的解析式。
A. f(x) = x^3 - 2x^2 - x + 2
B. f(x) = x^3 - 4x^2 + 2x + 4
C. f(x) = x^3 + 2x^2 - x - 2
D. f(x) = x^3 + 4x^2 - 2x - 4
2、一个四面体的所有棱长都为√2,则该四面体的体积为 ___.
A. 1/3
B. 1/4
C. 1/5
D. 1/6
最后总结:2023年高中数学竞赛试题是一套用于测试学生数学水平的试题,具有较高的难度和挑战性。
它通常包括选择题、填空题和解答题等多种题型,涵盖了代数、几何、数列、概率等多个数学领域的知识点。
通过参加这类竞赛,学生可以锻炼自己的数学思维和解题能力,同时也可以为未来的学术和职业发展打下坚实的基础。
高中的数学竞赛试题及答案高中数学竞赛试题一、选择题(每题5分,共20分)1. 下列哪个数不是有理数?A. πB. √2C. 0.333...(无限循环)D. 1/32. 如果函数f(x) = 2x^2 - 5x + 3在x = 2时取得最小值,那么f(2)的值是多少?A. -1B. 1C. 3D. 53. 已知等差数列的前三项分别为3, 8, 13,求第10项的值。
A. 43B. 48C. 53D. 584. 若sinx = 1/2,求cosx的值(假设x在第一象限)。
A. √3/2B. -√3/2C. 1/2D. -1/2二、填空题(每题4分,共12分)5. 计算(2x^3 - 3x^2 + 4x - 5) / (x - 1)的商式和余数。
商式为:________余数为:______6. 已知复数z = 3 + 4i,求其共轭复数。
共轭复数为:______7. 一个圆的半径为5,求其内接正六边形的边长。
边长为:______三、解答题(每题18分,共54分)8. 证明:对于任意正整数n,n^5 - n 总是能被30整除。
9. 已知函数g(x) = x^3 - 6x^2 + 11x - 6,求其导数g'(x),并找出g(x)的极值点。
10. 解不等式:|x + 2| + |x - 3| > 4。
四、证明题(每题10分,共10分)11. 证明:对于任意实数a和b,(a^2 + b^2)(1/a^2 + 1/b^2) ≥ 2。
五、附加题(每题15分,共15分)12. 一个圆的半径为r,圆内接正n边形的边长为s。
证明:s =2r*sin(π/n)。
高中数学竞赛试题答案一、选择题1. A(π是无理数)2. B(f(2) = 4 - 10 + 3 = -3,但题目要求最小值,故应为B)3. C(公差d = 13 - 8 = 5,第10项a_10 = 3 + 9*5 = 53)4. A(根据勾股定理,cosx = √3/2)二、填空题5. 商式为:2x^2 - x - 5,余数为:-36. 共轭复数为:3 - 4i7. 边长为:10三、解答题8. 证明略。
数学竞赛试题及答案高中生试题一:代数问题题目:已知\( a, b \) 是方程 \( x^2 + 5x + 6 = 0 \) 的两个实根,求 \( a^2 + 5a + 6 \) 的值。
解答:根据韦达定理,对于方程 \( x^2 + bx + c = 0 \),其根\( a \) 和 \( b \) 满足 \( a + b = -b \) 和 \( ab = c \)。
因此,对于给定的方程 \( x^2 + 5x + 6 = 0 \),我们有 \( a + b =-5 \) 和 \( ab = 6 \)。
由于 \( a \) 是方程的一个根,我们可以将 \( a \) 代入方程得到 \( a^2 + 5a + 6 = 0 \)。
所以 \( a^2 + 5a + 6 = 0 \)。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为 3 厘米和 4 厘米,求斜边的长度。
解答:根据勾股定理,直角三角形的斜边长度 \( c \) 可以通过直角边 \( a \) 和 \( b \) 计算得出,公式为 \( c = \sqrt{a^2 + b^2} \)。
将给定的边长代入公式,我们得到 \( c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \) 厘米。
试题三:数列问题题目:一个等差数列的首项 \( a_1 = 3 \),公差 \( d = 2 \),求第 10 项 \( a_{10} \) 的值。
解答:等差数列的通项公式为 \( a_n = a_1 + (n - 1)d \),其中\( n \) 是项数。
将给定的值代入公式,我们得到 \( a_{10} = 3 + (10 - 1) \times 2 = 3 + 9 \times 2 = 3 + 18 = 21 \)。
试题四:组合问题题目:从 10 个不同的球中选取 5 个球,求不同的选取方式有多少种。
竞赛数学高中试题及答案试题一:多项式问题题目:已知多项式 \( P(x) = x^3 - 3x^2 + 2x - 5 \),求 \( P(2) \) 的值。
解答:将 \( x = 2 \) 代入多项式 \( P(x) \) 中,得到:\[ P(2) = 2^3 - 3 \times 2^2 + 2 \times 2 - 5 = 8 - 12 + 4 -5 = -5 \]试题二:几何问题题目:在直角三角形 ABC 中,角 C 是直角,若 \( AB = 10 \) 且\( AC = 6 \),求斜边 BC 的长度。
解答:根据勾股定理,直角三角形的斜边 \( BC \) 可以通过以下公式计算:\[ BC = \sqrt{AB^2 - AC^2} = \sqrt{10^2 - 6^2} = \sqrt{100 - 36} = \sqrt{64} = 8 \]试题三:数列问题题目:给定数列 \( a_n = 2n - 3 \),求数列的前 5 项。
解答:根据数列公式 \( a_n = 2n - 3 \),我们可以计算出前 5 项:\[ a_1 = 2 \times 1 - 3 = -1 \]\[ a_2 = 2 \times 2 - 3 = 1 \]\[ a_3 = 2 \times 3 - 3 = 3 \]\[ a_4 = 2 \times 4 - 3 = 5 \]\[ a_5 = 2 \times 5 - 3 = 7 \]数列的前 5 项为:-1, 1, 3, 5, 7。
试题四:概率问题题目:一个袋子里有 5 个红球和 3 个蓝球,随机抽取 2 个球,求抽到一个红球和一个蓝球的概率。
解答:首先计算总的可能组合数,即从 8 个球中抽取 2 个球的组合数:\[ \text{总组合数} = \binom{8}{2} = \frac{8 \times 7}{2} = 28 \]然后计算抽到一个红球和一个蓝球的组合数:\[ \text{有利组合数} = \binom{5}{1} \times \binom{3}{1} = 5 \times 3 = 15 \]所以,抽到一个红球和一个蓝球的概率为:\[ P = \frac{\text{有利组合数}}{\text{总组合数}} =\frac{15}{28} \]试题五:函数问题题目:若函数 \( f(x) = x^2 - 4x + 4 \),求 \( f(x) \) 的最小值。
竞赛数学高中试题### 竞赛数学高中试题#### 问题一:不等式求解已知不等式 \( ax^2 + bx + c > 0 \) 对所有实数 \( x \) 成立,求参数 \( a \), \( b \), \( c \) 应满足的条件。
解答:首先,我们知道一个二次函数 \( f(x) = ax^2 + bx + c \) 的开口方向由系数 \( a \) 决定。
若 \( a > 0 \),则函数开口向上,若\( a < 0 \),则开口向下。
由于 \( f(x) > 0 \) 对所有实数 \( x \) 成立,我们可以推断出函数开口向上,即 \( a > 0 \)。
此外,为了确保函数值始终为正,函数的顶点(即最小值点)也必须在 \( y \) 轴上方。
二次函数的顶点坐标为 \( -\frac{b}{2a} \),因此 \( f(-\frac{b}{2a}) \) 必须大于 0。
将顶点坐标代入原不等式,我们得到:\[ a\left(-\frac{b}{2a}\right)^2 + b\left(-\frac{b}{2a}\right) + c > 0 \]化简得:\[ c - \frac{b^2}{4a} > 0 \]因此,\( a > 0 \) 且 \( c > \frac{b^2}{4a} \) 是参数 \( a \),\( b \), \( c \) 应满足的条件。
#### 问题二:数列求和给定数列 \( a_n = 3n - 1 \),求 \( S_n \),即数列的前 \( n \) 项和。
解答:数列 \( a_n = 3n - 1 \) 是一个等差数列,其中首项 \( a_1 = 2 \),公差 \( d = 3 \)。
等差数列的前 \( n \) 项和公式为:\[ S_n = \frac{n}{2} \times (2a_1 + (n-1)d) \]将 \( a_1 \) 和 \( d \) 的值代入公式,我们得到:\[ S_n = \frac{n}{2} \times (2 \times 2 + (n-1) \times 3) \]\[ S_n = \frac{n}{2} \times (4 + 3n - 3) \]\[ S_n = \frac{n}{2} \times (3n + 1) \]\[ S_n = \frac{3n^2 + n}{2} \]因此,数列的前 \( n \) 项和 \( S_n \) 为 \( \frac{3n^2 + n}{2} \)。
浙江高三高中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.若集合,,,则集合()A.B.C.D.2.若函数(,且)的值域为,则实数的取值范围为()A.B.C.D.3.如图,在四面体中,已知两两互相垂直,且.则在该四面体表面上与点距离为的点形成的曲线段的总长度为()A.B.C.D.4.在中,“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.已知函数,则关于的不等式的解集为()A.B.C.D.6.记为三个数中的最小数,若二次函数有零点,则的最大值为()A.2B.C.D.1二、填空题1.数学竞赛后,小明、小乐和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌,老师猜测:“小明得金牌,小乐不得金牌,小强得的不是铜牌.”结果老师只猜对了一个,由此推断:得金牌、银牌、铜牌的依次是__________.2.省中医院5月1号至5月3号拟安排6位医生值班,要求每人值班1天,每天安排2人.若6位医生中的甲不能值2号,乙不能值3号,则不同的安排值班的方法共有__________种.3.已知函数,若对于任意的,存在,使得成立,则的取值范围为__________. 4.已知,则的取值范围为__________.5.已知是偶函数,时,(符号表示不超过的最大整数),若关于的方程恰有三个不相等的实根,则实数的取值范围为__________.6.已知点为椭圆的右焦点,椭圆的离心率为,过点的直线交椭圆于两点(点在轴的上方),且,则直线的斜率为__________.7.方程的正整数解为______________(写出所有可能的情况).8.一个有限项的数列满足:任何3 个连续项之和都是负数,且任何4个连续项之和都是正数,则此数列项数的最大值为__________.三、解答题1.已知函数的图象恒过定点,且点又在函数的图象上.(Ⅰ)求实数的值; (Ⅱ)当方程有两个不等实根时,求的取值范围;(Ⅲ)设,,,求证,,.2.(12分)如图,椭圆()的离心率,短轴的两个端点分别为B 1、B 2,焦点为F 1、F 2,四边形F 1 B 1F 2 B 2的内切圆半径为(1)求椭圆C 的方程;(2)过左焦点F 1的直线交椭圆于M 、N 两点,交直线于点P ,设,,试证为定值,并求出此定值.3.已知函数,直线为曲线的切线(为自然对数的底数).(1)求实数的值; (2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围.浙江高三高中数学竞赛测试答案及解析一、选择题1.若集合,,,则集合( )A .B .C.D.【答案】D【解析】依题意,,.由,知;,知或.所以,或,即.故选D;2.若函数(,且)的值域为,则实数的取值范围为()A.B.C.D.【答案】A【解析】当时,函数的值域为,当时,,即时,,且时恒成立.∴,的取值范围为.故选A;3.如图,在四面体中,已知两两互相垂直,且.则在该四面体表面上与点距离为的点形成的曲线段的总长度为()A.B.C.D.【答案】B【解析】如图,设 (在上,在上,在上).由,,知,,.∴在面内与点距离为的点形成的曲线段(图中弧) 长为.同理,在面内与点距离为的点形成的曲线段长为.同理,在面内与点距离为的点形成的曲线段长为.同理,在面内与点距离为的点形成的曲线段长为.所以,该四面体表面上与点距离为的点形成的曲线段的总长度为.故选B.点睛:想象出在每个截面上的弧线是一个个圆弧,找到相应的圆弧的圆心角,和半径,弧长就求出来了;4.在中,“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由正弦定理可得,在中,“”则,则,由倍角公式可得,可得,反之也成立,所以在中,“”是“”的充分必要条件,故选C.【考点】正弦定理与倍角公式.5.已知函数,则关于的不等式的解集为()A.B.C.D.【答案】D【解析】令,则函数为奇函数且在实数上为增函教,不等式转化为故选D.6.记为三个数中的最小数,若二次函数有零点,则的最大值为()A.2B.C.D.1【答案】B【解析】可以不妨设,因为,所以,故所以,,所以(当且仅当时取等号)故选B.二、填空题1.数学竞赛后,小明、小乐和小强各获得一枚奖牌,其中一人得金牌,一人得银牌,一人得铜牌,老师猜测:“小明得金牌,小乐不得金牌,小强得的不是铜牌.”结果老师只猜对了一个,由此推断:得金牌、银牌、铜牌的依次是__________.【答案】小乐,小强,小明.【解析】其一,若小明得金牌,则小乐一定不得金牌,不合题意;其二,小明得银牌时,再以小乐得奖情况分析,若小乐得金牌,小强得铜牌,不合提议,若小乐得铜牌小强得金牌,也不合题意;其三,若小明得铜牌,仍以小乐得奖情况分类,若小乐得金牌,小强得银牌,则老师才对一个合题意,若小乐得银牌,小强得金牌,则老师对了俩;不合题意,综上,小明得铜牌,小乐得金牌,小强得银牌.2.省中医院5月1号至5月3号拟安排6位医生值班,要求每人值班1天,每天安排2人.若6位医生中的甲不能值2号,乙不能值3号,则不同的安排值班的方法共有__________种.【答案】42;【解析】分两类(1) 甲、乙同一天值班,则只能排在1号,有种排法;(2) 甲、乙不在同一天值班,有种排法,故共有42 种方法.故结果为42.3.已知函数,若对于任意的,存在,使得成立,则的取值范围为__________.【答案】;【解析】函数视作为的函数问题等价于对于,由于,所以所以问题等价于,即,所以.故结果为.点睛:双变元问题,先看成函数视作为的函数,求出最值;再看成x的函数求最值.4.已知,则的取值范围为__________.【答案】;【解析】由及有,所故结果为.5.已知是偶函数,时, (符号表示不超过的最大整数),若关于的方程恰有三个不相等的实根,则实数的取值范围为__________.【答案】;【解析】作出函数与的草图(如图所示).易知直线恒过点,是方程的一个根.从图像可知,当,即时,两个函数的图像恰有三个不同的交点.∴的取值范围为.点睛:方程的根转化为函数的零点,图像的交点问题,且发现直线过定点;根据图像得到结果.6.已知点为椭圆的右焦点,椭圆的离心率为,过点的直线交椭圆于两点(点在轴的上方),且,则直线的斜率为__________.【答案】;【解析】极点在右焦点的极坐标方程为,所以,,从而,可得,,所以直线的斜率为.7.方程的正整数解为______________(写出所有可能的情况).【答案】;【解析】.∴,∴,.由,知,因此,.∴,若,则,,.将,代入题中方程,得.若,则,.由知,不存在.若,则.以,,又,因此,.经验证只有符合.将代入题中方程,得.∴符合条件的正整数解有或.8.一个有限项的数列满足:任何3 个连续项之和都是负数,且任何4个连续项之和都是正数,则此数列项数的最大值为__________.【答案】5;【解析】一方面可以构造5 项的数列:符合题设;另一方面,证明满足条件的数列不超过5项.否则取出前6 项,作出如下排列:由每行的和为负数,知这12 个数之和为负数;由每列的和为正数,知这12 个数之和为正数.矛盾.故结果为5.三、解答题1.已知函数的图象恒过定点,且点又在函数的图象上.(Ⅰ)求实数的值;(Ⅱ)当方程有两个不等实根时,求的取值范围;(Ⅲ)设,,,求证,,.【答案】(1);(2)的取值范围为;(3)见解析.【解析】(1)点的坐标为;点在上,则(2)方程的根转化为图像的交点;(3)裂项求和.(Ⅰ)函数的图像恒过定点,点的坐标为又因为点在上,则即,∴(Ⅱ)即,∴由图像可知:,故的取值范围为.(Ⅲ),∴ ,.点睛:主要考查函数零点,方程的根,图像的交点可等价;再就是数列裂项求和问题.2.(12分)如图,椭圆()的离心率,短轴的两个端点分别为B 1、B 2,焦点为F 1、F 2,四边形F 1 B 1F 2 B 2的内切圆半径为(1)求椭圆C 的方程;(2)过左焦点F 1的直线交椭圆于M 、N 两点,交直线于点P ,设,,试证为定值,并求出此定值. 【答案】(1);(2)【解析】试题解析:(1)设四边形F 1B 1F 2B 2的内切圆与边B 1B 2的切点为G ,连接OG ,则|OG|=由S △OB2F2=|OB 2||OF 2|=|B 2F 2||OG|,|OB 2|=b , |OF 2|=c , |B 2F 2|=a ,得bc=a又∵e=解得a=2,b=故椭圆方程为:(2)设直线MN 的方程为y=k (x+1)代入椭圆方程,整理得 (3+4k 2)x 2+8k 2x+4(k 2-3)=0设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2= ,x 1x 2=又P (-4,-3k ),F 2(-1,0) 由 , 得,∴∵∴为定值【考点】本题考查椭圆的几何性质 向量共线 点评:解决本题的关键是利用向量共线,求出即可3.已知函数,直线为曲线的切线(为自然对数的底数).(1)求实数的值; (2)用表示中的最小值,设函数,若函数为增函数,求实数的取值范围. 【答案】(1);(2).【解析】(1)先求导,然后利用导数等于求出切点的横坐标,代入两个曲线的方程,解方程组,可求得;(2)设与交点的横坐标为,利用导数求得,从而,然后利用求得的取值范围为.试题解析:(1)对求导得.....................1分设直线与曲线切于点,则,解得,所以的值为1..........................................3分(2)记函数,下面考察函数的符号,对函数求导得......................4分当时,恒成立.................................5分当时,,从而.....................7分∴在上恒成立,故在上单调递减.,∴,又曲线在上连续不间断,所以由函数的零点存在性定理及其单调性知唯一的,使.∴;,,∴,从而,∴,..........................9分由函数为增函数,且曲线在上连续不断知在,上恒成立.①当时,在上恒成立,即在上恒成立,记,则,当变化时,变化情况列表如下:∴,故“在上恒成立”只需,即.②当时,,当时,在上恒成立,综合①②知,当时,函数为增函数.故实数的取值范围是...............................12分【考点】函数导数与不等式.【方法点晴】函数导数问题中,和切线有关的题目非常多,我们只要把握住关键点:一个是切点,一个是斜率,切点即在原来函数图象上,也在切线上;斜率就是导数的值.根据这两点,列方程组,就能解决.本题第二问我们采用分层推进的策略,先求得的表达式,然后再求得的表达式,我们就可以利用导数这个工具来求的取值范围了.。
高中数学竞赛(预赛)训练试题+数学竞赛初赛试题(含答案)高中数学竞赛(预赛)真题训练(一)一、填空题(本题满分56分,每小题7分。
) 1.已知复数m 满足11=+m m ,则=+200920081mm . 2.设2cos sin 23cos 21)(2++=x x x x f ,]4,6[ππ-∈x ,则)(x f 的值域为 . 3.设等差数列{}n a 的前n 项和为n S ,若0,01615<>S S ,则15152211,,,a S a S a S 中最大的是 . 4.已知O 是锐角△ABC 的外心,10,6==AC AB ,若AC y AB x AO +=,且5102=+y x ,则=∠BAC cos .5.已知正方体1111D C B A ABCD -的棱长为1,O 为底面ABCD 的中心,M ,N 分别是棱A 1D 1和CC 1的中点.则四面体1MNB O -的体积为 .6.设}6,5,4,3,2,1{=C B A ,且}2,1{=B A ,C B ⊆}4,3,2,1{,则符合条件的),,(C B A 共有 组.(注:C B A ,,顺序不同视为不同组.)7.设x x x x x x y csc sec cot tan cos sin +++++=,则||y 的最小值为 . 8.设p 是给定的正偶数,集合},3,22|{1N ∈=<<=+m m x x x A p pp 的所有元素的和是 .二、解答题(本题满分64分,第9题14分,第10题15分,第11题15分,第12题20分。
) 9.设数列)0}({≥n a n 满足21=a ,)(2122n m n m n m a a n m a a +=+-+-+,其中n m n m ≥∈,,N . (1)证明:对一切N ∈n ,有2212+-=++n n n a a a ; (2)证明:1111200921<+++a a a . 10.求不定方程21533654321=+++++x x x x x x 的正整数解的组数.11.已知抛物线C :221x y =与直线l :1-=kx y 没有公共点,设点P 为直线l 上的动点,过P 作抛物线C 的两条切线,A ,B 为切点.(1)证明:直线AB 恒过定点Q ;12.设d c b a ,,,为正实数,且4=+++d c b a .证明:22222)(4b a ad d c c b b a -+≥+++.湖北省黄冈中学高中数学竞赛(预赛)真题训练(一)参考答案一、填空题(本题满分56分,每小题7分。
数学竞赛训练题
1、函数()x x x x x f 44cos cos sin sin ++=的最大值是_______。
2、已知S n 、T n 分别是等差数列{}n a 与{}n b 的前n 项的和,且2412-+=n n T S n n ,则=+++15
61118310b b a b b a _______。
3、若函数()⎪⎭
⎫ ⎝⎛
+=x a x x f a 4log 在区间上为增函数,则a 的取值范围是为_______。
4、在四面体ABCD 中,已知DA ⊥平面ABC ,△ABC 是边长为2的正三角形,则当二面角A-BD-C 的正切值为2时,四面体ABCD 的体积为_______。
5、已知定义在R 上的函数()x f 满足:
(1)()11=f ; (2)当10<<x 时,()0>x f ;
(3)对任意的实数x 、y 均有()()()()y f x f y x f y x f -=--+12。
则=⎪⎭⎫ ⎝⎛31f _______。
6、已知x 、y 满足条件484322=+y x ,则542442222++-+++-+y x y x x y x 的最
大值为_______。
7、对正整数n ,设n x 是关于x 的方程nx 3
+2x-n=0的实数根,记()[]()11>+=n x n a n n (符号表示不超过x 的最大整数),则()=++++20114321005
1a a a a _______。
8、在平面直角坐标系中,已知点集I={(x ,y )|x 、y 为整数,且0≤x ≤5,0≤y ≤5},则以
集合I 中的点为顶点且位置不同的正方形的个数为_______。
9、若函数()x x x x f 2cos 24sin sin 42+⎪⎭
⎫ ⎝⎛+=π。
(1)设常数0>w ,若函数()wx f y =在区间⎥⎦⎤⎢⎣⎡-
32,2ππ上是增函数,求w 的取值范围; (2)集合⎭⎬⎫⎩⎨⎧≤≤=326ππx x
A ,(){}
2<-=m x f x B ,若B B A =⋃,求实数m 的取值范围。
10、已知F 1、F 2分别是椭圆C :13
42
2=+y x 的左、右焦点,点A (x 1,y 1)、B (x 2,y 2)在椭圆C 上,若x 1+x 2=
21,且B F AF 22λ=,求λ的值。
11、已知二次函数()()a b c c bx ax x f >>++=22,其图象过点(1,0),并与直线a y -=有公共点,求证:10<≤
a
b 。
12、已知()1--=x e x f x 。
(1)求证:()0≥x f 恒成立;
(2)求证:+⎪⎭⎫ ⎝⎛n n 21+⎪⎭⎫ ⎝⎛n n 23+⎪⎭⎫ ⎝⎛n n 251
212-<⎪⎭⎫ ⎝⎛-+e e n n n
对一切正整数n 均成立。
答案:
1、
89;2、78
41;3、(]4,1;4、2; 5、2
1;6、138+;7、2013;8、105; 9、(1)430≤<w ;(2)41<<m 。
10、12ex a AF -=, 22ex a BF -= ,由x 1+x 2=
21,得θ22cos 12415e ep AB -==, 得54cos 2=θ;θcos 12e ep AF -=,θcos 12e ep BF +=,所以2
5322±==BF AF λ。
11、()021=++=c b a f ,a b c >>,022=+++a c bx ax 有解。
得021=++a c a b ,04422
≥--⎪⎭
⎫ ⎝⎛a c a b ,1<<a b a c 。
得10<≤a b 。
12、(1)略;(2)放缩法,令 +++=-=------25232112111e e e e e e e ,再逐项比较,利用导数知识解决。