热交换器原理与设计—第1章_热交换器热计算的基本原理_(1)
- 格式:ppt
- 大小:4.54 MB
- 文档页数:86
热交换器原理与设计
热交换器是一种用于传热的设备,广泛应用于工业生产、能源
领域以及日常生活中。
其作用是在两种流体之间传递热量,使它们
达到所需的温度。
热交换器的设计和运行原理对于提高能源利用效
率和保障设备安全稳定运行具有重要意义。
热交换器的原理是利用热传导的物理特性,通过将两种流体分
别置于不同的传热面上,使它们之间产生温度差,从而实现热量的
传递。
在热交换器中,传热面的设计和流体流动方式是影响传热效
率的关键因素。
此外,热交换器的设计还需要考虑流体的物性参数、流体流速、传热面积以及传热介质的选择等因素。
在热交换器的设计过程中,首先需要确定传热的需求,包括传
热量、传热温差等参数。
然后根据流体的性质和工艺要求选择合适
的传热面积和传热介质。
接下来是热交换器内部结构的设计,包括
传热面的布置方式、流体流动路径的设计等。
最后是对热交换器的
整体结构进行设计,包括支撑结构、连接方式、绝热措施等。
热交换器的设计需要综合考虑传热效率、成本、占地面积等因素。
为了提高传热效率,可以采用增加传热面积、改善流体流动方
式、优化传热介质等措施。
在降低成本方面,可以通过材料选择、结构设计等途径进行优化。
此外,合理设计热交换器的结构,可以减小占地面积,提高设备的整体性能。
总的来说,热交换器的设计是一个综合考虑传热效率、成本和结构合理性的工程问题。
通过科学合理的设计,可以提高能源利用效率,降低生产成本,保障设备的安全稳定运行。
因此,热交换器的设计对于工业生产和生活中的能源利用具有重要的意义。
热交换器原理与设计热交换器是一种用于传热的设备,它可以将热量从一个流体传递到另一个流体,而两者之间并不直接接触。
热交换器广泛应用于工业生产和日常生活中,如空调系统、冷却系统、加热系统等。
在本文中,我们将深入探讨热交换器的原理与设计。
热交换器的原理主要基于热传导和对流传热。
在热交换器中,两种流体分别流经热交换器的两侧,通过热传导和对流传热的方式,实现热量的传递。
热交换器的设计主要包括换热面积、传热系数、流体流速等因素。
换热面积越大,传热效果越好;传热系数越大,传热效率越高;流体流速对于传热效果也有着重要的影响。
热交换器的设计需要考虑多种因素,如流体的性质、温度、压力、换热面积、传热系数等。
在实际工程中,需要根据具体的工况条件来选择合适的热交换器类型,如板式热交换器、管式热交换器、壳管式热交换器等。
不同类型的热交换器适用于不同的工况条件,需要根据实际情况进行合理选择。
在热交换器的设计过程中,需要进行热力学计算、流体力学分析、材料选型等工作。
通过这些工作,可以确定热交换器的尺寸、结构、材料等参数,确保热交换器在实际工作中能够达到预期的换热效果。
此外,还需要考虑热交换器的清洗维护、安装调试等问题,确保热交换器的长期稳定运行。
总的来说,热交换器是一种重要的传热设备,它在工业生产和日常生活中都有着重要的应用。
热交换器的原理基于热传导和对流传热,设计时需要考虑多种因素,如流体性质、温度、压力、换热面积、传热系数等。
合理的热交换器设计可以提高能源利用效率,降低生产成本,对于工业生产和环境保护都具有重要意义。
因此,热交换器的原理与设计是一个值得深入研究的课题,也是工程技术人员需要掌握的重要知识。
换热器原理与设计课后题答案史美中国热交换器原理与设计热交换器:将某种流体的热量以一定的传热方式传递给他种流体的设备。
(2013-2014学年第二学期考题[名词解释])热交换器的分类:按照热流体与冷流体的流动方向分为:顺流式、逆流式、错流式、混流式按照传热量的方法来分间壁式、混合式、蓄热式。
(2013-2014学年第二学期考题[填空])1热交换器计算的基本原理(计算题)热容量(W=Mc):表示流体的温度每改变1C时所需的热量温度效率(P):冷流体的实际吸热量与最大可能的吸热量的比率(2013-2014学年第二学期考题[名词解释])传热有效度(e):实际传热量Q与最大可能传热量Q之比2管壳式热交换器管程:流体从管内空间流过的流径。
壳程:流体从管外空间流过的流径。
<1-2>型换热器:壳程数为1,管程数为2卧式和立式管壳式换热器型号表示法(P43)(2013-2014学年第二学期考题[名词解释])记:前端管箱型式:A-平盖管箱B一--封头管箱壳体型式:一一单程壳体F一一具有纵向隔板的双程壳体H一双分流后盖结构型式:P一一填料函式浮头S一一钩圈式浮头U一一U形管束一-管子在管板上的固定:胀管法和焊接法管子在管板上的排列:等边三角形排列(或称正六边形排列)法、同心圆排列法、正方形排列法,其中等边三角形排列方式是最合理的排列方式。
(2013-2014学年第二学期考题[填空])管壳式热交换器的基本构造: (1)管板(2)分程隔板(3)纵向隔板、折流板、支持板(4)挡板和旁路挡板(5)防冲板产生流动阻力的原因:①流体具有黏性,流动时存在着摩擦,是产生流动阻力的根源;②固定的管壁或其他形状的固体壁面,促使流动的流体内部发生相对运动,为流动阻力的产生提供了条件。
热交换器中的流动阻力:摩擦阻力和局部阻力管壳式热交换器的管程阻力:沿程阻力、回弯阻力、进出口连接管阻力管程、壳程内流体的选择的基本原则: (P74)管程流过的流体:容积流量小,不清洁、易结垢,压力高,有腐蚀性,高温流体或在低温装置中的低温流体。
绪论1.2.热交换器的分类:1)按照材料来分:金属的,陶瓷的,塑料的,是摸的,玻璃的等等2)按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。
3)按照热流体与冷流体的流动方向来分:顺流式,逆流式,错流式,混流式4)按照传送热量的方法来分:间壁式,混合式,蓄热式恒在壁的他侧流动,两种流体不直接接触,热量通过壁面而进行传递。
过时,把热量储蓄于壁内,壁的温度逐渐升高;而当冷流体流过时,壁面放出热量,壁的温度逐渐降低,如此反复进行,以达到热交换的目的。
第一章1.Mc1℃是所需的热量,用W表示。
两种流体在热交换器内的温度变化与他们的热容量成反比;即热容量越大,流体温度变化越小。
2.W—对应单位温度变化产生的流动流体的能量存储速率。
4.顺流和逆流情况下平均温差的区别:在顺流时,不论W1、W2值的大小如何,总有μ>0,因而在热流体从进口到出口的方向上,两流体间的温差△t总是不断降低;而对于逆流,沿着热流体进口到出口方向上,当W1<W2时,μ>0,△t不断降低,当W1>W2时,μ<0,△t不断升高。
5.P(定义式P12)物理意义:流体的实际温升与理论上所能达到的最大温升比,所以只能小于1。
6.R—冷流体的热容量与热流体的热容量之比。
(定义式P12)7.从φ值的大小可看出某种流动方式在给定工况下接近逆流的程度。
除非处于降低壁温的目的,否则最好使φ>0.9,若φ<0.75就认为不合理。
(P22 例1.1)8.所谓Qmax是指一个面积为无穷大且其流体流量和进口温度与实际热交换器的流量和进口温度相同的逆流型热交换器所能达到的传热量的极限值。
9.实际传热量Q与最大可能传热量Qmaxε表示,即ε=Q/Qmax。
意义:以温度形式反映出热、冷流体可用热量被利用的程度。
10.根据ε的定义,它是一个无因次参数,一般小于1。
其实用性在与:若已知ε及t1′、t2′时,就可很容易地由Q=εW min(t1′-t2′)确定热交换器的实际传热量。