高电压技术总结(2020年10月整理).pdf
- 格式:pdf
- 大小:366.16 KB
- 文档页数:30
高电压技术概念总结篇一:高电压技术重点知识整理1.电介质的极化:1.)电子位移极化电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.)离子位移极化有极微量的能量损耗3.)转向极化4.)空间电荷极化2.电介质的介电常数代表电介质极化程度(气体d=1水d=81蓖麻油d=4.2)3.电介质的电导与金属电导的区别:1.)形成电导电流的带电粒子不同(金属导体:自由电子,电介质:离子)2.)带电粒子数量上的区别4.影响液体介质电导的因素:温度,电场强度。
5.电介质中的能量损耗:P?pV?E2??tg?V?U2?ctg?6.tgδ:介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数7.四种形式电离的产生:撞击电离光电离热电离表面电离8.气体中带电质点的消失:1.)带电质点收电场力的作用流入电极并中和电量2.)带电质点的扩散3.)带电质点的复合9.自持放电:当场强超过临界场强Ecr值时,这种电子崩已可仅由电场的作用而自行维持和发展,不必再有赖于电离因素,这种性质的放电称为自持放电。
10.汤森德理论只是对较均匀电场和??S较小的情况下适用。
11.物理意义:一个电子从阴极到阳极途中因为电子崩(ɑ过程)而造成的正离子数为e这批正离子在阴极上造成的二次自由电子数(r过程)应为:r(e味着那个初始电子有了一个后继电子从而使放电得以自持。
12.帕邢定律:在均匀电场中,击穿电压Ub与气体相对密度?,极间距离S并不具有单独的函数关系,而是仅与他们的积有函数关系,只要??S的乘积不变,Ub 也就不变。
13.流柱放电流程:有效电子(经碰撞游离)——电子崩(畸变电场)——发射光子(在强电场作用下)——产生新的电子崩(二次崩)——形成混质通道(流柱)——由阳极向阴极(阳极流柱)或由阴极向阳极(阴极流柱)击穿14.电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电有本质的区别,电晕放电的电流强度并不取决于电源电路中的阻抗,而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。
高电压技术知识点总结(升级版)【补充】绪论《高电压技术》主要研究高电压(强电场)下的各种电器设备的物理问题。
高压(HV)High Voltage(10Kv、35kV、110kV、220kV)超高压(EHV)Extra high voltage(330kV、500kV、750kV)(直流超高压:±500kV)特高压(UHV)Ultra high voltage(1000kV及以上)(直流特高压:±800kV)高电压在其他领域中的应用举例:高压静电除尘、电火花加工、体外碎石技术、除菌及清鲜空气、污水处理、烟气处理、等离子体隐身、电磁炮和微波弹等。
一、名词解释1、极性效应:在不均匀电场中,气隙的击穿电压和气隙击穿的发展过程都随电压极性的不同而有所不同的现象。
2、耐雷水平:雷击线路时绝缘不发生闪络的最大雷电流的幅值,以kA为单位。
3.雷击跳闸率:每10km线路每年由雷击引起的跳闸次数称为“雷击跳闸率”,这是衡量线路防雷性能的综合指标。
4、爬电比距:外绝缘“相-地”之间的爬电距离(cm)与系统最高工作(线)电压(kV,有效值)之比5、等值盐密:表征绝缘子表面的污秽度,它指的是每平方匣米表面所沉积的等效NaCl毫克数。
6、直击雷过电压、感应雷过电压:输电线路上出现的大气过电压有两种:一种是雷直击于线路引起的,称为直击雷过电压:另一种是雷击线路附近地面,由于电磁感应引起的,称为感应雷过电压。
7、沿面放电:沿着气体与固体(或液体)介质的分界面上发展的放电现象。
8、闪络:沿面放电发展到贯穿两极,使整个气隙沿面击穿。
9、①自持放电: 当场强大于某一临界值时,电子崩可以仅由电场的作用而自行维持和发展不再依赖外界电离因素,这种放电称为自持放电②非自持放电:当场强小于某一临界值时,电子崩有赖于外界电离因素的原始电离才能持续和发展,如果外界电离因素消失,则这种电子崩也随之逐渐衰减以至消失,这种放电为非自持放电10、平均自由行程:单位行程中的碰撞次数Z的倒数λ.【补充】平均自由行程正比于温度,反比于气压。
高电压技术概念总结篇一:高电压技术重点知识整理1.电介质的极化:1.)电子位移极化电介质中的带点质点在电场作用下沿电场方向做有限位移,无能量损耗2.)离子位移极化有极微量的能量损耗3.)转向极化4.)空间电荷极化2.电介质的介电常数代表电介质极化程度(气体d=1水d=81蓖麻油d=4.2)3.电介质的电导与金属电导的区别:1.)形成电导电流的带电粒子不同(金属导体:自由电子,电介质:离子)2.)带电粒子数量上的区别4.影响液体介质电导的因素:温度,电场强度。
5.电介质中的能量损耗:P?pV?E2??tg?V?U2?ctg?6.tgδ:介质损耗角,绝缘在交变电压作用下比损耗大小的特征参数7.四种形式电离的产生:撞击电离光电离热电离表面电离8.气体中带电质点的消失:1.)带电质点收电场力的作用流入电极并中和电量2.)带电质点的扩散3.)带电质点的复合9.自持放电:当场强超过临界场强Ecr值时,这种电子崩已可仅由电场的作用而自行维持和发展,不必再有赖于电离因素,这种性质的放电称为自持放电。
10.汤森德理论只是对较均匀电场和??S较小的情况下适用。
11.物理意义:一个电子从阴极到阳极途中因为电子崩(ɑ过程)而造成的正离子数为e这批正离子在阴极上造成的二次自由电子数(r过程)应为:r(e味着那个初始电子有了一个后继电子从而使放电得以自持。
12.帕邢定律:在均匀电场中,击穿电压Ub与气体相对密度?,极间距离S并不具有单独的函数关系,而是仅与他们的积有函数关系,只要??S的乘积不变,Ub 也就不变。
13.流柱放电流程:有效电子(经碰撞游离)——电子崩(畸变电场)——发射光子(在强电场作用下)——产生新的电子崩(二次崩)——形成混质通道(流柱)——由阳极向阴极(阳极流柱)或由阴极向阳极(阴极流柱)击穿14.电晕放电:电晕放电是极不均匀电场所特有的一种自持放电形式,他与其他形式的放电有本质的区别,电晕放电的电流强度并不取决于电源电路中的阻抗,而取决于电极外气体空间的电导,即取决于外施电压的大小,电极形状,极间距离,气体的性质和密度等。
高电压技术知识点总结高电压技术知识点总结为什么要有高电压:提高输送容量,降低线路损耗,减少工程投资,提高单位走廊输电能力,节省走廊面积,改善电网结构,降低短路电流,加强联网能力。
电介质:在其中可建立稳定电场而几乎没有电流通过的物质。
极化:在外电场作用下,电介质内部产生宏观不为零的电偶极矩。
电介质极化的四种基本类型:电子位移极化,离子位移极化,转向极化,空间电荷极化。
介电常数:用来衡量绝缘体储存电能的能力,代表电介质的极化程度(对电荷的束缚能力)液体电介质的相对介电常数影响因素(频率):频率较低时,偶极分子来得及跟随电场交变转向,介电常数较大,接近直流情况下的εd;频率超过临界值,偶极分子转向跟不上电场的变化,介电常数开始减小,介电常数最终接近于仅由电子位移极化引起的介电常数εz。
电介质的电导与金属的电导有本质上的区别:金属电导是由金属中固有存在的自由电子造成的。
电介质的电导是带电质点在电场作用下移动造成的。
气体:由电离出来的自由电子、正离子和负离子在电场作用下移动而造成的。
液体:分子发生化学分解形成的带点质点沿电场方向移动而造成的。
固体:分子发生热离解形成的带电质点沿电场方向移动而造成的。
介质损耗:在电场作用下,电介质由于电导引起的损耗和有损极化损耗,总称为介质损耗。
电介质的等效电路:电容支路:由真空和无损极化所引起的电流为纯容性。
阻容支路:由有损极化所引起的电流分为有功和容性无功两部分。
/纯阻支路:由漏导引起的电流,为纯阻性的。
介质损耗因数tgδ的意义:若tgδ过大会引起严重发热,使材料劣化,甚至可能导致热击穿。
/用于冲击测量的连接电缆,要求tgδ必须小,否则会影响到测量精度/用做绝缘材料的介质,希望tgδ。
在其他场合,可利用tgδ引起的介质发热,如电瓷泥胚的阴干/在绝缘试验中,tgδ的测量是一项基本测量项目激励:电子从近轨道向远轨道跃迁时,需要一定能量,这个过程叫激励。
电离:当外界给予的能量很大时,电子可以跳出原子轨道成为自由电子。
高电压技术知识点总结高电压技术,那可真是个超级有趣又超级重要的领域啊!高电压是什么?就好比是电力世界里的大力士,拥有超强的能量和威力!先来说说绝缘吧。
这就像是给电力系统穿上一层坚固的铠甲,保护它不受外界的干扰和破坏。
没有良好的绝缘,那可不得了,就像没有城墙的城堡,随时可能被敌人攻破。
你想想看,要是电线没有好的绝缘,那岂不是到处漏电,多危险啊!然后就是高电压的产生。
就好像是一场神奇的魔术,通过各种设备和技术,把普通的电压变得超级强大。
这可不是随便就能做到的,需要精湛的技术和严谨的操作。
就像一个优秀的魔术师,每一个动作都要恰到好处。
还有高电压的测量。
这可真是个精细活,要像侦探一样,准确地捕捉到每一个细微的信号。
测量工具就像是侦探的放大镜,帮助我们看清高电压的真面目。
要是测量不准确,那后果可不堪设想,就像侦探抓错了犯人一样。
高电压的应用那可真是广泛得让人惊叹!在电力输送中,它就像一列高速列车,把电能快速、高效地送到远方。
在工业生产中,它能驱动各种大型设备,就像大力士推动巨石一样轻松。
在科研领域,高电压更是发挥着重要的作用,帮助科学家们探索未知的世界。
高电压技术的发展也是日新月异啊!新的材料、新的设备不断涌现,就像雨后春笋一样。
这让高电压技术变得越来越强大,越来越先进。
难道我们不应该为人类的智慧感到骄傲吗?高电压技术就像是一把双刃剑,用好了能造福人类,用不好可就会带来灾难。
所以我们要不断学习,不断进步,让高电压技术更好地为我们服务。
我们要像驾驭烈马一样,牢牢地掌握住它,让它带着我们奔向美好的未来。
总之,高电压技术是一个充满挑战和机遇的领域,它值得我们去深入研究和探索。
让我们一起加油,为高电压技术的发展贡献自己的力量吧!。
高电压技术总结专题一:高电压下气体、液体、固体放电原理1、绝缘的概念:将不同电位的导体分开,使之在电气上不相连接。
具有绝缘作用的材料称为电介质或绝缘材料。
2、电介质的分类:按状态分为气体、液体和固体三类。
3、极化的概念:在外电场作用下,电介质的表面出现束缚电荷的现象叫做电介质极化。
4、极化的形式:电子式极化、离子式极化、偶极子式极化;夹层式极化。
(前三种极化均是在单一电介质中发生的。
但在高压设备中,常应用多种介质绝缘,如电缆、变压器、电机等)5、电子式极化:由于电子发生相对位移而发生的极化。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于一切材料中。
6、离子式极化:离子式极化发生于离子结构的电介质中。
固体无机化合物(如云母、陶瓷、玻璃等)多属于离子结构。
特点:时间短,弹性极化,无能量损耗。
[注]:存在于离子结构物质中。
7、偶极子极化:有些电介质具有固有的电矩,这种分子称为极性分子,这种电介质称为极性电介质(如胶木、橡胶、纤维素、蓖麻油、氯化联苯等)。
特点:时间较长,非弹性极化,有能量损耗。
[注]:存在于极性材料中。
8、夹层式极化特点:时间很长,非弹性极化,有能量损耗。
[注]:存在于多种材料的交界面;当绝缘受潮时,由于电导增大,极化完成时间将大大下降;对使用过的大电容设备,应将两电极短接并彻底放电,以免有吸收电荷释放出来危及人身安全。
9、为便于比较,将上述各种极化列为下表:10、介电常数:[注]:用作电容器的绝缘介质时,希望大些好。
用作其它设备的绝缘介质时,希望小些好。
11、电介质电导:电介质内部带点质点在电场作用下形成电流。
金属导体:温度升高,电阻增大,电导减小。
绝缘介质:温度升高,电阻减小,电导增大。
12、绝缘电阻:在直流电压作用下,经过一定时间,当极化过程结束后,流过介质的电流为稳定电流称为泄漏电流,与其对应的电阻称为绝缘电阻。
(1)介质绝缘电阻的大小决定了介质中泄漏电流的大小。
(2)泄漏电流大,将引起介质发热,加快介质的老化。
电离种类:A:碰撞电离B:光电离C:热电离D:表面电离⑵带电离子的消失A:扩散,会引起浓度差。
B:复和(中和)正负电荷相遇中和,释放能量。
C:附着效应,部分电负性气体分子对负电荷有较强吸附能力,使之变为负离子。
⑶汤逊理论的使用条件和自持放电条件使用条件:均匀电子,低电压自持放电条件:(1)1seαγ-≥⑷巴申定律的物理意义及应用A:巴申定律的物理意义①p s(s一定)p增大,U f增大。
①p s(s一定)p减小,U f减小。
①p s不变:p增大,密度增大,无效碰撞增加,提高了电量的强度,U f增大。
P减小,密度减小,能碰撞的数量减小,能量提高,U f增大。
P s不变,U f不变。
B:巴申定律的应用通过增加或者减少气体的压力来提高气体的绝缘强度。
如:高压直流二极管(增加气体的压力)减小气体的压力用真空断路器。
⑸流柱理论的使用范围及与汤逊理论的关系流柱理论的使用范围:a①放电时间极短b①放电的细分数通道c①与阴极的材料无关d①当ps增大的时候,U f值与实测值差别大。
流柱理论与汤逊理论的关系:a①流柱理论是对汤逊理论的一个补充b①发生碰撞电离c①有光电离,电场⑹极不均匀电场的2个放电特点(电晕放电,极性效应)电晕放电的特点:a①电晕放电是极不均匀电场所持有的一种自持放电形式,是极不均匀电场的特征之一。
b①电晕放电会引起能量消耗。
c①电晕放电的脉冲现象会产生高频电磁波,对无线电通讯造成干扰。
d①电晕放电还使空气发生化学反应,生成臭氧、氮氧化物是强氧化剂和腐蚀剂,会对气体中的固体介质及金属电极造成损伤或腐蚀。
极性效应的特点:a①棒为正,极为负特点:电晕放电起始电压高。
间隙击穿电压低。
b①棒为负,极为正特点:电晕放电起始电压低,间隙击穿电压高。
⑺冲击电压、伏秒特性、U50%的概念及应用冲击电压:持续时间极短,非周期性,幅值极高的电压。
冲击击穿电压气隙击穿的冲要条件:a①必须具有足够高的电压幅值b①必须有有效电子存在c①必须有电子放电通道的时间伏秒特性:对于同一间隙,多次施加同一形状但幅值不同的冲击电压作用,其击穿电压幅值与击穿时间关系(曲线)称为伏秒特性。
高电压技术是指在电力系统中使用的高电压设备和技术,它可以帮助我们实现电能的长距离传输,同时也有助于实现电力系统的安全可靠运行。
在电力系统中,高电压技术被广泛地应用于变电站、输电线路和生产工厂等领域。
在本文中,我们将对高电压技术的工作原理和应用范围进行总结,以便更好地了解这一技术的重要性和实用性。
1.高电压技术的工作原理高电压技术的核心是电场和电力。
在高压电极之间,存在一个电场,该电场会引起电势差。
如果高压电极之间的电势差足够大,那么电流就会流过空气,从而形成电火花。
因此,高电压技术可以通过利用电场和电势差来产生电击、放电和其他电流现象。
高电压技术还利用了强电场的基本原理,这种电场可以产生大量的电荷,从而在电力设备的电极之间产生相互作用。
在高电压设备中,通常使用走线、绝缘材料和电极来控制电场和电力的传播。
这些设备通常需要高质量的绝缘材料,以确保设备的安全运行和长寿命。
2.高电压技术的应用范围高电压技术是电力系统中最重要的技术之一,其应用范围非常广泛。
以下是高电压技术的主要应用领域:(1) 变电站变电站是电力系统中的核心部件,它负责转换电力,并将其转换为适用于不同用途的电压。
在变电站中,高电压设备可以实现电压转换、电流测量和保护等功能,并确保电力系统的正常运行。
(2) 输电线路输电线路将电力从发电站传输到消费者,因此电力传输中遇到的电影现象问题尤为重要。
高电压设备可通过其强大的电压受力能力来确保输电线路的安全运行,其中包括避雷器、电缆和变压器。
(3) 高压实验高电压技术在科学研究和教育中也有着非常广泛的应用。
高电压实验室通常使用高电压发生器和机电设备等高电压技术来产生高电压,在科学研究和教育中发挥重要作用。
3.总结高电压技术在电力系统中发挥着重要的作用。
通过电场和电力的力量,高电压技术可以实现电power 的传输和转换,从而保证电力系统的正常运行。
高电压技术的应用范围非常广泛,包括变电站、输电线路、高压实验室等领域,为人们的日常生活提供了非常重要的支撑。
高电压技术知识点总结升级版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高电压技术知识点总结(升级版)【补充】绪论《高电压技术》主要研究高电压(强电场)下的各种电器设备的物理问题。
高压(HV)High Voltage(10Kv、35kV、110kV、220kV)超高压(EHV)Extra high voltage(330kV、500kV、750kV)(直流超高压:±500kV)特高压(UHV)Ultra high voltage(1000kV及以上)(直流特高压:±800kV)高电压在其他领域中的应用举例:高压静电除尘、电火花加工、体外碎石技术、除菌及清鲜空气、污水处理、烟气处理、等离子体隐身、电磁炮和微波弹等。
一、名词解释1、极性效应:在不均匀电场中,气隙的击穿电压和气隙击穿的发展过程都随电压极性的不同而有所不同的现象。
2、耐雷水平:雷击线路时绝缘不发生闪络的最大雷电流的幅值,以kA为单位。
3.雷击跳闸率:每10km线路每年由雷击引起的跳闸次数称为“雷击跳闸率”,这是衡量线路防雷性能的综合指标。
4、爬电比距:外绝缘“相-地”之间的爬电距离(cm)与系统最高工作(线)电压(kV,有效值)之比5、等值盐密:表征绝缘子表面的污秽度,它指的是每平方匣米表面所沉积的等效NaCl毫克数。
6、直击雷过电压、感应雷过电压:输电线路上出现的大气过电压有两种:一种是雷直击于线路引起的,称为直击雷过电压:另一种是雷击线路附近地面,由于电磁感应引起的,称为感应雷过电压。
7、沿面放电:沿着气体与固体(或液体)介质的分界面上发展的放电现象。
8、闪络:沿面放电发展到贯穿两极,使整个气隙沿面击穿。
9、①自持放电: 当场强大于某一临界值时,电子崩可以仅由电场的作用而自行维持和发展不再依赖外界电离因素,这种放电称为自持放电②非自持放电:当场强小于某一临界值时,电子崩有赖于外界电离因素的原始电离才能持续和发展,如果外界电离因素消失,则这种电子崩也随之逐渐衰减以至消失,这种放电为非自持放电10、平均自由行程:单位行程中的碰撞次数Z的倒数λ.【补充】平均自由行程正比于温度,反比于气压。
第一章一带电质点的产生1质点的来源有两个:一是气体质点本身发生游离;二是位于气体中的金属发生表面游离。
2气体质点游离所需的能量成为游离能。
3金属表面游离所需的能量成为逸出功。
4游离有四种方式,①碰撞游离②光游离③热游离④表面游离二带电质点的消失(形式)1带电质点的扩散2带点质点的复合(3带点粒子在电场的驱动卞作定向运动,在到达电极时,消失于电极上而形成外电路的电流。
)三自持放电:均匀电场小气隙的放电,在电压较高时,即使取消了外界射线的作用,也能使放电靠外施电压自行维持下去,成为自持放电。
四汤申镀理论结论;①气隙的击穿电压与阴极材料和气体性质有关。
②均匀电场气隙的击穿电压不仅与气隙S有关,还和气体分子相对密度6有关,是6与S 乘积的函数。
五汤申德理论在长气隙放电中不适合原因1电离出的空间电荷对气隙电场的畸变汤申德没有考虑2没有考虑光子在放电过程中的作用。
六流注的形成外施电压为气隙的最低击穿电压时,初崩辐射出来的光子照射到主崩尾部或头部产生二次电子崩,二次电子崩头部的电子与初崩的正空河点和汇合成为充满正负带电质点的混合通道,这个正电荷多余负电荷的混合通道称为流注通道,简称正流注。
外施电压比气隙的最低击穿电压高的多事,主崩头部发出的光是前方及尾部的部分中性点光游离,前方的光电子在畸变的电场作用下,向阳极运动产生二次电子崩,初崩头部负电荷与二次电子崩尾部正电荷汇合形成由阴极向阳极发展的负流注。
七棒一板电极的极性效应对棒一板电极,在棒为不同极性时,由于空间点和对气隙的电场影响不同,从而将导致其击穿电压和电晕起始电压不同,这种现象成为棒一板电极的极性效应。
棒正板负时的击穿电压低于同间隙棒负板正时的击穿电压,而电晕其实电压则相反。
八雷电冲击50%击穿电压(U50%)为了知道在冲击电压卞空气间隙的击穿电压,应使波形保持不变,逐渐升高电压幅值。
在多次施加电压时,击穿有时发生,有时不发生。
施加电压越高,多次施加电压时气隙击穿的百分比越人。
高电压技术总结各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢是XX最新发布的《高电压技术总结》的详细范文参考文章,觉得应该跟大家分享,重新编辑了一下发到XX。
篇一:高电压技术总结第一章1.极化:电介质在电场作用下,其束缚电荷相应于电场方向产生弹性位移现象和偶极子的取向现象。
类型:电子式极化、离子式极化、偶极子极化、夹层极化。
2.吸收现象:原因分界面上积聚起一批多余的空间电荷,这就是夹层极化引起的吸收电荷。
电荷积聚过程所形成的电流称为吸收电流。
3.介质损耗:定义:在电场作用下电介质中总有一定的能量损耗,包括由电导引起的损耗和某些有损极化(例如偶极子、夹层极化)引起的损耗。
组成:电导、有、无损极化。
影响因素:漏电、电压频率、温度、材料。
第二章1.气隙中带电质点的产生的方式:①气体分子本身发生游离②处于气体中的金属阴极表面发生游离。
消失方式:①与两电极的电量中和②扩散③复合2.击穿理论:①汤逊理论(电子的碰撞游离和正离子撞击阴极表面造成的表面游离所引起。
适用范围:低气压、短气隙。
)②流注理论[适用范围:高气压、短气隙。
流注通道:正负离子(浓度相等)、良导体、弱电场]。
3.电场:均匀、不均匀。
4.极性效应:对于电极形状不对称的不均匀电场气隙,极性不同时,间隙的气晕电压和击穿电压各不同。
极性效应是不对称的不均匀电场所具有的特性之一。
5.冲击电压标准波形击穿电压:指间隙上出现的最高电压。
放电时间的组成为:tb=t1+ts+tf。
6.提高气体间隙击穿场强的方法:①改善电场分布,使其尽可能均匀②改变气体的状态和种类。
7.沿面放电:定义:在大气中用绝缘子支撑或悬挂带电体,当绝缘子两级电压超过一定值时,绝缘子与空气交界面出现放电现象。
形式:干、湿、污闪。
污闪:沿着污染表面发展的闪络。
XX污闪过程:污闪层受潮→电导增大→泄漏电流增大→发热→形成干区→干区电阻大分压高场强高→放电形成→干区扩大→击穿。
污闪事故的对策:①调整爬距②定期或不定期的清扫③涂料④半导体釉绝缘子⑤新型合成绝缘子。
第三章1.液体体介质击穿现象:发热膨胀、出现气泡。
固~:电击穿是有强电场引起的(特点:击穿电压高、时间短、击穿前介质发热不显著)2.影响液体介质击穿电压的因素:杂质、温度、电场的均匀程度、电压作用时间、压力。
~固体~因素:电压作用时间、温度、电场的均匀程度、电压种类、积累效应、受潮、机械负荷。
累积效应:固体介质在不均匀电场中,介质内部可能出现局部损伤,并留下局部碳化、烧焦或裂缝等痕迹。
多次加电压时,局部损伤会逐步发展。
3.组合绝缘原则:①必须有优异的电气性能②有良好的热性能、机械性能及其他物理-化学性能③各种介质的特性相互合理配合,优缺点进行互补。
4.绝缘的老化定义:电气设备的绝缘在长期运行过程中会发生一系列物理变化和化学变化,范文写作致使其电气、机械及其他性能逐渐劣化现象。
~形式:电、热、机械、环境老化。
第四章1.预防性试验:①绝缘电阻和吸收比的测量②泄漏电流测量③介质损失角正切测量④局部放电测量。
试验结果:①绝缘电阻和吸收比能发现绝缘中贯穿性导电通道、受潮、表面脏污等缺陷②和绝缘电阻一样③测量tgδ能发现绝缘中存在的大面积分布性缺陷④能检测出绝缘中存在的局部缺陷。
2.耐压试验:工频、感应、直流、冲击~。
试验结果:①能有效地发现绝缘中危险的集中性缺陷②能对绕组的纵绝缘和相间绝缘进行试验③更易检查出其中的缺陷④能良好地检验高压电气设备对雷电冲击电压和操作冲击电压的耐受能力。
3.星三角接法:正、反接法。
4.绝缘试验有:绝缘特性试验、耐压试验。
第五章1.波过程(转载于: XX:高电压技术总结)含义:实质上是能量沿着导线传播的过程,即在导线周围空间储存电磁能的过程。
波阻抗:作用于某个面积上的压力与单位时间内垂直通过此面积的质点流量(即面积乘质点振动速度)之比,介质密度p与波速V的乘积。
波阻抗与电阻的区别:阻抗是电路中包含了电阻,电感,电容几个元件或其中的两个;而电阻只是单个电器元件的纯电阻。
2.折射系数(α):折射电压波与入射电压波的比值。
反射系数(β):反射电压波~。
3.线路串电容作用:可降低短路电流;思想汇报专题降低入侵波陡度。
~并电感作用:可提高功率因数,降低线路损耗;改变波形。
4.绕组行波特点:初始电压分布、稳态~。
过电压在绕组中的分布特点?5.中性点过电压保护方法:①采用避雷器或避雷棒间隙②配置零序过电压和间隙零序电流保护。
中性点绝缘水平情况:全绝缘、分级绝缘(经济性好)。
第六章1.雷电参数:雷电流的幅值、波头、波长、波陡度,波形,雷暴日与雷暴小时、地面落雷密度。
2.防雷直击雷:避雷针、避雷线避雷器:类型:保护间隙、排气式避雷器、阀式~、氧化锌~。
3.接地装置形式:工作~、保护~、防雷接地。
4.变压器绕组中的波过程影响因素:绕组的接法、中性点接地方向、进波情况。
5..防雷措施:架设避雷线、降低杆塔接地电阻、架设耦合地线、采用不平衡绝缘方式、采用消弧线圈接地方式、装设自动重合闸、加强绝缘、采用排气式避雷器。
第七章1.输电线路雷击过压:直击雷~、感应过电压。
2.反击定义:绝缘水平不高的35kV以下的配电装置,构架避雷针容易导致绝缘逆闪络。
防止反击:接地装置必须接地良好,最全面的范文参考写作网站接地装置的接地电阻必须合格,独立避雷针的接地电阻一般不大于25欧,避雷针与设备间保持一定的距离。
3.感应过电压:由雷击线路附近大地,由于电磁感应在导线产生的过电压。
4.输电线路防雷性能指标:耐雷水平、雷击跳闸率。
第八章1.独立避雷针与构架~的区别:独立的避雷针为单独的用角钢或是22的圆钢做成的,用于35KV及以下配电装置;而构架避雷针是用建筑物的钢架或别的可导电物体做为接接闪器,用于110KV 及以上的配电装置2.进线段保护:对全线无避雷线的35~11OkV架空线路,应在变电所1~2km的线路上架设避雷线。
进线段作用:①雷电过电压波在流过进线段时因冲击电晕而发生衰减和变形,降低了波前陡度和幅值②限制流过避雷器的冲击电流幅值。
第九章1.内部过电压类型:暂时过电压(工频电压升高、谐振过电压)、操作过电压(切断空载线路~、空载线路合闸~、切断空载变压器~、断续电弧接地~)。
篇二:高电压技术总结复习资料一、填空和概念解释1、电介质:电气设备中作为绝缘使用的绝缘材料。
2、范文TOP100击穿:在电压的作用下,介质由绝缘状态变为导电状态的过程。
3、击穿电压:击穿时对应的电压。
4、绝缘强度:电介质在单位长度或厚度上承受的最小的击穿电压。
5、耐电强度:电介质在单位长度上或厚度所承受的最大安全电压。
6、游离:电介质中带电质点增加的过程。
7、去游离:电介质中带电质点减少的过程。
8、碰撞游离:在电场作用下带电质点碰撞中性分子产生的游离。
9、光游离:中性分子接收光能产生的游离。
10、表面游离:电极表面的电荷进入绝缘介质中产生的游离。
11、强场发射:电场力直接把电极中的电荷加入电介质产生的游离。
12、二次电子发射:具有足够能量的质点撞击阴极放出电子。
13、电晕放电:气体中稳定的局部放电。
14、冲击电压作用下的放电时间:击穿时间+统计时延+放电形成时延15、统计时延:从间隙加上足以引起间隙击穿的静态击穿电压的时刻起到产生足以引起碰撞游离导致完全击穿的有效电子时刻。
16、放电形成时延:第一个有效电子在外电场作用下碰撞游离形成流注,最后产生主放电的过程时间。
17、50%冲击放电电压:冲击电压作用下绝缘放电的概率在50%时的电压值。
18、沿面放电:沿着固体表面的气体放电。
19、湿闪电压:绝缘介质在淋湿时的闪络电压。
20、污闪电压:绝缘介质由污秽引起的闪络电压。
21、爬距:绝缘子表面闪络的距离。
22、极化:电介质在电场的作用下对外呈现电极性的过程。
23、电导:电介质在电场作用下导电的过程。
24、损耗:由电导和有损极化引起的功率损耗。
25、老化:电力系统长期运行时电介质逐渐失去绝缘能力的过程。
26、吸收比:t=60s和t=15s时的绝缘电阻的比值。
27、过电压:电力系统承受的超过正常电压的。
28、冲击电晕:输电线路中由冲击电流产生的电晕。
29、雷暴日:一年中听见雷声或者看见闪电的天数。
30、雷暴小时:一年中能听到雷声的小时数。
31、地面落雷密度:每平方公里每雷暴日的落雷次数。
32、耐雷水平:雷击输电电路不引起绝缘闪络的最大的雷电流幅值。
33、雷击跳闸率:每百公里线路每年在雷暴日为40天的标准条件下由雷击引起的跳闸的次数。
34、击杆率:雷击事故中雷击塔顶的次数与雷击输电线路的总次数之比。
35、绕击率:雷击绕过避雷线击中导线的概率。
36、建弧率:线路中绝缘由冲击闪络变为工频闪络的概率。
37、进线段:输电线路中距离变电站1—2公里的线段。
二、简答①提高系统的输电能力②增加输电距离③降低线路功率损耗④降低电网传输单位容量的造价。
汤森德理论:①电子碰撞游离产生电子崩的过程是气体放电的主要过程②二次放射是气体自持放电的必要条件。
游离条件:运动质点所具有的总能量一定要大于被撞质点在正常状态下的游离能。
气体的放电电压是气体间隙距离和气体相对密度乘积的函数Uf=f(δ·s)。
4、在多介质绝缘结构中极化和电场分布的关系。
电场分布的静向分量与绝缘的相对介质常数成反比。
①有损极化电流②无损极化电流③电导电流直流电压作用的一瞬间三种电压都存在,当到达稳态时只存在电导电流。
6、固体介质的击穿形式。
①电击穿:由于电场力作用发生碰撞游离破坏介质晶格形成电通道。
②热击穿:由固体内部热不稳定造成的击穿。
①非破坏性试验②耐压试验原则:①两个实验都是从不同侧面反映绝缘缺陷的实验,两者相互补充②检测性试验与击穿电压之间没有函数关系所以耐压试验是不可替代的③耐压试验对设备有一定的损害所以要先进行检测性试验,没有缺陷后再进行耐压试验。
多级电容的并联充电然后串联放电。
9、过电压的分类和系统电压的关系。
①外部过电压②内部过电压(操作过电压、谐振过电压)外部过电压和系统电压之间没有关系内部过电压和系统电压的等级有关。
电力系统中的储能原件由于各种操作从一个稳态到达另一个稳态的过程中产生的振荡电压就是内部过电压。
电压波和电流波在线路传播是相伴而行的统一体,电压波和电流波的传播就是电磁能的传播或者电磁波的传播。
①物理意义上的不同波阻抗是指同方向传播的电压波与电流波之间的数量关系当波通过分布参数的波阻抗时以电磁能形式把能量保持在线路周围,而通过集中参数电阻时则消耗在电荷内②波阻抗加正负表示波阻抗的方向③线路中的波阻抗只与单位长度上的参数有关与长度无关④当线路中存在两个方向的波相遇时电路中的总电压与总电流之比不等于波阻抗。
电场能=磁场能波通过参数激变的节点发生电压波和电流波的重新分布或电磁能的重新分布。