2.运筹学_整数规划案例
- 格式:ppt
- 大小:256.00 KB
- 文档页数:19
简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。
下面将介绍几个简单的运筹学实际应用案例。
1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。
公司希望通过优化生产线的调度,以达到最大的产出和利润。
运筹学可以通过数学模型和算法,对生产线进行优化调度。
例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。
2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。
运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。
例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。
3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。
运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。
例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。
4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。
运筹学可以通过数学模型和算法,帮助超市优化员工调度。
例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。
以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。
通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。
整数规划解法与实际案例分析整数规划是运筹学中的一个重要分支,它在实际问题中有着广泛的应用。
整数规划问题是指决策变量被限制为整数的线性规划问题,通常用于需要做出离散决策的情况。
在本文中,我们将介绍整数规划的基本概念和解法,并结合一个实际案例进行分析,以帮助读者更好地理解整数规划的应用。
### 整数规划的基本概念整数规划是一种特殊的线性规划问题,其决策变量被限制为整数。
一般来说,整数规划可以分为纯整数规划和混合整数规划两种情况。
纯整数规划要求所有的决策变量都是整数,而混合整数规划则允许部分决策变量为整数,部分为连续变量。
整数规划可以用数学模型来描述,通常形式如下:$$\begin{aligned}\text{Maximize} \quad & c^Tx \\\text{Subject to} \quad & Ax \leq b \\& x \in \mathbb{Z}^n\end{aligned}$$其中,$c$、$x$、$b$ 分别为目标函数系数向量、决策变量向量和约束条件右端常数向量,$A$ 为约束条件系数矩阵,$x \in\mathbb{Z}^n$ 表示 $x$ 是一个整数向量。
### 整数规划的解法整数规划问题的求解相对复杂,因为整数约束使得问题的解空间不再是连续的,而是离散的。
针对整数规划问题,通常有以下几种解法:1. **穷举法**:穷举法是最直接的方法,即枚举所有可能的整数解,然后逐一计算目标函数值,找出最优解。
然而,穷举法在问题规模较大时会变得非常低效。
2. **分支定界法**:分支定界法是一种常用的整数规划求解方法。
它通过不断将整数规划问题分解为子问题,并对子问题进行求解,直到找到最优解为止。
3. **割平面法**:割平面法是一种基于线性规划的整数规划求解方法。
它通过不断添加线性不等式约束(割平面)来逼近整数解,直到找到最优解为止。
4. **分支定价法**:分支定价法是一种高级的整数规划求解方法,通常用于解决混合整数规划问题。
运筹学中整数规划问题的近似算法运筹学是一门研究如何在有限资源下做最优决策的学科,其中整数规划是其中一种重要的决策方法。
整数规划问题是指在线性规划问题的基础上,对决策变量的取值加以限定,限定为整数值。
整数规划问题在实际应用中非常常见,例如优化生产计划、物流配送、资源分配等。
然而,整数规划问题的解空间通常是离散的,由于整数规划问题的NP难解性质,寻找准确解的效率很低,因此近似算法成为解决整数规划问题的重要手段。
一、近似算法的概念近似算法是指在可接受的误差范围内,通过有效的计算方法得到问题的近似最优解。
在整数规划问题中,近似算法主要通过松弛约束条件、局部搜索等方法寻找问题的近似解。
二、近似算法的分类近似算法可以根据问题的特性和解决方法的不同进行分类,下面介绍几种常见的近似算法。
1. 线性松弛算法(Linear Relaxation)线性松弛算法是整数规划问题中常用的近似算法之一。
该算法的基本思想是将整数规划问题的整数约束放宽为实数约束,得到一个线性规划问题。
然后通过求解线性规划问题的松弛解,并将松弛解的整数部分作为整数规划问题的一个近似解。
2. 近似局部搜索算法(Approximate Local Search)近似局部搜索算法通过在整数规划问题的解空间中进行局部搜索,通过一系列的改进和优化策略来逐步提高解的质量。
该算法在每一步都根据某种准则选择当前最优解,并通过局部搜索来寻找局部最优解。
然后,通过重复进行局部搜索和改进操作,逐渐向全局最优解靠近。
3. 启发式算法(Heuristic Algorithm)启发式算法是一种基于经验和直觉的算法,通过在可行解空间中搜索一组近似解,并根据某种评价准则选择最优解。
在解决整数规划问题时,启发式算法通过寻找有效的近似解,来替代寻找准确解,从而节省计算资源和时间。
三、近似算法的应用案例近似算法在实际问题中有广泛的应用,下面以物流配送问题为例,介绍近似算法的应用。
假设某物流公司需要将一批货物从仓库分配到多个客户,其中仓库和客户的位置已知,货物的需求和供应量也已知。
第六章整数规划6.1 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。
1、 max z=3x1+2x2S.T. 2x1+3x2≤122x1+x2≤9x1、x2≥0解:2、 min f=10x1+9x2S.T. 5x1+3x2≥45x1≥8x2≤10x1、x2≥06.2 求解下列整数规划问题1、 min f=4x1+3x2+2x3S.T. 2x1-5x2+3x3≤44x1+x2+3x3≥3x2+x3≥1x1、x2、x3=0或1解:最优解(0,0,1),最优值:22、 min f=2x1+5x2+3x3+4x3S.T. -4x1+x2+x3+x4≥2-2x1+4x2+2x2+4x2≥4x1+x2-x2+x2≥3x1、x2、x3、x3=0或1解:此模型没有可行解。
3、max Z=2x1+3x2+5x3+6x4S.T. 5x1+3x2+3x3+x4≤302x1+5x2-x2+3x2≤20-x1+3x2+5x2+3x2≤403x1-x2+3x2+5x2≤25x1、x2、x3、x3=正整数解:最优解(0,3,4,3),最优值:474、min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19约束条件x1 + x2+x3≤30x4+ x5+x6-10 x16≤0x7+ x8+x9-20 x17≤0x10+ x11+x12-30 x18≤0x13+ x14+x15-40 x19≤0x1 + x4+ x7+x10+ x13=30x2 + x5+ x8+x11+ x14=20x3 + x6+ x9+x12+ x15=20x i为非负数(i=1,2…..8)x i为非负整数(i=9,10…..15)x i为为0-1变量(i=16,17…..19)解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:8606.3 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:公司办公会决定选择原则如下:(1)B5、B3和B7只能选择一个。
实验六、用EXCEL 求解整数规划用单纯形法求解线性规划问题,最优解可能是整数,也可能不是整数,但在很多实际问题中,要求全部或部分变量的取值必须是整数,如所求的解是安排上班的人数,按某个方案裁剪钢材的根数,生产设备的台数等等。
对于整数解的线性规划问题,不是用四舍五入或去尾法对线性规划的非整数解加以处理都能解决的,而要用整数规划的方法加以解决,如分枝定界法和割平面算法。
这些算法比单纯形法更为复杂,因此,一般的学习者要想掌握整数规划的数学算法有一定的困难。
然而事实上,由于Excel 的[工具][规划求解]可以求解整数规划问题,所以,对于一个真正有志于运用运筹学方法解决生产经营中问题的管理者来说,算法将不是障碍因素。
一、实验目的1、 掌握如何建立整数线性规划模型,特别是0~1逻辑变量在模型中的应用。
2、 掌握用Excel 求解整数线性规划模型的方法。
3、 掌握如何借助于Excel 对整数线性规划模型进行灵敏度分析,以判断各种可能的变化对最优方案产生的影响。
4、 读懂Excel 求解整数线性规划问题输出的运算结果报告和敏感性报告。
二、 实验内容1、 整数规划问题模型该问题来自于《运筹学基础及应用》(第四版)胡运权主编P126习题4.13,题目如下: 需生产2000件某种产品,该种产品可利用A 、B 、C 、D 设备中的任意一种加工,已知每种设备的生产准备结束费用、生产该产品时的单件成本以及每种设备限定的最大加工数量(件)如表1所示,问企业应该如何安排设备生产该产品才能使得总的生产成本最少,试建立该问题的数学模型并求解。
该产品可以利用四种不同的设备加工,由于采用不同的设备加工需要支付不同的准备结束费用,而如果不采用某种设备加工,是不需要支付使用该设备的准备结束费用的,所以必须借助于逻辑变量来鉴定准备结束费用的支付。
再设,种设备加工的产品数量为利用第设;4,3,2,1=j j x j⎪⎩⎪⎨⎧=>=)种设备生产(即,若不使用第)种设备生产(即若使用第000,1j j i x j x j y 4,3,2,1=j则问题的整数规划模型为:43214321281624207008009801000min x x x x y y y y z +++++++=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥≤≤≤≤=+++4,3,2,110,01600120010009002000..443322114321j y x y x y x y x y x x x x x t s j j,或2、 [工具][规划求解]命令求解下面我们用Excel 中的[工具][规划求解]对该问题进行求解。
《运筹学》上机实验报告三(整数线性规划)实验名称:利用Gomory割平面法编程求解整数规划问题;利用分枝定界法编程求解整数规划问题实验目的:1. 学会软件lindo/lingo的安装及基本的操作;2. 对实际问题进行数学建模,并学会用数学软件Matlab或运筹软件Lindo/Lingo 对问题进行求解。
实验内容:1.用lindo/lingo 计算(学会输入、查看、运行、结果分析)max z = 20x1 + 10x25x1 + 4x2 ≤ 242x1 + 5x2 ≤ 13x1,x2 ≥ 0x1,x2取整数2.(指派问题)现在有A 、B、C、D、E五种任务,要交给甲、乙、丙、丁、戊去完成,每人完成一种任务,每个人完成每种任务所需要的时间如下表。
问应该如何安排个人完成哪项任务可使总的花费的时间最少?(建立数学模型,用数学软件求解该问题,写出结果并对运行结果加以说明)A B C D E任务人甲127979乙89666丙717121412丁15146610戊41071063.选址问题某跨国公司准备在某国建三个加工厂,现有8个城市供选择,每个城市需要的投资分别为1200万美元、1400万美元、800万美元、900万美元、1000万美元、1050万美元、950万美元、150万美元,但投资总额不能超过3400万美元,形成生产能力分别为100万台、120万台、80万台、85万台、95万台、100万台、90万台、130万台,由于需求的原因,要求:城市1和城市3最多选1个,城市3、城市4、城市5最多选两个,城市6和城市7最少选1个,问选择哪些城市建厂,才能使总的生产能力最大?(建立数学模型,用数学软件求解该问题,写出结果并对运行结果加以说明)整数变量定义LinDo一般整数变量:GIN <Variable>0-1整数变量: INT <Variable>LinGo一般整数变量: @GIN( variable_name);0-1整数变量:@BIN( variable_name);例如(1)Lindo运算程序max 3 x1+5 x2+4 x3subject to2 x1+3 x2<=15002 x2+4 x3<=8003 x1+2 x2 +5 x3<=2000endgin x1gin x3(2) max z = 3x1 - 2x2 + 5x3x1 + 2x2 - x3 ≤ 2x1 + 4x2 + x3 ≤ 4x1 + x2 ≤ 34x2 + x3 < 6x1,x2,x3 = 0或1lingo程序:max =3*x1 – 2*x2 + 5*x3;x1 + 2*x2 - x3 <= 2;x1 + 4*x2 + x3 <= 4;x1 + x2 <= 3 ; 4*x2 + x3< 6; @bin(x1);@bin(x2);@bin(x3);。
2018-2019学年第一学期《运筹学》实验报告(四)班级:交通运输171学号: 1000000000姓名: *****日期: 2018.11.22实验一:用Lingo 软件求解下列整数规划问题(要求附程序和结果)12121212max 25062210,1,2i z x x x x x x x x x i =++≤⎧⎪-+≤⎪⎨+≤⎪⎪≥=⎩且取整数12312323123123123max 232452244,,01z x x x x x x x x x x x x x x x x x =+-++≤⎧⎪+≤⎪⎪+-≤⎨⎪+-≤⎪=⎪⎩或解:例题(左)解题程序及运行结果如下:sets :bliang/1,2/:x,a; yshu/1,2,3/:b;xshu(yshu,bliang):c; endsets data : a=2,1; b=5,0,21; c=1,1 -1,1 6,2; enddatamax =@sum (bliang(i):a(i)*x(i));@for (yshu(j):@sum (bliang(i):x(i)*c(j,i))<=b(j)); @for(bliang(i):@gin(x(i)));Global optimal solution found.Objective value: 7.000000 Objective bound: 7.000000 Infeasibilities: 0.000000 Extended solver steps: 0 Total solver iterations: 0Variable Value Reduced CostX( 1) 3.000000 -2.000000X( 2) 1.000000 -1.000000A( 1) 2.000000 0.000000A( 2) 1.000000 0.000000B( 1) 5.000000 0.000000B( 2) 0.000000 0.000000B( 3) 21.00000 0.000000C( 1, 1) 1.000000 0.000000C( 1, 2) 1.000000 0.000000C( 2, 1) -1.000000 0.000000C( 2, 2) 1.000000 0.000000C( 3, 1) 6.000000 0.000000C( 3, 2) 2.000000 0.000000Row Slack or Surplus Dual Price1 7.0000001.0000002 1.000000 0.0000003 2.000000 0.0000004 1.000000 0.000000例题(右)解题程序及运行结果如下:sets:bliang/1,2,3/:x,a;yshu/1,2,3,4/:b;xshu(yshu,bliang):c;endsetsdata:a=2,1,-1;b=2,5,2,4;c=1,3,10,4,11,2,-11,4,-1;enddatamax=@sum(bliang(i):a(i)*x(i));@for(yshu(j):@sum(bliang(i):x(i)*c(j,i))<=b(j));@for(bliang(i):@bin(x(i)));Global optimal solution found.Objective value: 2.000000Objective bound: 2.000000Infeasibilities: 0.000000Extended solver steps: 0Total solver iterations: 0Variable Value ReducedCostX( 1) 1.000000 -2.000000X( 2) 0.000000 -1.000000X( 3) 0.000000 1.000000A( 1) 2.000000 0.000000A( 2) 1.000000 0.000000A( 3) -1.000000 0.000000B( 1) 2.000000 0.000000B( 2) 5.000000 0.000000B( 3) 2.0000000.000000B( 4) 4.000000 0.000000C( 1, 1) 1.000000 0.000000C( 1, 2) 3.000000 0.000000C( 1, 3) 1.000000 0.000000C( 2, 1) 0.000000 0.000000C( 2, 2) 4.000000 0.000000C( 2, 3) 1.000000 0.000000C( 3, 1) 1.000000 0.000000C( 3, 2) 2.000000 0.000000C( 3, 3) -1.000000 0.000000C( 4, 1) 1.000000 0.000000C( 4, 2) 4.000000 0.000000C( 4, 3) -1.000000 0.000000Row Slack or Surplus Dual Price1 2.0000001.0000002 1.000000 0.0000003 5.000000 0.0000004 1.000000 0.0000005 3.000000 0.000000实验二:一、问题重述某学校规定,运筹学专业的学生毕业时必须至少学习过两门数学课、三门运筹学课和两门计算机课。