数列极限数学归纳法用数学归纳法证明不等式
- 格式:docx
- 大小:57.46 KB
- 文档页数:11
数学归纳法在高中数学中的具体应用数学归纳法是一种常用的证明方法,在高中数学中具有广泛的应用。
它是一种通过已知的条件来证明一般情况的方法,通过对一系列情况进行递推,从而得出结论。
在高中数学中,数学归纳法常常用于证明数列的性质、等式的成立以及不等式的推导等各个方面。
首先,数学归纳法在数列中的应用非常常见。
数列是高中数学中重要的概念之一,它是一系列有规律的数按照一定次序排列而成的集合。
通过数学归纳法,我们可以证明数列的一些性质。
例如,对于一个递推数列,可以通过数学归纳法证明递推关系的成立,从而得到数列的通项公式。
另外,数学归纳法还可以用于证明数列的性质,如数列的单调性、数列的极限等。
其次,数学归纳法在等式的证明中也有着重要的应用。
在高中数学中,等式的成立是一个常见的问题,有时候我们需要证明某个等式对于所有的自然数都成立。
这时候,数学归纳法就是一个非常有效的证明方法。
通过数学归纳法,我们可以首先证明等式对于某个特定的自然数成立,然后再假设等式对于某个自然数n成立,利用这个假设,推导出等式对于n+1也成立,从而证明等式对于所有自然数成立。
最后,数学归纳法还可以应用在不等式的证明中。
不等式在高中数学中也是一种常见的题型,有时候需要证明某个不等式对于所有的自然数都成立。
这时候,数学归纳法可以帮助我们完成证明。
通过数学归纳法,我们可以首先证明不等式对于某个特定的自然数成立,然后再假设不等式对于某个自然数n成立,利用这个假设,推导出不等式对于n+1也成立,从而证明不等式对于所有自然数成立。
需要注意的是,数学归纳法的正确使用需要满足两个条件,即基本情况的证明和归纳步骤的推导。
基本情况的证明是指证明数学归纳法对于第一个满足条件的自然数成立,而归纳步骤的推导是指利用数学归纳法的假设,推导出数学归纳法对于n+1也成立。
只有同时满足这两个条件,才能保证数学归纳法的正确性。
综上所述,数学归纳法在高中数学中具有广泛的应用。
它可以用于证明数列的性质、等式的成立以及不等式的推导等各个方面。
函数 不等式 数列 极限 数学归纳法一 能力培养1,归纳-猜想-证明 2,转化能力 3,运算能力 4,反思能力 二 问题探讨问题1数列{n a }满足112a =,212n n a a a n a ++⋅⋅⋅+=,(n N *∈). (I)求{n a }的通项公式; (II)求1100nn a -的最小值; (III)设函数()f n 是1100nn a -与n 的最大者,求()f n 的最小值.问题2已知定义在R 上的函数()f x 和数列{n a }满足下列条件:1a a =,1()n n a f a -= (n =2,3,4,⋅⋅⋅),21a a ≠,1()()n n f a f a --=1()n n k a a --(n =2,3,4,⋅⋅⋅),其中a 为常数,k 为非零常数.(I)令1n n n b a a +=-(n N *∈),证明数列{}n b 是等比数列; (II)求数列{n a }的通项公式; (III)当1k <时,求lim n n a →∞.问题3已知两点M (1,0)-,N (1,0),且点P 使MP MN ⋅,PM PN ⋅,NM NP ⋅成公差小 于零的等差数列.(I)点P 的轨迹是什么曲线? (II)若点P 坐标为00(,)x y ,记θ为PM 与PN 的夹角,求tan θ.三 习题探讨 选择题1数列{}n a 的通项公式2n a n kn =+,若此数列满足1n n a a +<(n N *∈),则k 的取值范围是 A,2k >- B,2k ≥- C,3k ≥- D,3k >- 2等差数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,若231n n S nT n =+,则n na b = A,23 B,2131n n -- C,2131n n ++ D,2134n n -+ 3已知三角形的三边构成等比数列,它们的公比为q ,则q 的取值范围是A,B,C,D, 4在等差数列{}n a 中,1125a =,第10项开始比1大,记21lim ()n n n a S t n →∞+=,则t 的取值范围是A,475t > B,837525t <≤ C,437550t << D,437550t <≤5设A 11(,)x y ,B 22(,)x y ,C 33(,)x y 是椭圆22221x y a b+=(0a b >>)上三个点,F 为焦点,若,,AF BF CF 成等差数列,则有A,2132x x x =+ B,2132y y y =+ C,213211x x x =+ D,2213x x x =⋅ 6在ABC ∆中,tan A 是以4-为第三项,4为第七项的等差数列的公差,tan B 是以13为 第三项,9为第六项的等比数列的公比,则这个三角形是A,钝角三角形 B,锐角三角形 C,等腰直角三角形 D,以上都不对 填空7等差数列{}n a 前n (6n >)项和324n S =,且前6项和为36,后6项和为180,则n = .8223323232323236666n nn nS ++++=+++⋅⋅⋅+,则lim n n S →∞= .9在等比数列{}n a 中,121lim()15n n a a a →∞++⋅⋅⋅+=,则1a 的取值范围是 . 10一个数列{}n a ,当n 为奇数时,51n a n =+;当n 为偶数时,22n n a =.则这个数列的前2m 项之和2m S = .11等差数列{}n a 中,n S 是它的前n 项和且67S S <,78S S >,则①此数列的公差0d <,②96S S <,③7a 是各项中最大的一项,④7S 一定是n S 中的最大项,其中正确的是 . 解答题12已知23123()n n f x a x a x a x a x =+++⋅⋅⋅+,且123,,n a a a a ⋅⋅⋅组成等差数列(n 为正偶数). 又2(1)f n =,(1)f n -=,(I)求数列的通项n a ;(II)试比较1()2f 与3的大小,并说明理由.13已知函数2()31f x x bx =++是偶函数,()5g x x c =+是奇函数,正数数列{}n a 满足11a =,211()()1n n n n n f a a g a a a +++-+=.(I)若{}n a 前n 项的和为n S ,求lim n n S →∞;(II)若12()()n n n b f a g a +=-,求n b 中的项的最大值和最小值.14. 已知等比数列{}n x 的各项不为1的正数,数列{}n y 满足log 2n n x y a ⋅=(0a >且1a ≠),设417y =,711y =.(I)求数列{}n y 的前多少项和最大,最大值是多少? (II)设2n yn b =,123n n S b b b b =+++⋅⋅⋅+,求25lim2nn S →∞的值.(III)试判断,是否存在自然数M,使当n M >时1n x >恒成立,若存在求出相应的M;若不存 在,请说明理由.15设函数()f x 的定义域为全体实数,对于任意不相等的实数1x ,2x ,都有12()()f x f x -12x x <-,且存在0x ,使得00()f x x =,数列{}n a 中,10a x <,1()2()n n n f a a a n N +=-∈,求证:对于任意的自然数n ,有: (I)0n a x <; (II)1n n a x +<.参考答案:问题1解:(I)212n n a a a n a ++⋅⋅⋅+=,得n S =2n n a当2n ≥时,1n n n a S S -=-=2n n a 21(1)n n a ---,有221(1)(1)n n n a n a --=-,即111n n a n a n --=+. 于是3241123112313451n n n a a a a a n a a a a a n --=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅+=2(1)n n +.又112a =,得n a =1(1)n n +. 由于1a 也适合该式,故n a =1(1)n n +.(II)1100nn a -=299n n -=2(49.5)2450.25n -- 所以当49n =或50时,1100nn a -有最小值2450-. (III)因()f n 是1100nn a -与n 的最大者,有(1100)()1100(100)nn n f n n n a ≤≤⎧⎪=⎨-<⎪⎩, 有min ()f n =(1)f =1.问题2(I)证明:由1210b a a =-≠,得2322121()()()0b a a f a f a k a a =-=-=-≠. 由数学归纳法可证10n n n b a a +=-≠(n N *∈). 而,当2n ≥时,1111111()()()n n n n n n n n n n n n n n b a a f a f a k a a k b a a a a a a +---------====--- 因此,数列{}n b 是一个公比为k 的等比数列. (II)解:由(I)知,11121()()n n n b kb k a a n N --*==-∈当1k ≠时,112211()(2)1n n k b b b a a n k--++⋅⋅⋅+=-≥- 当1k =时,12n b b b ++⋅⋅⋅+=21(1)()n a a --(2n ≥)而12213211()()()(2)n n n n b b b a a a a a a a a n -++⋅⋅⋅+=-+-+⋅⋅⋅+-=-≥,有当1k ≠时,1n a a -= 1211()(2)1n k a a n k---≥-;当1k =时,1n a a -=21(1)()n a a --(2)n ≥. 以上两式对1n =时也成立,于是当1k ≠时,11211()1n n k a a a a k --=+--= 11(())1n k a f a a k--=+--当1k =时,121(1)()n a a n a a =+--=(1)(())a n f a a +--.(III)解:当1k <时,11()lim lim[(())]11n n n n k f a aa a f a a a k k-→∞→∞--=+-=+--.问题3解:(I)设点P(,x y ),由M (1,0)-,N (1,0)得(1,)PM MP x y =-=---,(1,)PN NP x y =-=--,(2,0)MN NM =-=有2(1)MP MN x ⋅=+,221PM PN x y ⋅=+-,2(1)NM NP x ⋅=-. 于是MP MN ⋅,PM PN ⋅,NM NP ⋅成公差小于零的等差数列等价于2211[2(1)2(1)]22(1)2(1)0x y x x x x ⎧+-=++-⎪⎨⎪--+<⎩,即2230x y x ⎧+=⎨>⎩ 所以点P 的轨迹是以原点为圆心C. (II)设P(00,x y ),则由点P 在半圆C 上知,22001PM PN x y ⋅=+-又(1PM PN⋅=得cos 4PM PN PM PNθ⋅==⋅ 又001x <≤,12≤,有1cos 12θ<≤, 03πθ≤<,sin 1cos θ=-=,由此得0tan y θ==. 习题解答:1由1(21)0n n a a n k +-=++>,n N *∈恒成立,有30k +>,得3k >-,选D.21211212112112121(21)22(21)21223(21)131(21)2n n n n n n n n n n a a n a a a a Sn n b b b b b b T n n n ------+-+--======++-+--,选B. 3设三边长分别为2,,a aq aq ,且0,0a q >> ①当1q ≥时,由2a aq aq +>,得112q +≤<; ②当01q <<时,由2aq aq a +>,1q <<,q <<选D. 4由10191a a d =+>,且9181a a d =+≤,而21lim ()2n nn da S t n →∞+==, 又1125a =,于是737550t <≤,选D.5由椭圆第2定义得222132()()22()a a a AF CF x x BF x c c c+=+++==+,选A.6由条件得31444tan ,9tan 3A B =-+=,有tan 2A =,tan 3B =. 得tan tan[()]tan()1C A B A B π=-+=-+=,于是ABC ∆为锐角三角形,选B. 7由12345636a a a a a a +++++=,12345180n n n n n n a a a a a a -----+++++=有12165()()()216n n n a a a a a a --++++⋅⋅⋅++=,即16()n a a +=216,得1n a a +=36,又13242na a n +⨯=,解得18n =. 822111111()()333222n n n S =++⋅⋅⋅++++⋅⋅⋅+,得11332lim 1121132n n S →∞=+=--.9由条件知,公比q 满足01q <<,且11115a q =-,当01q <<时,11015a <<;当10q -<<时,1121515a <<.于是1a 的取值范围是112(0,)(,)151515. 10当n 为奇数时,相邻两项为n a 与2n a +,由51n a n =+得25(2)1(51)n n a a n n +-=++-+ =10,且16a =.所以{}n a 中的奇数项构成以16a =为首项,公差10d =的等差数列.当n 为偶数时,相邻两项为n a 与2n a +,由n a = 22n ,得2222222n n n na a ++==,且22a = 所以{}n a 中的偶数项构成以22a =为首项,公比2q =的等比数列. 由此得212(1)2(12)610522212m m mm m S m m m +--=+⨯+=++--.11由6778,S S S S <>,得780,0a a ><,有0d <;96S S <;7S 是n S 中的最大值,选①②④. 12解:(I)由12(1)n f a a a =++⋅⋅⋅+=2n ,再依题意有1a +n a =2n ,即12(1)2a n d n +-=① 又121(1)n n f a a a a n --=-+-⋅⋅⋅-+=,(n 为正偶数)得2d =,代入①有21n a n =-. (II)2311111()3()5()(21)()22222n f n =+++⋅⋅⋅+-,2341111111()()3()5()(21)()222222n f n +=+++⋅⋅⋅+- 得2311111111(1)()2()2()2()(21)()2222222n n f n +-=+++⋅⋅⋅+--于是2111()12()(21)3222n f n n-=+---⋅<. 13解: (I)可得2()31f x x =+,()5g x x =,由已知211()()1n n n n n f a a g a a a +++-+=,得11(32)()0n n n n a a a a ++-⋅+=,而10n n a a ++≠,有123n n a a +=,于是1lim 3213n n S →∞==-.(II)215832()()6()1854n n n n b f a g a a +=-=-+, 由12()3n n a -=知n b 的最大值为1143b =,最小值为4374243b =.14解: (I)22log log n n a n x y x a==,设11n n x x q -=有1122log 2log 2log log n n n a n a n a x y y x x q a++-==-=,又{}n y 成等差数列.742log 74a y y q d -==-,得2d =-,17(71)(2)23,y y =--⨯-=252n y n =-. 当0n y ≥时,即23(1)(2)0n +-⨯-≥,得252n ≤.于是前12项和最大,其最大值为144.(II)25222ny n n b -==,2312b =,得21124n n b b -+==,23112()4n n b -=232522lim 1314n n S →∞==-,于是251lim 23n n S →∞= (III)由(I)知当12n >时,0n y <恒成立,由2log n a n y x =,得2n y n x a =.(i)当01a <<且12n >时,有2n y n x a =01a >=,(ii)当1a >且12n >时,1n x <,故当01a <<时,在12M =使n M >时,1n x >恒成立;当1a >时不存在自然数M,使当n M >时1n x >.15证明:用数学归纳法 (I)当1n =时,10a a <命题成立.假设当n k =(k N *∈)时,0k a a <成立,那么当1n k =+时,由1212()()f x f x x x -<-, 得00()()k k f x f a x a -<-,又00()f x x =,有00()k k x f a x a -<-, 而0k a x <,得00()k k x f a x a -<-,于是000()k k k a x x f a x a -<-<-,即0()2()k k k k a f a x f a a +<⎧⎨>⎩,又1()2k k k f a a a +=-,有10(2)2k k k a a a x ++-<,即10k a x +<,于是当1n k =+时,命题也成立. 综上所述,对任意的k N *∈,0n a a <.(II)由1212()()f x f x x x -<-,得00()()n n f x f a x a -<-, 又00()f x x =,得00()n n x f a x a -<-,又0n a a <,得00()n n x f a x a -<-,即000()n n n a x x f a x a -<-<-, 有()n n f a a >,而1()2n n n f a a a +=-,得12n n n a a a +->, 故1n n a a +>.。
第四章 数列、极限、数学归纳法一、数列知识梳理:1、数列的概念: (1) 叫做数列, 叫做这个数列的项。
按一定次序排列的一列数 数列中的每一个数(2)数列的本质,数列可以看作 的函数f(n),当自变量n 一个定义在正整数N 或它的有限子集{}1,2,,n 上从1开始一次去正整数时所对应的一列函数值f(1),f(2),,f(n),通常用n a 代替f(n),于是数列的一般形式为12,,,,n a a a 简记{n a },其中n a 是数列{n a }的第n 项。
(3)数列的分类:①按项数是有限还是无限分 有穷数列、无穷数列。
②按项与项之间的大小分 , , , 。
递增数列、递减数列、摆动数列、常数数列。
2、数列的通项公式:(1) 叫做数列的通项。
数列的第n 项n a如果通项 这个公式叫做数列的 n a 与项数n 之间的对应关系可以用一个公式来表示 通项公式,不是所有的数列都有通项公式。
注意n a 与{n a }的区别。
(2)数列通项公式求法:① 观察归纳法:先观察哪些因素随项为n 的变化而变化,哪些因素不变;分析符号、数字、与项数n 在变化过程中的联系,初步归纳出公式,再取n 的特殊值进行检验是否正确。
② 公式法:利用等差等比的通项公式 ③ 逐差法; ④ 递推关系法;⑤ 利用n S 与n a 的关系:11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩⑥ 归纳猜想。
4、数列的递推公式:(1) 这种表示数列的式子叫数列的 给出数列第一项(或前几项)并给出每一项与它前一项(或前若干项)关系式 递推公式,由递推公式给出的数列叫递推数列。
(2)等差数列的递推公式 ; 1a a =,1n n a a d +=+ (n N ∈)等比数列的递推公式 ;1(0)a b b =≠,1n n a a q += (0,q n N ≠∈)(3)几类简单递推数列通项公式的求法:①1()n n a a f n +=+型,累加法; 1()n n a a g n +=⋅型,累乘法; ②1(0,1)n n a pa q p q p p +=+≠≠、为常数,且型,待定系数法;③21n n n a pa qa ++=+(p 、q 为常数,且p+q=1)以p=1-q 代入构造新数列11n n n b a a ++=-;④11n n n n a a ba a -+=+,倒数法; ⑤归纳法。
不等式的性质与证明方法总结在数学中,不等式是一种非常重要的数学工具,用于描述数值之间的大小关系。
不等式可以帮助我们解决各种实际问题,同时也是数学推理和证明的基础。
本文将总结一些常见的不等式性质和证明方法,帮助读者更好地理解和应用不等式。
一、基本不等式性质1. 传递性:如果a < b,b < c,则有a < c。
这个性质是不等式推理的基础,可以用于简化证明过程。
2. 加法性:如果a < b,则a + c < b + c。
这个性质表示在不等式两边同时加上一个相同的数,不等式的大小关系不变。
3. 乘法性:如果a < b,c > 0,则ac < bc;如果a < b,c < 0,则ac > bc。
这个性质表示在不等式两边同时乘以一个正数或负数,不等式的大小关系会发生改变。
4. 对称性:如果a < b,则-b < -a。
这个性质表示如果不等式两边同时取相反数,不等式的大小关系会发生改变。
二、常见不等式1. 平均不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1 * a2 * ... * an)^(1/n)平均不等式可以用于证明其他不等式,如均值不等式、柯西不等式等。
2. 均值不等式:对于任意非负实数a1, a2, ..., an,有以下不等式成立:(a1 + a2 + ... + an) / n >= (a1^p + a2^p + ... + an^p)^(1/p)其中p为大于0的实数。
均值不等式可以用于证明其他不等式,如柯西不等式、夹逼定理等。
3. 柯西不等式:对于任意实数a1, a2, ..., an和b1, b2, ..., bn,有以下不等式成立:(a1b1 + a2b2 + ... + anbn)^2 <= (a1^2 + a2^2 + ... + an^2)(b1^2 + b2^2 + ... +bn^2)柯西不等式可以用于证明向量内积的性质,以及其他不等式的推导。
数列、极限、数学归纳法·用数学归纳法证明不等式教学目标1.牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程.2.通过事例,学生掌握运用数学归纳法证明不等式的思想方法.3.培养学生的逻辑思维能力,运算能力,和分析问题、解决问题的能力.教学重点与难点重点:巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握利用数学归纳法证明不等式的基本思路.难点:应用数学归纳法证明的不同方法的选择及解题技巧.教学过程设计(一)复习回顾师:上次课我们已经学习了数学归纳法以及运用数学归纳法解题的步骤,请同学们联想“多米诺骨牌”游戏,说出数学归纳法的步骤?生:数学归纳法是用于证明某些与自然数有关的命题的一种方法.设要证命题为P(n).(1)证明当n取第一个值n0时,结论正确,即验证P(n0)正确;(2)假设n=k(k∈N且k≥n0)时结论正确,证明当n=k+1时,结论也正确,即由P(k)正确推出P(k+1)正确,根据(1),(2),就可以判定命题P(n)对于从n0开始的所有自然数n都正确.师:演示小黑板或运用投影仪讲评作业.(讲评作业的目的是从错误中进一步强调恰当地运用归纳假设是数学归纳法的关键)作业中用数学归纳法证明:2+4+6+8+…+2n=n(n+1).如采用下面的证法,对吗?证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即2+4+6+…+2k=k(k+1).当n=k+1时,2+4+6+…+2k+(k+1)所以n=k+1时,等式也成立.根据(1)(2)可知,对于任意自然数n,原等式都能成立.生甲:证明过程正确.生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设.师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)(二)讲授新课师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx.师:首先验证n=2时的情况.(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x ≠0获得,为下面证明做铺垫)(2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx.师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑.生:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当n=k+1时.应构造出归纳假设适应的条件.所以有:(1+x)k+1=(1+x)k (1+x),因为x>-1(已知),所以1+x>0于是(1+x)k(1+x)>(1+kx)(1+x).师:现将命题转化成如何证明不等式(1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x.提问:证明不等式的基本方法有哪些?生甲:证明不等式的基本方法有比较法、综合法、分析法.(提问的目的是使学生明确在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用)生乙:证明不等式(1+kx)(1+x)>1+(k+1)x,可采用作差比较法.(1+kx)(1+x)-[1+(k+1)x]=1+x+kx+kx2-1-kx-x=kx2>0(因x≠0,则x2>0).所以,(1+kx)(1+x)>1+(k+1)x.生丙:也可采用综合法的放缩技巧.(1+kx)(1+x)=1+kx+x+lx2=1+(k+1)x+kx2.因为kx2>0,所以1+(k+1)x+kx2>1+(k+1)x,即(1+kx)(1+x)>1+(1+k)x成立.生丁:……(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.(板书)将例1的格式完整规范.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+lx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k+1时也成立.根据(1)和(2),原不等式对任何不小于2的自然数n都成立.(通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)师:下面再举例子,来说明合理放缩的重要性.(板书)例2证明:2n+2>n2,n∈N+.师:(1)当 n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立.(2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2.现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立.生:利用归纳假设2k+1+2=2.2k+2=2(2k+2)-2>2·k2-2.师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立.生:因为k2-2k-3=(k-3)(k+1),而k∈N,故k+1>0,但k-3≥0成立的条件是k≥3,所以当k∈N时,k-3≥0未必成立.师:不成立的条件是什么?生:当k=1,2时,不等式k-3≥0不成立.师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证?生:n=3需要验证,这是因为数学归纳法中的第一步验证是第二步归纳假设的基础,而第二步中对于k是大于或等于3才成立,故在验证时,应验证n=3时,命题成立.师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书)(2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k+2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0)≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立.师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证n=1.扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,达到目标.(板书)例3求证:当n≥2时,(由学生自行完成第一步的验证;第二步中的假设,教师应重点讲解n=k到n=k+1命题的转化过程)师:当n=k+1时,不等式的左边表达式是怎样的?生:当n=k+1时,k项,应是第2k项,数列各项分母是连续的自然数,最后一项是以3k在3k后面还有3k+1、3k+2.最后才为3k+3即3(k+1),所以正确(在这里,学生极易出现错误,错误的思维定势认为从n=k到n=k+1时,只增加一项,求和式中最后一项即为第几项的通项,教师在这里要着重分析,化解难点.)运算,应针对问题的特点,巧妙合理地利用“放缩技巧”,使问题获得简捷的证明:(板书略)师:设S(n)表示原式左边,f(n)表示原式右边,则由上面的证法可知,从n=k到n=k+1命题的转化途径是:要注意:这里 S′(k)不一定是一项,应根据题目情况确定.(三)课堂小结1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.3.数学归纳法也不是万能的,也有不能解决的问题.错误解法:(2)假设n=k时,不等式成立,即当n=k+1时,则n=k+1时,不等式也成立.根据(1)(2),原不等式对n∈N+都成立.(四)课后作业1.课本P121:5,P122:6.2.证明不等式:(提示:(1)当n=1时,不等式成立.(2)假设n=k时,不等式成立,即那么,这就是说,n=k+1时,不等式也成立.根据(1)(2)可知不等式对n∈N+都成立.)3.对于任意大于1的自然数n,求证:(提示:(2)假设n=k时,不等式成立,即这就是说,n=k+1时,原不等式成立.根据(1),(2)可知,对任意大于1的自然数n,原不等式都成立.)用数学归纳法证明①式:(1)当n=3时,①式成立.(2)假设 n=k(k≥3,k∈N)时,①式成立,即2k>2k+1.那么2k+1=2k·2>2(2k+1)=2(k+1)+1+(2k-1)>2(k+1)+1(因k≥3,则2k-1≥5>0).这就是说,当n=k+1时,①式也成立.根据(1)(2)可知,对一切n∈N,n≥3①式都成立,即f课堂教学设计说明1.数归法是以皮亚诺的归纳公理作为依据,把归纳法与演绎法结合起来的一种完全归纳法.数学归纳法证明中的两个步骤体现了递推思想.在教学中应使学生明确这两个步骤的关系:第一步是递推的基础;第二步是递推的依据,缺一不可,否则就会导致错误.为了取得良好的教学效果,不妨利用“多米诺骨牌”游戏来加深这两步骤之间的关系的理解,在演示时,应分三种情况:(1)推倒第一张,接着依次倒下直至最后一张;(2)推倒第一张,中途某处停止,最后一张不倒;(3)第一张不倒,后面不管能否推倒,都不会全部倒下.通过具体生动的模型,帮助学生理解数学归纳法的实质.2.用数学归纳法证明不等式,宜先比较n=k与n=k+1这两个不等式间的差异,以决定n=k时不等式做何种变形,一般地只能变出n=k+1等式的一边,然后再利用比较、分析、综合、放缩及不等式的传递性来完成由n=k成立推出n=k+1不等式成立的证明.3.要注意:在证明的第二步中,必须利用“n=k时命题成立”这一归纳假设,并且由f(k)到 f(k+1),并不总是仅增加一项,如例2,4.要教会学生思维,离开研究解答问题的思维过程几乎是不可能的,因此在日常教学中,尤其是解题教学中,必须把教学集中在问题解答者解答问题的整个过程上,培养学生构作问题解答过程的框图,因为用文字、符号或图表简明地表达解答过程或结果的能力,叙述表达自己解题思路的能力,这也是问题解答所必需的.。
第二章 数列极限习题2.按N -ε定义证明:(1)11lim=+∞→n nn证明 因为 n n n n 11111<+=-+,所以0>∀ε,取ε1=N ,N n >∀,必有ε<<-+n n n 111. 故11lim =+∞→n n n(2)23123lim 22=-+∞→n n n n 证明 因为 n n n n n n n n n n n n n 32525)1(232)12(23223123222222<=<-++<-+=--+)1(>n ,于是0>∀ε,取}3,1max{ε=N ,N n >∀,有 ε<<--+n n n n 32312322. 所以23123lim 22=-+∞→n n n n(3)0!lim =∞→n n n n证明 因为n n n n n n n n n n n n n n nn 11211)1(!0!≤⋅⋅⋅-=⋅⋅⋅-==-ΛΛΛ,于是0>∀ε,取ε1=N ,N n >∀,必有ε<≤-n n n n10!. 所以0!lim =∞→n n n n(4)sinlim =∞→nn π证明 因为n nnπππ≤=-sin0sin,于是0>∀ε,取επ=N ,N n >∀,必有εππ<≤-nn0sin. 所以sinlim =∞→nn π(5))1(0lim>=∞→a a nnn证明 因为1>a ,设)0(1>+=h h a ,于是222)1(2)1(1)1(h n n h h n n nh h a n n n -≥++-++=+=Λ,从而22)1(22)1(0h n hn n n a n a n n n -=-≤=-,所以0>∀ε,取122+=h N ε,N n >∀,有ε<-≤-2)1(20h n a n n . 故0lim =∞→n n a n3.根据例2,例4和例5的结果求出下列极限,并指出哪些是无穷小数列:(1)n n 1lim∞→;(2)n n 3lim ∞→;(3)31limn n ∞→(4)n n 31lim ∞→;(5)n n 21lim ∞→;(6)n n 10lim ∞→;(7)n n 21lim ∞→ 解 (1)01lim 1lim 21==∞→∞→n nn n (用例2的结果,21=a ),无穷小数列.(2)13lim =∞→n n ,(用例5的结果,3=a )(3)01lim3=∞→n n ,(用例2的结果,3=a ),无穷小数列.(4)031lim 31lim =⎪⎭⎫ ⎝⎛=∞→∞→nn n n ,(用例4的结果,31=q ),无穷小数列.(5)021lim 21lim =⎪⎭⎫ ⎝⎛=∞→∞→nn n n ,(用例4的结果,21=q ),无穷小数列. (6)110lim =∞→n n ,(用例5的结果,10=a ).(7)121lim 21lim==∞→∞→nn nn ,(用例5的结果,21=a ). 4.证明:若a a n n =∞→lim ,则对任一正整数 k ,有a a k n k =+∞→lim证明 因为aa n n =∞→lim ,所以εε<->∀>∃>∀||,,0,0a a N n N n ,于是,当Nk >时,必有N k n >+,从而有ε<-+||a a k n ,因此a a k n k =+∞→lim .5.试用定义1证明:(1)数列⎭⎬⎫⎩⎨⎧n 1不以1为极限;(2)数列}{)1(n n -发散.证明(用定义1证明) 数列}{n a 不以 a 为极限(即a a n n ≠∞→lim )的定义是:00>∃ε,0>∀N ,N n >∃0,0||0ε≥-a a n(1)取210=ε,0>∀N ,取N N n >+=20,有0021)1(212112111ε==++≥++=-+=-N N N N N n ,故数列⎭⎬⎫⎩⎨⎧n 1不以1为极限.另证(用定义1’证明) 取210=ε,则数列⎭⎬⎫⎩⎨⎧n 1中满足2>n 的项(有无穷多个)显然都落在1的邻域)23,21();1(0=εU 之外,故数列⎭⎬⎫⎩⎨⎧n 1不以1为极限.(2)数列}{)1(nn-=},6,51,4,31,2,1{Λ,对任何R a ∈,取10=ε,则数列}{)1(n n -中所有满足“n 为偶数,且1+>a n ”的项(有无穷多个),都落在 a 的邻域)1,1();(0+-=a a a U ε之外,故数列}{)1(nn -不以任何数 a 为极限,即数列}{)1(nn -发散.6.证明定理,并应用它证明数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 定理 数列}{n a 收敛于 a 充要条件是:}{a a n -为无穷小数列. (即a a n n =∞→lim 的充要条件是0)(lim =-∞→a a n n )证明 (必要性)设aa n n =∞→lim ,由数列极限的定义,,0,0>∃>∀N εN n >∀,有ε<--=-|0)(|||a a a a n n ,所以 0)(lim =-∞→a a n n .(充分性)设0)(lim =-∞→a a n n ,由数列极限的定义,,0,0>∃>∀N εN n >∀,有ε<-=--|||0)(|a a a a n n ,所以a a n n =∞→lim .下面证明:数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 因为⎭⎬⎫⎩⎨⎧-=⎭⎬⎫⎩⎨⎧--+n n n n )1(1)1(1是无穷小数列,所以数列⎭⎬⎫⎩⎨⎧-+n n )1(1的极限是1. 7.证明:若a a n n =∞→lim ,则||||lim a a n n =∞→. 当且仅当 a 为何值时反之也成立?证明 设aa n n =∞→lim ,由数列极限的定义,,0,0>∃>∀N εN n >∀,ε<-≤-||||||a a a a n n ,所以也有||||lim a a n n =∞→. 但此结论反之不一定成立,例如数列})1{(n -.当且仅当 a = 0 时反之也成立. 设0||lim =∞→n n a ,于是,0,0>∃>∀N εN n >∀,ε<=||||n n a a ,所以aa n n =∞→lim .8.按N -ε定义证明:(1)0)1(lim =-+∞→n n n ; (2)0321lim3=++++∞→n nn Λ(3)1lim =∞→n n a ,其中⎪⎪⎩⎪⎪⎨⎧+-=为奇数为偶数n n n n n nn a n 2,1证明 (1)因为n nn n n 111|1|<++=-+. 于是0>∀ε,取21ε=N ,N n >∀,必有ε<<-+nn n 1|1|,从而0)1(lim =-+∞→n n n .(2)因为n n n n n n n n n n n 12212)1(3212233=+<+=+=++++Λ,于是0>∀ε,取ε1=N ,N n >∀,必有ε<<-++++n n n 103213Λ,所以0321lim 3=++++∞→n n n Λ(3)因为当 n 为偶数时,n n n a n 111|1|=--=-当 n 为奇数时,nnn n nnn n n nn a n 111|1|222<++=-+=-+=-,故不管n 为偶数还是奇数,都有n a n 1|1|<-. 于是0>∀ε,取ε1=N ,N n >∀,必有ε<<-n a n 1|1|,所以 1lim =∞→n n a .习题1.求下列极限:⑴ 根据例2 01lim=∞→an n ,0>a ,可得4131241131lim 32413lim 323323=++++=++++∞→∞→n n n n n n n n n n⑵ 0)21(lim 21lim 22=+=+∞→∞→n n n n n n⑶根据例4 0lim =∞→n n q ,1||<q ,可得313)32(31)32(lim 3)2(3)2(lim 111=+-⋅+-=+-+-+∞→++∞→n nn n n nnn⑷ 211111lim lim )(lim 22=++=++=-+∞→∞→∞→n n n n n n n n n n n这是因为由例1若aa n n =∞→lim ,则aa n n =∞→lim . 于是由1)11(lim =+∞→n n ,得1111lim ==+∞→n n .⑸ 10)1021(lim =+++∞→n n n n Λ,因为1lim =∞→n n a (0>a )⑹ 23113113121121121lim 313131212121lim 22=--⋅--⋅=++++++∞→∞→nn n n n n ΛΛ2.设a a n n =∞→lim ,b b n n =∞→lim ,且b a <. 证明:存在正数N ,使得当N n >时,有n n b a <.证明 由b a <,有b b a a <+<2. 因为2lim ba a a n n +<=∞→,由保号性定理,存在01>N ,使得当1N n >时有2b a a n +<. 又因为2lim b a b b n n +>=∞→,所以,又存在02>N ,使得当2N n >时有2b a b n +>. 于是取},m ax {21N N N =,当N n >时,有nn b b a a <+<2. 3.设}{n a 为无穷小数列,}{n b 为有界数列,证明:}{n n b a 为无穷小数列.证明 因为}{n b 为有界数列,所以存在0>M ,使得Λ,2,1,||=≤n M b n. 由}{n a 为无穷小数列,知,0,0>∃>∀N εN n >∀,M a n ε<||. 从而当N n >时,有εε=⋅<⋅=M Mb a b a n n n n ||||||,所以0lim =∞→n n n b a ,即}{n n b a 为无穷小数列.4.求下列极限(1)1111lim 11131212111lim )1(1321211lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-++-+-=⎪⎪⎭⎫ ⎝⎛+++⋅+⋅∞→∞→∞→n n n n n n n n ΛΛ(2)因为nnn n212112181412128422222222===-+++ΛΛ,而)(12221121∞→→=<<n nnn,于是12lim 21=∞→nn ,从而222lim2222lim 21284==∞→∞→nnn n Λ(3)32323lim 23221229272725253lim 2122321lim 13222=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+++-+-+-=⎪⎭⎫ ⎝⎛-+++∞→-∞→∞→n n n n n n n n n n n ΛΛ(4)当2>n 时,11121<-<n ,n n n n 11121<-<,而11lim 21lim ==∞→∞→n n n n ,所以111lim =-∞→n n n .(5)因为)(,0111)2(1)1(11022222∞→→+=+≤++++<n n n n n n n n Λ,所以 0)2(1)1(11lim 222=⎪⎪⎭⎫⎝⎛++++∞→n n n n Λ(6)因为1112111222222=≤+≤++++++≤+nn n n n n n n nn n Λ,且1111limlim2=+=+∞→∞→nnn n n n ,所以112111lim 222=⎪⎪⎭⎫ ⎝⎛++++++∞→n n n n n Λ 5.设}{n a 与}{n b 中一个是收敛数列,另一个是发散数列,证明}{n nb a ±是发散数列. 又问}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 是否必为发散数列.证明 (用反证法证明)不妨设}{n a 是收敛数列,}{n b 是发散数列. 假设数列}{n n b a +收敛,则n n n n a b a b -+=)(收敛,这与}{n b 是发散数列矛盾,所以,数列}{n n b a +发散.同理可得数列}{n n b a -发散.}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 不一定是发散数列. 例如,若}{n a 是无穷小数列,}{n b 是有界的发散数列. 则}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n b b a 是无穷小数列,当然收敛.但是,有下列结果:如果0lim ≠=∞→a a n n ,}{n b 是发散数列,则}{n n b a 和)0(≠⎭⎬⎫⎩⎨⎧n n n a a b 一定是发散数列.6.证明以下数列发散:(1)⎭⎬⎫⎩⎨⎧+-1)1(n n n证明 设1)1(+-=n n a nn ,则)(,11222∞→→+=n n n a n ,而121212-→--=-n n a n ,由,定理 知⎭⎬⎫⎩⎨⎧+-1)1(n n n发散. (2){}nn )1(-证明{}nn )1(- 的偶数项组成的数列n a n 22=,发散,所以{}nn)1(-发散.(3)⎭⎬⎫⎩⎨⎧4cos πn 证明 设4cosπn a n =,则子列 )(,118∞→→=n a n ,子列 )(,1148∞→-→-=+n a n ,故⎭⎬⎫⎩⎨⎧4cos πn 发散. 7.判断以下结论是否成立(若成立,说明理由;若不成立,举出反例): (1)若}{12-k a 和}{2k a 都收敛,则}{n a 收敛.解 结论不一定成立. 例如,设nn a )1(-=,则12=ka ,112-=-k a 都收敛,但n n a )1(-=发散.注 若}{12-k a 和}{2k a 都收敛,且极限相等(即kk k k a a 212lim lim ∞→-∞→=),则}{n a 收敛.(2)若}{23-k a ,}{13-k a 和}{3k a 都收敛,且有相同的极限,则}{n a 收敛.证明 设aa a a k k k k k k ===∞→-∞→-∞→31323lim lim lim ,则由数列极限的定义,知0>∀ε,01>∃K ,1K k >∀,ε<--||23a a k ;同样也有02>∃K ,2K k >∀,ε<--||13a a k ;03>∃K ,3K k >∀,ε<-||3a a k . 取}3,3,3m ax {321K K K N =,当N n >时,对任意的自然数 n ,若23-=k n ,则必有1K k >,从而ε<-||a a n;同样若13-=k n ,则必有2K k >,从而也有ε<-||a a n;若k n 3=,则必有3K k >,从而ε<-||a a n . 所以aa n k =∞→lim ,即}{n a 收敛.8.求下列极限:(1)n n k 2124321lim-∞→Λ解 因为n n 2126543210-<Λ121)12)(12(12)12)(32(32755533311+=+-----⋅⋅⋅<n n n n n n n Λ而0121lim =+∞→n k ,所以 02124321lim =-∞→n n k Λ 另解 因为12254322124321+<-n n n n ΛΛ,设n n S n 2124321-=Λ,1225432+=n n T n Λ,则n n T S <. 于是121+=⋅<n S T S S n n n n ,所以121+<n S n .(2) 答案见教材提示. (3)10],)1[(lim <<-+∞→αααn n k解 ]1)11[(]1)11[()1(0-+<-+=-+<n n n n n n ααααα)(,011∞→→==-n n n n αα所以,0])1[(lim =-+∞→ααn n k另解 因为01<-α,所以11)1(--<+ααn n ,于是11)1()1(--+=+<+ααααn n n n n ,从而)(,0)1(01∞→→<-+<-n n n n ααα.(4) 答案见教材提示. 9.设m a a a Λ,,21为 m 个正数,证明:},,max {lim 2121m n nn n n n a a a a a a ΛΛ=+++∞→证明 因为 },,max{},,max{212121m n n nn n n m a a a n a a a a a a ΛΛΛ≤+++≤而1lim =∞→n n n ,所以},,max {lim 2121m n nn n n n a a a a a a ΛΛ=+++∞→10.设aa n n =∞→lim ,证明:(1)a n na n n =∞→][lim; (2)若0,0>>n a a ,则1lim =∞→n n n a .证明 (1)因为1][][+<≤n n n na na na ,所以nn n a n na n na ≤<-][1. 由于a n a n na n n n n =⎪⎭⎫ ⎝⎛-=-∞→∞→1lim 1lim ,且a a n n =∞→lim ,从而a n na n n =∞→][lim .(2)因为 0lim >=∞→a a n n ,由 定理,存在0>N ,使得当N n >时,有a a a n232<<. 于是 n n n na a a 232<<,并且123lim 2lim ==∞→∞→n n n n a a ,所以1lim =∞→n n n a .习题1.利用e n nn =⎪⎭⎫⎝⎛+∞→11lim 求下列极限:(1)e n n n n n n n nn nn 11111111lim 1lim 11lim 1=⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--∞→∞→∞→(2)e n n n nn n n =⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛+∞→+∞→1111lim 11lim 1(3)e n n n n n nn =⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛+++∞→∞→111111lim 111lim 1(4)en n n nn n n nn =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+∞→⋅∞→∞→2212211lim 211lim 211lim注:此题的求解用到事实(例1):若aa n n =∞→lim ,且Λ,2,1,0=≥n a n ,则aa n n =∞→lim .(5)nn n ⎪⎭⎫ ⎝⎛+∞→211lim 解 因为数列⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11单调增加,且有上界 3,于是 )(,1311111222∞→→<⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+<n n n n n n n,所以111lim 2=⎪⎭⎫ ⎝⎛+∞→nn n2.试问下面的解题方法是否正确:求nn 2lim ∞→解 不正确. 因为极限nn 2lim ∞→是否存在还不知道(事实上极限nn 2lim ∞→不存在),所以设an n =∞→2lim 是错误的.3.证明下列数列极限存在并求其值: (1)设Λ,2,1,2,211===+n a a a n n证明 先证数列}{n a 的有界性,用数学归纳法证明:2是}{n a 的一个上界.221<=a ,假设2<n a ,则22221=⋅<=+n n a a ,所以}{n a 有上界2.其次证明}{n a 单调增加. 02)2(21>+-=-=-+n n n n n n n n a a a a a a a a ,所以n n a a >+1,即}{n a 单调增加. 从而}{n a 极限存在,设a a n n =∞→lim ,在n n a a 221=+的两端取极限,得a a 22=,解之得 a = 0 (舍去) 和 2,所以2lim =∞→n n a .注:}{n a 的单调增加也可以如下证明:122221=>==+n n n n n a a a a a ,所以n n a a >+1.还可以如下得到:121214121214121122++++++++=<=+n na a n n nΛΛ(2)设Λ,2,1,),0(11=+=>=+n a c a c c a n n证明 先证数列}{n a 的有界性,用数学归纳法证明:}{n a 的一个上界是 1 + c .c c a +<=11,假设c a n +<1,则c c c c a c a n n +=++<+<+=+1121221,所以}{n a 有上界1 + c .其次证明}{n a 单调增加(用数学归纳法证明). 21a c c c a =+<=,假设n n a a <-1,于是n n a c a c +<+-1,从而n n a c a c +<+-1,即1+<n n a a . 故}{n a 单调增加. 所以}{n a 极限存在,设a a n n =∞→lim ,在n n a c a +=+21的两端取极限,得a c a +=2,解之得 2411ca +±=. 由于a n > 0 ,所以 a > 0 . 故 2lim =∞→n n a . (3)Λ,2,1),0(!=>=n c n c a nn证明 先证}{n a 从某一项以后单调减少. 取自然数 N 使得 N > c ,于是当N n >时,nn n n n n a a N ca n c n c n c n c a <+<+=+=+=++11!1)!1(11,即从第N 项开始}{n a 单调减少.由于}{n a 的各项都大于零,所以}{n a 有下界0. 从而}{n a 极限存在. 设a a n n =∞→lim ,在n n a n c a 11+=+的两端取极限,得a a ⋅=0,故0=a ,即0lim =∞→n n a .4.利用⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+n n 11为递增数列的结论,证明⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++nn 111为递增数列. 证明 设nn n n n n a ⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛++=12111,要证:Λ,3,2,1=≤-n a a n n ,即 因为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为递增数列,所以有111111+⎪⎭⎫ ⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n , 即1121+⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+n n n n n n ,于是nnn n n n a n n n n n n n n n n n n n n a =⎪⎭⎫⎝⎛++<+⋅++⋅⎪⎭⎫ ⎝⎛++=+⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+=+--12112121121111.其中用到事实:1)1()2(1122≤++=+⋅++⋅n n n n n n n .5.应用柯西收敛准则,证明以下数列}{n a 收敛:(1)n n na 2sin 22sin 21sin 2+++=Λ 证明 不妨设m n >,则有n m m m n nm m a a 2sin 2)2sin(2)1sin(||21+++++=-++Λn m m n m m n m m 2121212sin 2)2sin(2)1sin(2121+++≤+++++≤++++ΛΛ ⎪⎭⎫ ⎝⎛+++++<⎪⎭⎫ ⎝⎛+++=---+--+ΛΛΛm n m n m m n m 21212112121211211111 m m m 1212211<=⋅=+ 所以,0>∀ε,取ε1=N ,N m n >∀,,有ε<-||m n a a ,由柯西收敛准则,}{n a 收敛. (2)222131211n a n ++++=Λ 证明 不妨设m n >,则有2221)2(1)1(1||n m m a a m n +++++=-Λ n n m m m m )1(1)2)(1(1)1(1-++++++≤Λ m n m n n m m m m 1111112111111<-=--+++-+++-=Λ所以,0>∀ε,取ε1=N ,N m n >∀,,有ε<-||m n a a ,由柯西收敛准则,}{n a 收敛.6.证明:若单调数列}{n a 含有一个收敛子列,则}{n a 收敛.证明 不妨设}{n a 是单调增加数列,}{k n a 是其收敛子列. 于是}{k n a 有界,即存在0>M ,使得Λ,2,1,=≤k M a kn . 对单调增加数列}{n a 中的任一项m a 必有M a a km m ≤≤,即}{n a 单调增加有上界,从而收敛.7.证明:若0>n a ,且1lim1>=+∞→l a a n nn ,则0lim =∞→n n a证明 因为1lim 1>=+∞→l a a n n n ,所以存在 r 使得1lim 1>>=+∞→r l a a n n n . 于是由数列极限的保号性定理(),存在0>N ,当N n >时,ra a n n>+1,1+>n nra a . 从而有n N n N N N a r a r ra a 13221--+++>>>>Λ, 因此,)(,0011∞→→<<--+n r a a N n N n , 故lim =∞→n n a .8.证明:若}{n a 为递增有界数列,则}sup{lim n n n a a =∞→;若}{n a 为递减有界数列,则}inf{lim n n n a a =∞→. 又问逆命题成立否?证明 证明过程参考教材,定理(单调有界定理).逆命题不一定成立. 例如数列⎪⎩⎪⎨⎧-=为偶数为奇数n n n a n 111,1}sup{lim ==∞→nn n a a ,但}{n a 不单调.9.利用不等式 0),()1(11>>-+>-++a b a b a n a bn n n ,证明:⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列,并由此推出⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为有界数列.证明 设111+⎪⎭⎫⎝⎛+=n n n a ,由不等式 )()1(11a b a n a b n n n -+>-++,有 1111++++-+->-n n n n n n a b a na b na a b ,于是b a na b na b n n n n +->++11, b na a na b n n n n 1+-+>.在上式中令1111,111-=-+=+=+=n n n b n n n a ,a b >,得 nn n n n n a ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-+=-11111nn nnn n n n n n n n n n n ⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+>11111nn n n a n n n n n n n =⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=+11111即n n a a >-1,故⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列.而4111111111=⎪⎭⎫ ⎝⎛+≤⎪⎭⎫⎝⎛+<⎪⎭⎫ ⎝⎛++n nn n ,所以⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛+nn 11为有界数列. 10.证明:n n e n 3)11(<+- 证 由上题知⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛++111n n 为递减数列,于是对任何n m >有, 111111++⎪⎭⎫ ⎝⎛+>⎪⎭⎫⎝⎛+m n n n ,令∞→m ,取极限得,en n >⎪⎭⎫ ⎝⎛++111 ①又因为nnnn n n n n n n ⎪⎭⎫⎝⎛++⋅<⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⋅=⎪⎭⎫ ⎝⎛++113111111111②由①、②得nn n n n e ⎪⎭⎫⎝⎛++<⎪⎭⎫ ⎝⎛+<+113111,从而 n n e n e n n 3)11()11(<+-=+-11.给定两正数 a 1 与 b 1 ( a 1 > b 1 ),作出其等差中项2112b a a +=与等比中项112b a b =,一般地令21nn n b a a +=+,Λ,2,1,1==+n b a b n n n证明:nn a ∞→lim 与nn b ∞→lim 皆存在且相等.证明 因为11b a >,所以有nnn n n n a a a b a a =+<+=+221,即}{n a 单调减少. 同样可得}{n b 单调增加. 于是有11112b b b a b a a a n n n n n n ≥=≥+=≥++,即}{n a 单调减少有下界,}{n b 单调增加有上界,故n n a ∞→lim 与nn b ∞→lim 皆存在.在n n n b a a +=+12的两端取极限,可得n n n n b a ∞→∞→=lim lim12.设}{n a 为有界数列,记},,sup{1Λ+=n n n a a a ,},,inf{1Λ+=n n n a a a证明:⑴ 对任何正整数n ,n na a ≥;⑵}{n a 为递减有界数列,}{n a 为递增有界数列,且对任何正整数n ,m 有m n a a ≥;⑶ 设a 和a 分别是}{n a 和}{n a 的极限,则a a ≥;⑷ }{n a 收敛的充要条件是a a =证 ⑴ 对任何正整数n ,n n n n n n n a a a a a a a =≥≥=++},,inf{},,sup{11ΛΛ⑵ 因为1211},,sup{},,sup{++++=≥=n n n n n na a a a a a ΛΛ,Λ,2,1=n ,所以}{na 为递减有界数列.由1211},,inf{},,inf{++++=≤=n n n n n n a a a a a a ΛΛ,知}{n a 为递增有界数列.对任何正整数n ,m ,因为}{n a 为递减有界数列,}{n a 为递增有界数列,所以有m m n m n n a a a a ≥≥≥++.⑶ 因为对任何正整数n ,m 有m n a a ≥,令∞→n 得,mn n a a a ≥=∞→lim ,即m a a ≥,令∞→m 得aa a m m =≥∞→lim ,故a a ≥.⑷ 设}{n a 收敛,a a n n =∞→lim . 则0>∀ε,0>∃N ,N n >∀,ε<-||a a n,εε+<<-a a a n . 于是有εε+≤<-a a a n ,从而a a a n n ==∞→lim . 同理可得a a a n n ==∞→lim ,所以aa =反之,设a a =. 由a a n n =∞→lim , a a a n n ==∞→lim ,得0>∀ε,0>∃N ,N n >∀, 有εε+<<-a a a n 及εε+<<-a a a n ,从而εε+<≤≤<-a a a a a n n n总练习题1.求下列数列的极限: (1)n nn n 3lim 3+∞→解 当3>n 时,有nn 33<,于是)(,323323333∞→→⋅=⋅<+<=n n n n n n n n n ,所以33lim 3=+∞→n n n n(2)nn e n 5lim∞→解 设h e +=1,则当6>n 时,62!6)5()1(!2)1(1)1(hn n n h h n n nh h e n n n --≥++-++=+=ΛΛ,于是)(,0)5)(4)(3)(2)(1(!60655∞→→-----⋅<<n h n n n n n n n e n n ,所以0lim 5=∞→n n e n解法2 用 习题7的结论. 设nn e n a 5=,1)1(lim lim 5151>=+=+∞→+∞→e n e e n a a n n n n n n ,从而0lim lim 5==∞→∞→n n n n a e n .解法3 用 习题2⑸的结果0))((lim lim 5515==∞→∞→n n n n e ne n解法4 用单调有界定理. 令nn e n a 5=,则51)11(1n e a a n n +=+. 因为e n n <=+∞→1)11(lim 5,所以存在0>N ,当N n >时,e n <+5)11(,从而当N n >时,1)11(151<+=+n e a a n n . 于是从N n >起数列}{n a 递减,且有下界0,因此}{n a 收敛. 设a a n n =∞→lim ,在等式nn a n e a ⋅+=+51)11(1的两端取极限,得a e a ⋅=1,所以0=a .(3))122(lim n n n n ++-+∞→解 )]1()12[(lim )122(lim +-++-+=++-+∞→∞→n n n n n n n n n011121lim =⎥⎦⎤⎢⎣⎡++-++++=∞→n n n n n2.证明: (1))1|(|0lim 2<=∞→q q n n n证明 当0=q 时,结论成立.当1||0<<q 时,有1||1>q ,令0,1||1>+=h h q ,于是有nn h q )1(1+=,而由牛顿二项式定理,当3>n 时有3!3)2)(1()1(hn n n h n --≥+,从而)(0!3)2)(1()1(03222∞→→--≤+=<n h n n n n h n q n nn,所以lim 2=∞→n n q n另解 用 习题2⑸的结果)(sgn ))||1((lim lim 22==∞→∞→n nn n n q q n q n(2))1(,0lg lim≥=∞→ααn nn证明 因为0,lg ><x x x ,于是)(,022lg 2lg 021∞→→=<=<-n n n n n n n n αααα,所以0lg lim =∞→αn n n .(3)0!1lim =∞→n n n 证明 先证明不等式:nn n ⎪⎭⎫⎝⎛>3!. 用数学归纳法证明,当1=n 时,显然不等式成立;假设nn n ⎪⎭⎫⎝⎛>3!成立,当 n + 1 时 nn n n n n n n n n n n ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⋅+=⎪⎭⎫ ⎝⎛⋅+>⋅+=+131)1(3)1(!)1()!1(113111331++⎪⎭⎫ ⎝⎛+>⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛+=n nn n n n故不等式nn n ⎪⎭⎫⎝⎛>3!成立. 由此可得)(,03!10∞→→<<n n n n ,所以0!1lim =∞→n n n另解 用数学归纳法证明不等式:n n n≥!3.设aa n n =∞→lim ,证明:(1)a n a a a nn =+++∞→Λ21lim(又问由此等式能否反过来推出a a n n =∞→lim )证明 因为aa n n =∞→lim ,于是有11,0,0N n N >∀>∃>∀ε,2||ε<-a a n . 从而当1N n >时,有n naa a a a n a a a n n -+++=-+++ΛΛ212122||||||||||||12121111εε+≤⋅-+≤-++-+-+-++-+-≤++n A n N n n A na a a a a a n a a a a a a n N N N ΛΛ其中||||||121a a a a a a A N -++-+-=Λ是一个定数. 再由0lim =∞→n A n ,知存在02>N ,使得当2N n >时,2ε<n A . 因此取},m ax {21N N N =,当N n >时,有εεεε=+<+≤-+++22221n A a n a a a n Λ.反过来不一定成立. 例如nn a )1(-=不收敛,但0lim21=+++∞→n a a a nn Λ.练习:设+∞=∞→n n a lim ,证明:+∞=+++∞→n a a a n n Λ21lim(2) 若),2,1(0Λ=>n a n ,则a a a a n n n =∞→Λ21lim证明 先证算术平均值—几何平均值—调和平均值不等式:na a a a a a a a a nnn n n+++≤≤+++ΛΛΛ212121111算术平均值—几何平均值不等式:n a a a a a a nnn +++≤ΛΛ2121对任何非负实数1a ,2a 有2)(212121a a a a +≤,其中等号当且仅当21a a =时成立. 由此推出,对4个非负实数1a ,2a ,3a ,4a 有2143212121432121414321)22(])()[()(a a a a a a a a a a a a +⋅+≤=422243214321a a a a a a a a +++=+++≤按此方法继续下去,可推出不等式n a a a a a a nn n +++≤ΛΛ2121对一切kn 2=(Λ,2,1,0=k )都成立,为证其对一切正整数n 都成立,下面采用所谓的反向归纳法,即证明:若不等式对某个)2(≥n 成立,则它对1-n 也成立.设非负实数121,,,-n a a a Λ,令)(11121-+++-=n n a a a n a Λ,则有)1(1)1()(12112111211121-+++++++≤-+++⋅----n a a a a a a n n a a a a a a n n n n nn ΛΛΛΛ整理后得)(11)(12111121---+++-≤n n n a a a n a a a ΛΛ,即不等式对1-n 成立,从而对一切正整数n 都成立.几何平均值—调和平均值不等式n nna a a a a a nΛΛ2121111≤+++的证明,可令i i x y 1=,再对i y (n i ,,2,1Λ=)应用平均值不等式.由),2,1(0Λ=>n a n ,知0lim ≥=∞→a a n n . 若0≠a ,则a a n n 11lim=∞→. 由上一小题的结论,有)(,111212121∞→→+++≤≤+++n a na a a a a a a a a nnn n nΛΛΛ而a an a a a a a a n n n n n ==+++=+++∞→∞→111111lim 111lim 2121ΛΛ,所以aa a a n n n =∞→Λ21lim .若0=a ,即0lim =∞→n n a ,则11,0,0N n N >∀>∃>∀ε,ε<na . 从而当1N n >时,有n N n n N n n N N nn a a a a a a a a a a a 11112112121-+⋅≤⋅=εΛΛΛΛεεεε⋅=⋅=⋅=--n n N N nN n n N A a a a a a a 11112121ΛΛ其中1121N N a a a A -=εΛ,是定数,故21lim <=∞→nn A ,于是存在02>N ,使得当2N n >时,2<n A . 因此取},m ax {21N N N =,当N n >时,有εε221<⋅≤n nn A a a a Λ,故0lim 21=∞→n n n a a a Λ4.应用上题的结论证明下列各题:(1)0131211lim=++++∞→n n n Λ证明 令n a n 1=,则01lim lim ==∞→∞→n a n n n ,所以0131211lim =++++∞→n n n Λ.(2))0(1lim >=∞→a a n n证明 令a a =1,Λ,3,2,1==n a n ,则1lim =∞→n n a ,从而1lim lim lim 21===∞→∞→∞→n n n n n n n a a a a a Λ(3)1lim =∞→n n n证明 令11=a ,Λ,3,2,1=-=n n na n ,则1lim =∞→n n a ,于是1lim lim 13423121lim lim 21===-⋅⋅⋅⋅⋅=∞→∞→∞→∞→n n n n n n n n n a a a a n nn ΛΛ.(4)!1lim=∞→nn n证明 令Λ,2,1,1==n n a n ,则0lim =∞→n n a ,所以1lim 1211lim 3211lim !1lim==⋅⋅⋅=⋅⋅⋅⋅=∞→∞→∞→∞→n n n n n n n n n n n ΛΛ(5)e n n n n =∞→!lim 证明 令Λ,3,2,111111=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-=--n n n n a n n n ,则ea n n =∞→lim ,所以en n n n n n n n n n n n n n nn n n =⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==-∞→-∞→∞→∞→114321lim 14534232lim !lim !lim另证 令Λ,2,1,!==n n n a nn ,则e n a a n n n n n =⎪⎭⎫ ⎝⎛-+=-∞→-∞→11111lim lim . 于是e a a a a a a a a a n nn n n n n n n n n n n n ==⋅⋅⋅==-∞→-∞→∞→∞→112312lim lim lim !lim Λ. (6)1321lim 3=++++∞→n nn n Λ证明 因为1lim =∞→n n n ,所以1lim 321lim 3==++++∞→∞→n n nn n n n Λ(7)若)0(lim 1>=+∞→n n n n b a b b,则a b n n n =∞→lim证明n n n n n n n nn n n n n n b b b b bb b b b b b b b b b 112312112312lim lim lim lim ∞→+∞→+∞→∞→⋅⋅⋅⋅=⋅⋅⋅⋅=ΛΛab b n n n =⋅=+∞→1lim1(8)若d a a n n n =--∞→)(lim 1,则d n a nn =∞→lim证明 设10=a⎥⎦⎤⎢⎣⎡-++-+-+=-∞→∞→n a a a a a a n an a n n n n n )()()(lim lim112010Λd a a n a a a a a a n a n n n n n n n =-+=-++-+-+=-∞→-∞→∞→)(lim 0)()()(lim lim1112010Λ5.证明:若}{n a 为递增数列,}{n b 为递减数列,且 0)(lim =-∞→n n n b a ,则n n a ∞→lim 与nn b ∞→lim 都存在且相等.证明 因为)(lim =-∞→n n n b a ,所以}{n n b a -有界,于是存在0>M ,使得M b a M n n ≤-≤-. 从而有1b M b M a n n +≤+≤, M a M a b n n -≥-≥1,因此}{n a 为递增有上界数列,}{n b 为递减有下界数列,故n n a ∞→lim 与nn b ∞→lim 都存在. 又因为0)(lim lim lim =-=-∞→∞→∞→n n n n n n n b a b a ,所以 nn n n b a ∞→∞→=lim lim .6.设数列}{n a 满足:存在正数M ,对一切 n 有M a a a a a a A n n n ≤-+-+-=-||||||12312证明:数列}{n a 与}{n A 都收敛.证明 数列}{n A 单调增加有界,故收敛. 由柯西收敛准则,0,0>∃>∀N ε,当N n m >>时,ε<-||n m A A . 于是ε<-=-++-+-≤-+---n m n n m m m m n m A A a a a a a a a a ||||||||1211Λ所以由柯西收敛准则,知数列}{n a 收敛.7.设⎪⎭⎫ ⎝⎛+=>>a a a a σσ21,0,01,⎪⎪⎭⎫ ⎝⎛+=+n n n a a a σ211, Λ,2,1=n , 证明:数列}{n a 收敛,且其极限为σ证明 因为σσσ=⋅≥⎪⎪⎭⎫ ⎝⎛+=+n n n n n a a a a a 211,故数列}{n a 有下界σ.112112121=⎪⎭⎫⎝⎛+≤⎪⎪⎭⎫ ⎝⎛+=+σσσn n n a a a ,于是n n a a ≤+1,即数列}{n a 单调减少,从而数列}{n a 收敛. 设A a n n =∞→lim ,由⎪⎪⎭⎫ ⎝⎛+=+n n n a a a σ211,得σ+=+212n n n a a a ,两端取极限得,σ+=222A A ,解得σ=A ,所以σ=∞→n n a lim .8.设011>>b a ,记211--+=n n n b a a ,11112----+⋅=n n n n n b a b a b ,Λ,3,2=n . 证明:数列}{n a 与}{n b 的极限都存在且等于11b a .证 因为 111121111212111112)(2--------------+⋅-+=++≤+⋅=n n n n n n n n n n n n n n n b a b a b a b a b a b a b a b n n n n n n n n n b b a b a b a b a -+=+⋅-+=--------111111112,所以nn n n a b a b =+≤--211,Λ,3,2=n数列}{n a 是递减的:n nn n n n a a a b a a =+≤+=+221,Λ,2,1=n数列}{n a 有下界:0211≥+=--n n n b a a ,Λ,2,1=n ,所以}{n a 收敛,设a a n n =∞→lim .数列}{n b 是递增的:11111111122---------=+⋅≥+⋅=n n n n n n n n n n b a a ba b a b a b ,Λ,3,2=n数列}{n b 有上界:1a a b n n ≤≤,Λ,2,1=n ,所以}{n b 收敛,设b b n n =∞→lim .令∞→n 在211--+=n n n b a a 的两端取极限,得b a =.211--+=n n n b a a 与11112----+⋅=n n n n n b a b a b 两端分别相乘,得11--=n n n n b a b a ,Λ,3,2=n 所以有11b a b a nn =,Λ,3,2=n ,令∞→n 取极限得11b a ab =,从而11b a a =。
数列极限的几种求解方法张宇(渤海大学数学系辽宁锦州121000 中国)摘要在髙等数学中极限是一个重要的基本概念。
高等数学中其他的一些重要概念,如微分、积分、级数等都是用极限来定义的。
本文主要研究了求极限问题的若干种方法。
在纷繁众多的求极限方法中,同学们往往在求解极限时不知如何下手。
文章内容包括对求解简单极限问题的各种常用方法的总结:利用迫敛性:利用单调有界定理;利用柯西准则证明数列极限:这些方法对解决一般数列极限问题都很适用。
还包括在此基础上探索出来的解决各种复杂极限问题的特姝方法,例如:利用数列的构造和性质求数列的极限:利用定积分定义求数列极限以及利用压缩映射原理等特殊方法求数列极限,这些特殊方法对解决复杂极限有很重要的意义,而且还比较方便。
在实际求解过程中,要灵活运用以上各种方法。
关键词:数列,极限,槪念,泄理。
Solution of the limitAbstract : In the higher mathematics limit is an important basic concepts・ In the higher mathematics, some important concepts of other, such as the differential and integration. series are used to define the limit. This paper mainly studies the problem of several limit .In the numerous and numerous limit method. students often in solving limit doesn't know how to start. Tlie contents include the limit for solving all kinds of simple method using the summary: popularizes forced convergence property. Monotone have defined Daniel, Using the proof of cauchy criterion sequence limit. These methods of solving problems are generally sequence limit. Also included on the basis of exploring the problem solving complex limit methods, such as special stnictures and properties of invariable; the sequence limit, Using the integral definition for sequence limit and use the banach cotraction principle as a special method. these special method sequence limit to solve complex limit is important, but also more convenient. In the actual solving process, using various above methods・Key words: Series, limit, the concept, the theorem.引言极限的概念与运算贯穿了高等数学的始终。
如何利用数学归纳法证明数列极限数学归纳法是一种常用的证明方法,特别适用于证明数列的极限。
通过归纳法可以逐步推理出数列中每一个项的性质,从而得到整个数列的性质。
本文将介绍如何利用数学归纳法来证明数列的极限。
首先,我们需要明确数列极限的定义。
对于一个数列 {an},如果存在一个数 L,使得当 n 足够大时,数列中的任意项与 L 的差的绝对值小于任意给定的正数ε,即 |an - L| < ε,那么我们称 L 是数列 {an} 的极限,记作 lim(an) = L。
这意味着当 n 足够大时,数列中的项将无限接近于 L。
利用数学归纳法证明数列的极限可以分为三个步骤:基础步骤、归纳假设和归纳推理。
第一步是基础步骤。
我们需要证明数列中的某个特定项满足极限的定义。
通常我们选择数列的第一个项作为基础步骤。
假设我们要证明lim(an) = L,那么我们需要证明当 n = 1 时,an 与 L 的差的绝对值小于任意给定的正数ε。
这通常可以通过直接计算或者代入数值来得到。
第二步是归纳假设。
我们假设当 n = k 时,数列中的第 k 项与 L 的差的绝对值小于任意给定的正数ε,即 |ak - L| < ε。
这个假设是我们证明剩下项与 L 的差的绝对值同样小的前提条件。
第三步是归纳推理。
我们需要证明当 n = k+1 时,数列中的第 k+1项与 L 的差的绝对值小于任意给定的正数ε。
根据归纳假设,我们知道|ak - L| < ε。
现在,我们需要利用这个已知条件来推导出 |ak+1 - L| < ε。
在归纳推理的过程中,我们可以利用数列的递推关系式,数学运算和极限的性质等来推导不等式。
具体的推导方法要根据数列的特点和题目给出的条件来确定。
综上所述,通过数学归纳法,我们可以逐步推理出数列中的每一个项与极限的关系,并最终证明数列的极限存在。
这种证明方法在数学的各个领域都有广泛应用,尤其是在数学分析和数学推理中。
求数列极限的一些典型方法在数学分析的学习过程中, 极限的思想和方法起着基础性的作用,极限的基本思想自始至终对解决分析学中面临的问题起关键作用,而数列极限又是极限的基础.涉及到数列极限的问题有很多,包括数列极限的求法、给定数列极限存在性的证明等.数列极限的证明和求解是较为常见的一种题型,数列极限反应的是数列变化的趋势,其证明和求解也是数学分析题中的重点,主要原因是其证法与求法没有固定的程序可循,方法多样,技巧性强,涉及知识面较广,因此在数学刊物上常可看到这类文章,但大多是对某一些或某一类数列极限的证明或求解,很少系统地探索数列极限证法和求法的基本技巧和方法.随着社会的快速发展及数学本身的发展,迫切地需要对这些方法进行归纳. 当前,有不少文献对数列极限求解方法做了一些探讨,如文献[1]-[10],但是方法的应用举例较少,不全面. 在高等数学竞赛及研究生入学考试中, 数列极限求解方法是经常出现的一种题型. 这些都说明: 数列极限求解方法是一个重要的研究课题. 本文作者将对有关数列极限求解的方法做比较全面系统的归纳,同时举例进行说明.本文归纳了17种方法.1.定义法N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a .记作:lim n n a a →∞=.否则称{}n a 为发散数列.例1.求证1lim 1,nn a →∞=其中0a >.证:当1a =时,结论显然成立.当1a >时,记11na α=-,则0α>,由()1111(1)nna n n ααα=+≥+=+-得111na a n --≤,任给0ε>,则当1a n N ε->=时,就有11n a ε-<,即11n a ε-<即1lim 1,nn a →∞=当1111101,1,lim 1,lim 1lim n n n n nn a b b b a ab→∞→∞→∞<<=>=∴==时,令则由上易知综上,1lim 1,nn a →∞=0a >例2.求7lim!nn n →∞解:77777777777771!1278917!6!n n n n n n=⋅⋅⋅⋅⋅⋅⋅⋅≤=-7777717177100,,0!6!6!!6!n n N n N n n n n εε⎡⎤∴-≤∴∀>∃=>-≤⎢⎥⎣⎦则当时,有<ε 7lim 0!nn n →∞∴= 用定义求数列极限有几种模式:(1)0>∀ε,作差a an-,解方程ε<-a a n ,解出()εf n >,则取()εf N =或() ,1+=εf N(2)将a an-适当放大,解出()εf n >;(3)作适当变形,找出所需N 的要求。
数列、极限、数学归纳法·用数学归纳法证明不等式教学目标1.牢固掌握数学归纳法的证明步骤,熟练表达数学归纳法证明的过程.2.通过事例,学生掌握运用数学归纳法证明不等式的思想方法.3.培养学生的逻辑思维能力,运算能力,和分析问题、解决问题的能力.教学重点与难点重点:巩固对数学归纳法意义和有效性的理解,并能正确表达解题过程,以及掌握利用数学归纳法证明不等式的基本思路.难点:应用数学归纳法证明的不同方法的选择及解题技巧.教学过程设计(一)复习回顾师:上次课我们已经学习了数学归纳法以及运用数学归纳法解题的步骤,请同学们联想“多米诺骨牌”游戏,说出数学归纳法的步骤?生:数学归纳法是用于证明某些与自然数有关的命题的一种方法.设要证命题为P(n).(1)证明当n取第一个值n0时,结论正确,即验证P(n0)正确;(2)假设n=k(k∈N且k≥n0)时结论正确,证明当n=k+1时,结论也正确,即由P(k)正确推出P(k+1)正确,根据(1),(2),就可以判定命题P(n)对于从n0开始的所有自然数n都正确.师:演示小黑板或运用投影仪讲评作业.(讲评作业的目的是从错误中进一步强调恰当地运用归纳假设是数学归纳法的关键)作业中用数学归纳法证明:2+4+6+8+…+2n=n(n+1).如采用下面的证法,对吗?证明:(1)当n=1时,左=2,右=2,则等式成立.(2)假设n=k时(k∈N,k≥1),等式成立,即2+4+6+…+2k=k(k+1).当n=k+1时,2+4+6+…+2k+(k+1)所以n=k+1时,等式也成立.根据(1)(2)可知,对于任意自然数n,原等式都能成立.生甲:证明过程正确.生乙:证明方法不是数学归纳法,因为第二步证明时,没有应用归纳假设.师:从形式上看此种证明方法是数学归纳法,但实质在要证明n=k+1正确时,未用到归纳假设,直接采用等差数列求和公式,违背了数学归纳法的本质特点递推性,所以不能称之为数学归纳法.因此告诫我们在运用数学归纳法证明时,不能机械套用两个步骤,在证明n=k+1命题成立时,一定要利用归纳假设.(课堂上讲评作业,指出学生作业中不妥之处,有利于巩固旧知识,为新知识的学习扫清障碍,使学生引以为戒,所谓温故而知新)(二)讲授新课师:在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.(板书)例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx.师:首先验证n=2时的情况.(板书)证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x ≠0获得,为下面证明做铺垫)(2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx.师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑.生:因为应用数学归纳法,在证明n=k+1命题成立时,一定要运用归纳假设,所以当n=k+1时.应构造出归纳假设适应的条件.所以有:(1+x)k+1=(1+x)k (1+x),因为x>-1(已知),所以1+x>0于是(1+x)k(1+x)>(1+kx)(1+x).师:现将命题转化成如何证明不等式(1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x.提问:证明不等式的基本方法有哪些?生甲:证明不等式的基本方法有比较法、综合法、分析法.(提问的目的是使学生明确在第二步证明中,合理运用归纳假设的同时,其本质是不等式证明,因此证明不等式的所有方法、技巧手段都适用)生乙:证明不等式(1+kx)(1+x)>1+(k+1)x,可采用作差比较法.(1+kx)(1+x)-[1+(k+1)x]=1+x+kx+kx2-1-kx-x=kx2>0(因x≠0,则x2>0).所以,(1+kx)(1+x)>1+(k+1)x.生丙:也可采用综合法的放缩技巧.(1+kx)(1+x)=1+kx+x+lx2=1+(k+1)x+kx2.因为kx2>0,所以1+(k+1)x+kx2>1+(k+1)x,即(1+kx)(1+x)>1+(1+k)x成立.生丁:……(学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结)师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.(板书)将例1的格式完整规范.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+lx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k+1时也成立.根据(1)和(2),原不等式对任何不小于2的自然数n都成立.(通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)师:下面再举例子,来说明合理放缩的重要性.(板书)例2证明:2n+2>n2,n∈N+.师:(1)当 n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立.(2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2.现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立.生:利用归纳假设2k+1+2=2.2k+2=2(2k+2)-2>2·k2-2.师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立.生:因为k2-2k-3=(k-3)(k+1),而k∈N,故k+1>0,但k-3≥0成立的条件是k≥3,所以当k∈N时,k-3≥0未必成立.师:不成立的条件是什么?生:当k=1,2时,不等式k-3≥0不成立.师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证?生:n=3需要验证,这是因为数学归纳法中的第一步验证是第二步归纳假设的基础,而第二步中对于k是大于或等于3才成立,故在验证时,应验证n=3时,命题成立.师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书)(2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k+2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0)≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立.师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证n=1.扩大到验证n=1,2,3)的方法,使假设中k的取值范围适当缩小到k≥3,促使放缩成功,达到目标.(板书)例3求证:当n≥2时,(由学生自行完成第一步的验证;第二步中的假设,教师应重点讲解n=k 到n=k+1命题的转化过程)师:当n=k+1时,不等式的左边表达式是怎样的?生:当n=k+1时,k项,应是第2k项,数列各项分母是连续的自然数,最后一项是以3k在3k后面还有3k+1、3k+2.最后才为3k+3即3(k+1),所以正确(在这里,学生极易出现错误,错误的思维定势认为从n=k到n=k+1时,只增加一项,求和式中最后一项即为第几项的通项,教师在这里要着重分析,化解难点.)运算,应针对问题的特点,巧妙合理地利用“放缩技巧”,使问题获得简捷的证明:(板书略)师:设S(n)表示原式左边,f(n)表示原式右边,则由上面的证法可知,从n=k到n=k+1命题的转化途径是:要注意:这里 S′(k)不一定是一项,应根据题目情况确定.(三)课堂小结1.用数学归纳法证明,要完成两个步骤,这两个步骤是缺一不可的.但从证题的难易来分析,证明第二步是难点和关键,要充分利用归纳假设,做好命题从n=k到n=k+1的转化,这个转化要求在变化过程中结构不变.2.用数学归纳法证明不等式是较困难的课题,除运用证明不等式的几种基本方法外,经常使用的方法就是放缩法,针对目标,合理放缩,从而达到目标.3.数学归纳法也不是万能的,也有不能解决的问题.错误解法:(2)假设n=k时,不等式成立,即当n=k+1时,则n=k+1时,不等式也成立.根据(1)(2),原不等式对n∈N+都成立.(四)课后作业1.课本P121:5,P122:6.2.证明不等式:(提示:(1)当n=1时,不等式成立.(2)假设n=k时,不等式成立,即那么,这就是说,n=k+1时,不等式也成立.根据(1)(2)可知不等式对n∈N+都成立.)3.对于任意大于1的自然数n,求证:(提示:(2)假设n=k时,不等式成立,即这就是说,n=k+1时,原不等式成立.根据(1),(2)可知,对任意大于1的自然数n,原不等式都成立.)用数学归纳法证明①式:(1)当n=3时,①式成立.(2)假设 n=k(k≥3,k∈N)时,①式成立,即2k>2k+1.那么2k+1=2k·2>2(2k+1)=2(k+1)+1+(2k-1)>2(k+1)+1(因k≥3,则2k-1≥5>0).这就是说,当n=k+1时,①式也成立.根据(1)(2)可知,对一切n∈N,n≥3①式都成立,即f课堂教学设计说明1.数归法是以皮亚诺的归纳公理作为依据,把归纳法与演绎法结合起来的一种完全归纳法.数学归纳法证明中的两个步骤体现了递推思想.在教学中应使学生明确这两个步骤的关系:第一步是递推的基础;第二步是递推的依据,缺一不可,否则就会导致错误.为了取得良好的教学效果,不妨利用“多米诺骨牌”游戏来加深这两步骤之间的关系的理解,在演示时,应分三种情况:(1)推倒第一张,接着依次倒下直至最后一张;(2)推倒第一张,中途某处停止,最后一张不倒;(3)第一张不倒,后面不管能否推倒,都不会全部倒下.通过具体生动的模型,帮助学生理解数学归纳法的实质.2.用数学归纳法证明不等式,宜先比较n=k与n=k+1这两个不等式间的差异,以决定n=k时不等式做何种变形,一般地只能变出n=k+1等式的一边,然后再利用比较、分析、综合、放缩及不等式的传递性来完成由n=k成立推出n=k+1不等式成立的证明.3.要注意:在证明的第二步中,必须利用“n=k时命题成立”这一归纳假设,并且由f(k)到 f(k+1),并不总是仅增加一项,如例2,4.要教会学生思维,离开研究解答问题的思维过程几乎是不可能的,因此在日常教学中,尤其是解题教学中,必须把教学集中在问题解答者解答问题的整个过程上,培养学生构作问题解答过程的框图,因为用文字、符号或图表简明地表达解答过程或结果的能力,叙述表达自己解题思路的能力,这也是问题解答所必需的.。