某轿车自车身模态分析
- 格式:pdf
- 大小:274.70 KB
- 文档页数:3
某轿车白车身模态仿真分析田国红;齐登科;孙立国【摘要】以某国产轿车白车身为研究对象,用HyperWorks软件建立了以壳单元为主的白车身有限元模型,通过Nastran对该模型进行模态分析计算,得到白车身的各阶模态频率和模态特性.结合模态分析结果,分析汽车运行时来自于外界和内部激励源的振动,为该款车后续的动态特性改进设计提供参考.【期刊名称】《汽车实用技术》【年(卷),期】2015(000)010【总页数】3页(P38-40)【关键词】白车身;Hyperworks;模态分析;激励源;有限元【作者】田国红;齐登科;孙立国【作者单位】辽宁工业大学汽车与交通工程学院,辽宁锦州121000;辽宁工业大学汽车与交通工程学院,辽宁锦州121000;辽宁工业大学汽车与交通工程学院,辽宁锦州121000【正文语种】中文【中图分类】U467.3关键字:白车身;Hyperworks;模态分析;激励源;有限元10.16638/ki.1671-7988.2015.10.016CLC NO.: U467.3 Document Code: A Article ID: 1671-7988(2015)10-38-03 现代汽车可以看作一个复杂的多自由度振动系统,在受到外界激励时会产生振动。
当外界的激振源频率与汽车系统固有频率接近或相同时,会使汽车与其产生共振。
车身是轿车重要组成部分,被看作是一个连续的弹性结构系统,其固有振动频率表现为无限多的固有模态。
低阶模态多是整体振型,如整体扭转、弯曲振型;高阶模态多是一些局部的振型,如地板振型、车顶振型等。
汽车NVH性能对整车模态分布是否合理影响较大[1],因而模态分析在汽车设计和研究过程中得到广泛应用。
模态分析技术是一门重要的工程技术,对车身结构进行模态分析在车身结构动态特性分析和结构优化方面意义重大[2]。
本文以某款轿车为研究对象,先通过对3D白车身模型的建立,然后在Hypermesh中进行有限元划分,最后在对其进行模态计算和分析。
某轿车白车身模态试验分析研究张华鑫;童敏勇【摘要】新车型的设计研发过程中应首先考虑的是白车身的动态特性,通过试验得到的动态特性参数能很大程度的改变现有新车型开发周期长、成本高的现状,从而可以尽快的发布以及上市新车型。
通过试验方法对某一款汽车的两种白车身模态进行了分析对比,得到其各项模态性能参数,通过对结果的分析为以后进一步研究白车身NVH性能提供了试验依据。
%Dynamic characteristic should be first considered in the process of design research and development for body-in-white, dynamic characteristic parametersobtained by test can greatly change the long cycle of new model development, the presentsituation ofthe high cost, which can release aswell as the listing of new models as soon as possible.In this paper, two test methodsfor a body-in-white mode are analyzed and compared, the modalperformance parameters are got, analysisof the results can provide experimental evidences for thefurther research NVH performance of body-in-white.【期刊名称】《机械研究与应用》【年(卷),期】2014(000)003【总页数】3页(P107-109)【关键词】白车身;振动;频率;模态试验;结果分析【作者】张华鑫;童敏勇【作者单位】天津职业技术师范大学汽车与交通学院,天津 300222;天津职业技术师范大学汽车与交通学院,天津 300222【正文语种】中文【中图分类】TK4220 引言如今在世界各汽车公司竞争日渐白热化的趋势下,有效的缩短新车型的研发,不断变更新车型研发的方式。
轿车白车身试验模态与计算模态相关性分析为了确保轿车的安全性和稳定性,汽车制造商需要对车辆的白车身进行模态分析和计算模态分析,以研究其振动特性和动力性能。
本文将分析轿车白车身试验模态和计算模态之间的相关性,并探讨这些分析如何帮助汽车制造商改善车辆设计和生产质量。
试验模态是通过对车辆进行振动实验获得的振动特性,包括自然频率、振动模态等。
这些数据可以帮助汽车制造商确定车辆的动力学性能,并为车辆的噪音、振动和刚度问题提供支持。
相比之下,计算模态是通过有限元分析(FEA)计算得出的振动特性,采用数值模拟来预测车辆振动特性。
这些模拟数据通常会在早期设计阶段用于验证车辆结构设计,并指导车辆生产制造。
然而,在实践中,试验模态和计算模态之间存在某些差异。
主要是由于因受环境和测试装置、误差和测量等多种因素的影响,试验模态和计算模态之间的差异非常常见。
因此,为了确保模态分析的准确性和可靠性,汽车制造商通常需要对试验模态和计算模态进行比较,以确定它们之间的相关性,并查明差异的原因。
为了比较试验模态和计算模态之间的差异,通常需要使用频率响应函数(FRF)。
FRF是车辆振动试验中的一个重要参数,它用于测量车身的振动放大系数,并提供车身以响应不同动力的关键提示。
然后,通过比较试验模态和计算模态的FRF,可以确定它们之间的关系,并为制造商提供有关如何优化车辆的设计和改进生产质量的 information。
最后,需要指出的是,在对轿车白车身进行模态和计算模态的相关性分析时,需要考虑多种因素。
这些因素包括车辆的结构、材料和工艺,噪音、振动、气动特性等方面。
同时,在车辆运营期间,还需要考虑加速度四对噪声、驾驶人员行为特性等诸多因素。
因此,既要考虑到试验模态和计算模态之间的差异,也要综合研究其与车辆实际运作情况之间的关系,以完善轿车的设计和生产质量。
在轿车白车身的试验模态和计算模态的相关性研究中,还需要考虑车辆的不同工况下的振动特性。
某轿车白车身模态有限元分析与试验研究韩阳;李洪力;朱延鹏【摘要】In this paper, setting the body-in-white of a certain vehicle as the study object, finite element analysis on the body-in-white is made, thus the correctness of finite element structure is verified through the modal tests. Furthermore, the finite element structure of body-in-white is optimized by using the distribution characteristics of the displacement nephogram. The results show that the primary frequency of body-in-white is 28. 23 Hz;while the first torsional frequency is 32. 67 Hz and the bending frequency is 45. 14 Hz, so the two frequencies could not cause coupling resonance. By comparing the difference be-tween experiment and the finite element analysis, it is found that the error is in the range of 10%, so the finite element model that was established before is correct. Through the displacement nephogram we can find that the maximum displacement of roof is 5. 427mm at the frequency of 25. 90 Hz, and the maximum displacement of rear roof is 6. 512mm at the frequency of 31. 45 Hz, thus it would affect the comfort, safety and reliability of a vehicle. Therefore, it is necessary to optimize the design of the roof and the top cover.%以某轿车白车身为研究对象,对白车身进行有限元分析,利用白车身模态试验验证白车身有限元结构的正确性。
某轿车车身的刚度模态及疲劳性能分析的开题报告一、选题背景和意义随着汽车技术的不断发展和消费者对车辆性能及舒适性要求的不断提高,轿车车身的刚度模态及疲劳性能越来越受到关注。
车身刚度是指车身在受到外力作用时的变形程度,它影响着车辆的操控稳定性、行驶舒适性和安全性。
而车身的疲劳性能则是指车身在长期使用过程中受到载荷作用而导致的变形、裂纹产生及疲劳寿命的研究。
因此,对轿车车身的刚度模态及疲劳性能进行分析和优化具有重要的意义。
本课题选取了某轿车的车身进行刚度模态及疲劳性能分析,旨在探究其力学特性和性能表现,为车辆厂商提供科学参考,提高乘坐体验和行驶安全。
二、研究内容(一)轿车车身刚度模态分析通过有限元分析软件对轿车车身进行刚度模态分析,确定车身在受到外力作用时的变形程度和振动模态。
在分析过程中,可以考虑不同路面情况、不同载荷状态和不同车速等因素,对不同情况下的车身刚度模态进行研究。
根据分析结果,优化车身结构,提高车辆的操控稳定性和行驶舒适性。
(二)轿车车身疲劳性能分析通过有限元分析软件和实验测试,对轿车车身的疲劳性能进行分析和研究。
通过施加不同载荷和振动模式模拟车身在使用过程中的受力情况,测试车身的疲劳寿命和产生裂纹的位置,确保轿车在长期使用过程中的安全性和稳定性。
同时,采用优化设计的策略,提高轿车车身的疲劳寿命和耐久性。
三、研究方法(一)有限元分析法使用有限元分析软件对轿车车身的刚度模态和疲劳性能进行分析,对车身受力情况进行数值模拟和分析。
(二)试验测试法采用荷载测试系统和振动测试系统对轿车车身进行实验测试,验证有限元分析的结果,同时获取更准确、有效、受控的数据,为分析和优化提供依据。
(三)优化设计法结合有限元分析和测试结果,通过优化设计策略进一步提高轿车车身的刚度模态和疲劳性能。
四、预期成果通过对某轿车的刚度模态及疲劳性能进行分析和研究,得出的预期成果如下:(一)车身在不同路况、不同载荷状态和不同车速下的振动模态和位移情况;(二)车身疲劳寿命、产生裂纹的位置和疲劳寿命曲线;(三)针对分析结果的优化设计方案。