常见电线电缆绝缘材料优缺点分析
- 格式:pdf
- 大小:196.09 KB
- 文档页数:10
电线电缆绝缘材料及护套材料的老化分析电线电缆是现代社会中电力传输、信息传递的必备工具,而绝缘材料和护套材料是电线电缆的重要组成部分,保障着电线电缆的安全稳定运行。
然而,绝缘材料和护套材料随着使用时间的增长会出现老化现象,从而影响着电线电缆的使用寿命和安全性。
因此,本文对电线电缆绝缘材料及护套材料的老化进行分析。
绝缘材料的选择对电线电缆的性能和寿命有着很大的影响,而绝缘材料的老化主要表现为热老化和光老化两种。
1. 热老化热老化是指在高温下,绝缘材料因受热引起化学反应而发生老化变化。
绝缘材料老化时,发生材料分子链断裂,氧化反应,导致化学结构的改变和物理性能的下降。
热老化的影响因素主要包括温度、时间和氧气。
一般来说,温度越高、时间越长、氧气越多,绝缘材料老化的速度就越快。
因此,选用具有较好的耐热性能的绝缘材料能够延长电线电缆的使用寿命。
光老化是指在太阳光照射下,绝缘材料因受紫外线、可见光和红外线等光线的照射而发生老化的变化。
光老化对电线电缆的影响主要表现在两个方面。
第一方面,光老化会导致绝缘材料的物理性能发生变化。
长时间受光照射的绝缘材料表面会出现龟裂、开裂、剥落等现象,从而降低绝缘材料的拉伸强度和断裂伸长率。
第二方面,光老化会影响绝缘材料的电学性能。
光照射会使绝缘材料的介电常数变化,增加介电损耗和耐受电场强度的下降。
护套材料是电线电缆的外层保护材料,主要起着防水、防腐、防晒等作用。
护套材料的老化对电线电缆的安全稳定运行也有着很大的影响,主要表现在以下几个方面。
1. 机械性能护套材料的机械性能主要包括拉伸强度、断裂伸长率、硬度等指标,老化后这些机械性能的指标都会下降,致使护套材料变得脆化,易于破裂或剥落,从而降低电缆的机械强度和耐久性。
2. 电学性能护套材料中所含的填料和添加剂,可能会对电气性能产生影响,如介电强度、电阻率等参数的变化,从而使电线电缆在使用过程中存在漏电、短路等故障风险。
护套材料在高温条件下,易出现老化变化。
电缆主要材料1、铜丝:采用电解铜作为原料,经连铸连轧工艺制成的的铜线称为低氧铜线;经上引法制成的铜线称为无氧铜线。
低氧铜线含氧量为100~250ppm,含铜量为99.9~9.95%,导电率为100~101%。
无氧铜线含氧量为4~20ppm,含铜量为99.96~9.99%,导电率为102%。
铜的比重为8.9g/cm3。
2、铝线:用作电线用的铝线都要进行退火软化过。
用作电缆用的铝线一般不用软化。
电线电缆用的铝的电阻率要求达到0.028264Ω.mm2/m,铝的比重为2.703g/cm3。
3、聚氯乙烯(PVC):聚氯乙烯塑料是以聚氯乙烯树脂为基础,加入各种配合剂混合而成的,如防老剂、抗氧剂、填料、光亮剂、阻燃剂等,其密度为1.38~1.46g/cm3左右。
聚氯乙烯材料的特点:力学性能优越,耐化学腐蚀,不延燃,耐候性好,电绝缘性能好,容易加工等。
聚氯乙烯材料的缺点:①燃烧时有大量有毒的烟雾发出;②热老化性能差。
聚氯乙烯有绝缘料与护套料之分。
4、聚乙烯(PE):聚乙烯是由精制的乙烯聚合而成的,按密度可分为低密度聚乙烯(LDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)。
低密度聚乙烯的密度一般为0.91~0.925g/cm3;中密度聚乙烯的密度一般为0.925~0.94g/cm3;高密度聚乙烯的密度一般为0.94~0.97g/cm3。
聚乙烯材料的优点:①绝缘电阻和耐电压强度高;②在较宽的频带范围内,介电常数ε和介质损耗角正切值tgδ小;③富于可挠性,耐磨性能好;④耐热老化性能、低温性能及耐化学稳定性好;⑤耐水性能好,吸湿率低;⑥用它制作的电缆质量轻,使用敷设方便。
聚乙烯材料的缺点:①接触火焰时易燃烧;②软化温度较低。
5、交联聚乙烯(XLPE):现在电缆行业使用的主要有二种类型的交联聚乙烯。
一种是以硅烷作交联剂的,叫硅烷交联料,主要应用在低压电线电缆的绝缘层上。
另一种是以过氧化二异丙苯(DCP)作交联剂的交联聚乙烯料,其主要是由聚乙烯、交联剂和抗氧剂组成。
摘要绝缘材料能的优劣直接影响电线电缆的质量、加工效率、应用范围。
结合多年电线电缆设计开发与生产经验,笔者将对常用电线电缆绝缘材料能之优缺点作简要分析,旨在与业界共同探讨,并逐步缩短与国际线缆方面的差距。
鉴于现行的国际标准众多,本文将重点从UL 标准角度作集中描述,权当抛砖引玉,不周之处,请业界同仁不吝赐教。
关键词:电子线、高温特种线对于UL758 系列的电子线及高温特种线,其主要绝缘材料为聚氯乙烯、交联聚烯烃、硅橡胶和氟塑料等。
由于不同绝缘材料之间的差异,在电线电缆生产和线材加工方面呈现各自不同的特点,充分认识这些特点,将有利于材料的选型和产品质量的控制。
一)PVC 聚氯乙烯电线电缆绝缘PVC 聚氯乙烯(以下简称PVC)绝缘材料是在PVC 粉中添加稳定剂、增塑剂、阻燃剂、润滑剂及其它助剂的混合物。
针对电线电缆不同应用与不同的特性需求,其配方做相应的调整。
经过几十年的生产和使用,目前PVC 制造及加工技术已经非常成熟。
PVC 绝缘材质在电线电缆领域有着非常广泛的应用,并有着显着的自身特点:1)制造技术成熟、易成型和加工制造。
相比其它类的线缆绝缘材料, 不仅成本低廉,在线材表面色差、光哑度、印字、加工效率、软硬度、导体的附着力、线材本身的机械物理性能和电性能方面均可作有效控制。
2)具有非常良好的阻燃性能,故PVC 绝缘电线极易达到各类标准规定的阻燃等级。
3)在耐温方面,通过对材料配方优化改进,目前常用的PVC绝缘类型主要有以下三类:表I4)在额定电压方面,一般使用于额定1000V AC 及其以下电压等级, 可广泛应用于家用电器、仪器仪表、照明、网络通讯等行业。
5)琦富瑞塑胶事业部成功开发的无毒无味PVC 绝缘线,广泛使用于空调,冰箱等电器配线。
PVC 也有一些自身缺点,限制了其使用:1) 由于有大量氯元素,燃烧时会散发出大量浓烟会让人窒息,影响能见度,并产生一些致癌物质和HCl 气体,对环境造成严重危害。
电线电缆绝缘材料及护套材料的老化分析
1.材料老化机理
电线电缆绝缘材料及护套材料在长期使用过程中,受到温度、湿度、氧气、紫外线等
外界因素的影响,会发生老化现象。
常见的材料老化机理有热老化、氧化老化、紫外线老
化等。
在研究过程中,可以通过对老化前后样品的化学、物理性质进行对比分析,了解老
化机理。
2.老化性能测试
对于电线电缆绝缘材料及护套材料的老化性能,可以通过一系列的测试手段进行评价。
常见的老化性能测试方法有耐热性测试、耐氧化性测试、耐湿热性测试、耐紫外线性能测
试等。
通过这些测试,可以评估材料在不同环境条件下的老化性能,并对材料进行筛选和
改进。
3.老化机制研究
在材料老化的过程中,会发生一系列的物理、化学变化,从而导致材料性能的降低。
通过研究老化前后材料的化学、物理性质的变化规律,可以深入了解老化机制。
可以通过
拉伸试验、热分析等测试手段,了解材料的断裂强度、热性能和分子结构等变化。
4.老化评估方法
对于电线电缆绝缘材料及护套材料的老化评估,可以通过定期采样、加速老化试验、
实际使用环境下的老化评估等方法进行。
定期采样可以监测材料在实际使用过程中的老化
情况;加速老化试验通过提高温度、湿度等条件,使材料在短时间内发生老化,快速评估
材料的老化性能;实际使用环境下的老化评估可以对电线电缆进行长期的监测,评估材料
的老化程度。
通过以上研究方法,可以对电线电缆绝缘材料及护套材料的老化进行分析和评估,为
材料的选用和使用提供科学依据,从而提高电线电缆的使用寿命和安全性能。
电线电缆绝缘材料及护套材料的老化分析电线电缆是电力传输和信息传输的重要载体,而电线电缆的绝缘材料和护套材料对其使用寿命和安全性起着至关重要的作用。
随着电线电缆的使用时间的增长,绝缘材料和护套材料会受到各种外界因素的影响,从而引起老化现象。
本文将从老化的原因、影响、检测和预防等方面进行分析和探讨。
一、老化的原因1. 温度影响:高温会导致绝缘材料和护套材料中的聚合物分子链断裂、交联和剪切现象,使其性能发生改变,导致老化;2. 湿度影响:潮湿的环境会导致绝缘材料和护套材料中的水分渗透,从而引起水解反应,使材料发生脆化、劣化等现象;3. 氧化影响:氧气对绝缘材料和护套材料的氧化作用会导致材料表面产生氧化膜,使其性能降低;4. 紫外线影响:紫外线会使绝缘材料和护套材料的聚合物分子链断裂,从而导致老化;5. 机械应力影响:外界的挤压、拉伸、扭曲等机械应力会导致绝缘材料和护套材料发生形变、开裂等现象,从而引起老化。
二、老化的影响1. 绝缘性能下降:老化后的绝缘材料会导致绝缘性能下降,从而容易发生绝缘击穿、漏电等故障;2. 强度减小:老化会导致绝缘材料和护套材料的机械强度下降,使其耐磨性和抗拉伸性能减小;3. 耐候性降低:老化会使绝缘材料和护套材料的耐候性下降,易受外界环境的影响而发生劣化;4. 导热性增加:老化会导致绝缘材料的导热性增加,使其在电线电缆的使用过程中容易产生发热现象,影响电线电缆的安全性。
三、老化的检测1. 物理性能测试:通过测定绝缘材料和护套材料的拉伸强度、断裂伸长率、硬度、导热系数等物理性能参数,来判断其老化程度;2. 化学性能测试:通过测定绝缘材料和护套材料的耐热性、耐油性、耐酸碱性等化学性能参数,来判断其老化程度;3. 表面形貌观察:通过显微镜、电子显微镜等设备观察绝缘材料和护套材料的表面形貌变化,来判断其老化程度;4. 热老化试验:将样品置于高温环境中,模拟实际使用条件下的老化情况,通过测试其性能变化来判断老化程度。
电线电缆绝缘及护套材料的技术分析及质量控制电线电缆是现代电力传输和通信的重要组成部分,其安全可靠、耐用使用至关重要。
电线电缆的绝缘和护套是保证其安全可靠的重要因素之一,因此,绝缘和护套材料的质量及其技术分析和质量控制显得尤为重要。
绝缘材料是电线电缆中的重要材料,其主要功能是提供电气绝缘,防止电线电缆内部导体之间和导体与外壳之间发生电弧放电。
绝缘材料的选择一般基于以下几个因素:一、介电强度介电强度是电缆绝缘材料的重要性能指标,指材料在电场作用下的电阻耐压试验中的最大电场强度值。
对于不同的电力电缆,其介电强度要求也会有所不同。
对于高压电缆来说,其介电强度要求相对较高。
二、耐热性耐热性是指绝缘材料在高温环境下的性能稳定性,并防止绝缘材料发生变形或者熔化。
对于高温环境下使用的电缆,绝缘材料的耐热性尤为重要。
三、耐腐蚀性电缆在使用过程中可能会遇到化学腐蚀,因此,绝缘材料要具有一定的耐腐蚀性,以提高电线电缆的使用寿命。
四、机械强度从绝缘材料的发展历程和趋势上看,目前主要有以下三种类型的绝缘材料:一、天然橡胶天然橡胶绝缘电缆具有良好的柔韧性、耐热性和良好的介电性能,但其耐久性和耐化学腐蚀性能相对较差,成本也较高,因此现在逐渐被合成橡胶材料所代替。
二、合成橡胶合成橡胶绝缘材料具有良好的导电性能、化学稳定性和高度绝缘性能,广泛应用于电线电缆制造中。
三、塑料绝缘材料塑料绝缘材料种类丰富,如聚酯、聚酰亚胺、聚丙烯、聚氯乙烯等,具有导电性能好、耐热、耐腐蚀、机械强度高等特点,广泛应用于中低压电线电缆中。
护套材料是电线电缆外层的保护层,其主要功能是防水、防腐、防鼠咬防紫外线照射等,其质量和技术指标也需要遵循一些要求:一、耐老化性防护套材料在使用过程中可能会受到氧化、紫外线等环境影响而老化,因此,其耐老化性能尤为重要。
电线电缆在安装过程和使用过程中都需要受到一定程度的拉伸、压缩和弯曲,因此护套材料需要具有较高的机械强度,以提高电线电缆的耐用性。
电线电缆绝缘及护套材料的技术分析及对策电线电缆的绝缘及护套材料是保障电线电缆安全运行的重要组成部分。
本文将对电线电缆绝缘及护套材料的技术进行分析,并提出相应的对策。
电线电缆绝缘材料的技术分析:1. PVC绝缘:聚氯乙烯(PVC)是目前使用最广泛的电线电缆绝缘材料之一。
它具有机械强度高、耐化学腐蚀性能好、绝缘性能稳定的优点,但抗温度能力较差,在高温环境下易软化、熔融甚至燃烧。
对策:研发高温稳定的PVC材料,提高其抗温度能力,降低其燃烧性能。
可以考虑在PVC绝缘层的外层添加耐高温的包覆层,提高整体的温度耐受能力。
3. XLPE绝缘:交联聚乙烯(XLPE)是近年来发展起来的一种绝缘材料。
其具有机械强度高、耐腐蚀性好、绝缘性能稳定且抗高温能力较强的特点。
对策:继续研究XLPE材料的交联机理,提高其交联密度和稳定性,进一步提升其电气性能和高温耐受能力。
2. PE护套:聚乙烯(PE)也常被用作电线电缆的护套材料。
其具有机械强度高、耐腐蚀性好的特点,但其抗压和抗张能力相对较低。
对策:通过改变聚乙烯的分子结构和添加增强剂,提高其机械强度和抗压抗张能力。
3. 橡胶护套:橡胶材料具有良好的弯曲性和抗老化能力,适用于环境恶劣和机械应力较大的场合。
对策:研究橡胶材料的交联技术,提高其耐高温和耐压能力,扩大其应用范围。
总结:电线电缆绝缘及护套材料的技术分析主要包括PVC、PE、XLPE和橡胶等材料。
针对这些材料的技术缺陷,可以通过研发高温稳定剂、增强剂等改性材料,改善其抗高温、抗老化、抗压抗张等性能。
对于PVC材料可以考虑在外层添加耐高温的包覆层,提高其整体的温度耐受能力。
通过这些技术对策,可以不断提升电线电缆绝缘及护套材料的性能,确保电线电缆的安全运行。
常用绝缘材料绝缘材料是一种用于阻止电流流动的材料,它在电气设备和电子器件中起着至关重要的作用。
在工业和家庭用电中,绝缘材料的选择和使用直接关系到电气设备的安全和可靠性。
常见的绝缘材料包括橡胶、塑料、玻璃、陶瓷等,它们在不同的场合和环境中发挥着各自独特的作用。
橡胶是一种常用的绝缘材料,它具有良好的柔韧性和耐磨性,能够在一定程度上抵抗电流的流动。
橡胶通常用于电线电缆的外护套和绝缘层,以及电气设备的密封件和防水件。
在户外电气设备中,橡胶绝缘材料能够有效地抵御日晒雨淋和氧化腐蚀,保障设备的安全和可靠运行。
塑料是另一种常见的绝缘材料,它具有优良的绝缘性能和耐化学腐蚀性能,能够在高温和潮湿环境中保持稳定的绝缘性能。
塑料通常用于制造绝缘子、绝缘胶带、绝缘板等电气设备和器件,以及电线电缆的绝缘层和外护套。
在现代电子器件中,各种高性能塑料材料被广泛应用于绝缘材料,以满足小型化、轻量化和高频化的需求。
玻璃和陶瓷是常用的高温绝缘材料,它们具有优异的耐高温性能和耐热性能,能够在高温环境中保持稳定的绝缘性能。
玻璃通常用于制造绝缘子、绝缘套管、绝缘杯等高压电气设备和电子器件,以及高温炉窑、电炉等工业设备的绝缘材料。
陶瓷通常用于制造绝缘子、绝缘管、绝缘瓷件等高温电气设备和电子器件,以及航空航天、军工等领域的高温绝缘材料。
除了上述常见的绝缘材料外,还有许多新型的绝缘材料正在不断涌现,如纳米复合材料、聚合物复合材料、高分子复合材料等,它们具有优异的绝缘性能、耐热性能和耐化学腐蚀性能,能够满足现代电气设备和电子器件对绝缘材料的高性能要求。
总的来说,绝缘材料在电气设备和电子器件中起着不可替代的作用,它们的选择和使用直接关系到设备的安全和可靠性。
随着科技的不断进步和创新,新型的绝缘材料将不断涌现,为电气设备和电子器件的发展提供更加可靠和高性能的绝缘保障。
关于交联聚乙烯绝缘电缆常见的问题及其原因分析一、交联的三种方式1、交联电缆性能交联就是将聚乙烯的线型分子结构通过化学交联或高能射线的辐照交联,转变成立体网状分子结构。
从而大大地提高了它的耐热性和耐环境应力开裂,减少了它的收缩性,使其受热以后不再熔化。
交联聚乙烯绝缘电缆其长期允许工作温度可达90βc o2、交联方法交联绝缘的品种虽多,但主要分为物理交联和化学交联两大类。
物理交联也称为辐照交联一般适用于绝缘厚度较薄的低压电缆。
中高压电缆一般采用过氧化物交联即用化学交方法是将线性分子通过化学交联反应起来,转化为立体网状结构。
化学交联一般还可分为过氧化物交联和硅烷交联接枝交联两种。
2.1 辐照交联辐照是采用高能粒子射线照射线性分子聚合物,在其链上打开若干游离基团,简称为接点。
接点活性很大,可把两个或几个线性分子交叉联接起来。
它的优点为:生产速度快,占用空间小;可加工材料种类多,几乎所有聚合物,产品品种多;产品用更好的耐热、耐磨和较高电气性能;可阻燃;电耗低。
但存在一些问题:设备一次投资大;对大截面电缆的辐照不均匀,经反复照射后电缆弯曲次数太多;设备开工率低。
2.2 过氧化物交联交联聚乙烯料是以低密度聚乙烯、过氧化物交联剂,抗氧剂等组成的混合物料。
加热时,过氧化物分解为化学活性很高的游离基,这些游离基夺取聚乙烯分子中的氢原子,使聚乙烯主链的某些碳原子为活性游离基并相互结合,即产生C-C交联键,形成了网状的大分子结构。
它主要优点是适合各种电压等级和各种截面的交联聚乙烯绝缘电力电缆生产,特别是35kV及以上的中高压电缆。
2.3 硅烷交联硅烷交联又称温水交联也是化学交联的一种,它有两步法、一步法和共聚法等多种方法。
硅烷接枝和挤出分在两道工序进行的称为二步法,硅烷接枝交联工艺,它是接枝和挤出分成两个工序进行,第一步由绝缘料厂将硅烷交联剂与基料在挤出机上接枝和挤出造粒,该料称为A料,同时还提供催化剂和着色剂的母料,称B料。
电线电缆绝缘材料及护套材料的老化分析
随着使用时间的增加,电线电缆绝缘材料及护套材料的老化问题逐渐凸显。
因此,对
于电线电缆绝缘材料及护套材料的老化分析非常重要。
本文将从老化机理、老化因素和老
化特征三个方面对电线电缆绝缘材料及护套材料的老化进行分析。
一、老化机理
电线电缆绝缘材料及护套材料老化的机理复杂,但总的来说,老化主要是由以下几个
方面引起的:
(1)热老化:当电缆绝缘材料和护套材料长时间暴露在高温环境中时,会发生热老化,导致绝缘材料和护套材料的物化性能降低,使其导电性能下降。
二、老化因素
(3)电压:当电缆绝缘材料长期承受高电压时,由于绝缘材料分子结构发生变化,导
致其导电性能下降。
(5)机械应力: 电缆在运行过程中会承受拉伸、挠曲、折弯等机械应力,并随时间的推移发生疲劳现象,使绝缘材料和护套材料的物理性能和机械性能降低。
三、老化特征
(1)色泽的变化:当电缆绝缘材料和护套材料长时间暴露于高温、紫外线等环境中时,会出现颜色的变化,从原来的白色或透明色变为黄色或灰色。
(2)硬度的下降:当电线电缆绝缘材料和护套材料经过长时间的使用之后,硬度会变得更加柔软,且更容易被划伤或被损坏。
(3)抗张强度的下降:当电线电缆绝缘材料和护套材料发生了老化之后,其机械性能就会受到影响,抗张强度也会下降。
(4)介电性能下降:电缆绝缘材料和护套材料老化后,其介电常数和介质损耗角正比多项式下降,从而导致电缆的信号传输性能降低。
(5)化学性能下降:当电缆绝缘材料和护套材料老化时,化学性能也会受到影响,如表面起泡、龟裂、断裂等。
绝缘材料是什么绝缘材料是一种能够有效阻止电流通过的材料。
在电力系统、电子器件和电气设备中,绝缘材料扮演着非常重要的角色。
绝缘材料的主要作用是隔离电流,防止电流泄漏或短路引起的危险和损坏。
它能够阻挡电子的流动,从而保护电器设备以及操作人员的安全。
此外,绝缘材料还能够降低能量的损耗,提高系统的效率。
绝缘材料通常具有以下特性:1. 高绝缘强度:绝缘材料应具备足够的绝缘强度,即可以承受电场的作用而不发生击穿。
绝缘材料的绝缘强度通常通过耐压测试来确定。
2. 良好的热稳定性:绝缘材料应具备较高的熔点和较低的热膨胀系数,以确保在工作环境中能够保持稳定的性能。
3. 优异的机械强度:绝缘材料应具备一定的机械强度,能够抵抗机械应力和振动。
4. 耐化学腐蚀性:绝缘材料必须具备一定的耐化学腐蚀性,以便在特殊环境中保持其电气性能。
常见的绝缘材料包括:1. 绝缘纸:由纤维素纤维制成,具有良好的绝缘性能和机械强度,广泛应用于电力变压器和电机上。
2. 绝缘胶木:由木质纤维与合成树脂制成,具有较高的传热性能和机械强度,广泛应用于电线电缆的绝缘层。
3. 绝缘涂层:通过喷涂、浸渍或涂覆等方式将绝缘材料涂在导线或器件表面,提供良好的绝缘保护。
4. 绝缘胶带:由捻制的绝缘材料制成,具有良好的耐热性和粘结性能,用于电线电缆的绝缘和固定。
5. 绝缘塑料:通常是由聚合物制成的,具有良好的绝缘性能、机械强度和耐化学腐蚀性,广泛应用于电子器件和电气设备中。
绝缘材料在电力系统中的作用不可忽视,它对系统的安全性和性能有着重要的影响。
随着电力技术的不断发展,人们对绝缘材料的要求也越来越严格,希望能够生产出更高性能的绝缘材料来满足电力系统的需求。
常用电缆之byj线与bv线有什么区别【建设施工经典推荐】常用电缆之byj线与bv线有什么区别什么是BYJBYJ属于室内装修绝缘电线,又称交联电线,拥有环保电线的美誉,具有耐高温、高阻燃、低烟无卤素的性能,广泛应用于安全和环保要求高的场合使用。
BYJ是电线还是电缆?电线是由一根或几根柔软的导线组成,外面包以轻软的护层;电缆是由一根或几根绝缘包导线组成,外面再包以金属或橡皮制的坚韧外层。
BYJ是单芯线,只有一个芯和一层绝缘层。
BYJ代表交联聚乙烯绝缘布电线,属于电线。
BYJ电线的优势1、byj电线的机械性能是比较好的,在使用的过程中,是能够很好的避免其出现开裂和磨损,确保了长久的使用。
而且byj电线所能够承受的机械应力,会比pvc、pe材料更强,使用起来的安全性能也更高。
2、byj电线在日常使用的过程中,是不易出现腐蚀的,即便是接触了化学溶剂。
不过byj电线的外围直径是比较小的,比不上同规格同横截面的pvc材料电线,正是因此,byj 电线只能够用于穿管施工。
3、在管径中使用的时候,使用byj电线的话,能够让其穿过的电线变得更多,成本也会大幅度的降低,保证了使用。
而且byj电线的重量是比较小的,运输和安装都会方便很多,若是后期燃烧,是不会产生有毒的物质,属于环保型材料。
如何选购电线1.看标志购买电线时,一定要注意电线上是否有国家强制认证的“CCC”标志,还要看看电线上是否有产品名称、生产厂家、规格型号等。
字迹要清晰、准确。
2.看绝缘层好的电线不仅颜色鲜艳,而且线体油光发亮,绝缘层还比较柔软、有韧性。
反之,如果电线线体发白,颜色不正,绝缘层比较生硬且存在扭曲、不平等缺陷时为劣质电线,不建议购买。
3.看铜芯质量好的电线的线芯具有金属光泽,且绞合紧密度高,不容易断裂。
同时铜芯也会位于正中央,不会有偏移。
反之如果电线铜芯有污渍,则属于不合格产品,因为在制作中未经过“碱化”程序。
4.看铜芯直径好的电线的铜芯直径比较粗,质量也比较好,因此价格也更贵,在购买时,最好咨询装修公司或电工,根据自己家用的电器来定,一般铜芯直径跟商品包装上的尺寸标准要符合。
电线电缆主要塑料原料电线电缆用材料按其使用部位与功能、可分为导电材料、绝缘材料、护层材料、屏蔽材料、填充材料等。
按材料属性来分可分为金属(铜、铝、铝合金、钢),塑料(PVC、PE、PP、XLPE/XL-PVC、PU、TPE/PO)、橡胶等。
但其中有些材料是几个结构件通用的。
尤其是热塑性材料,如聚氯乙稀、聚乙烯等只要改变部分配方成份就可用在绝缘或护套上。
接下来介绍下我们常用的非金属电线电缆原材料一、聚氯乙烯(PVC)PVC一般用做绝缘和护层材料。
PVC作为电线电缆绝缘用之性能:不易燃烧、耐老化、耐油、耐化学药品、耐冲击、易着色;但由于介电常数大,一般只作为低压电缆的绝缘材料和控制电缆的绝缘材料。
PVC作为电线电缆护套用之性能:具有良的耐磨性、能抵抗油、酸、碱、菌、潮气及日光照射等,并且对火焰的作用有自灭作性能;聚氯乙烯护套的最低工作温度的-40度,耐高温可达105度。
二、聚乙烯(PE)PE的一般物理性能:呈白色蜡状,半透明,柔而韧,稍能伸长,比水轻,无毒;燃烧特征:易燃,离火后继续燃烧,火焰上端呈黄色而下端呈蓝色,燃烧时熔融滴落,发出石蜡燃烧时的气味;聚乙烯加工熔点范围是132~1350C,着火温度为:3400C,自燃温度为:3900C。
聚乙烯 (PE)一般分为LDPE、MDPE、HDPE、FMPE几大类。
1、LDPE:低密度聚乙烯是聚乙烯系列中最轻的一种,又称低压聚乙烯,结构特点是非线性的,分它具有较低的结晶度和软化点,有较好的柔软性、伸长率、电绝缘性、透明性,,以及较高的耐冲击强度。
低密度聚乙烯机械强度较差,耐热性低,此外,一个明显弱点是耐环境应力开裂性差。
2、MDPE:中密度聚乙烯又称中压聚乙烯和菲利浦聚乙烯,其性能和高密度聚乙烯相傩,本厂已不再使用,此处不详述。
3、HDPE:高密度聚乙烯较之低密度聚乙烯,又称高压聚乙烯,它具有优异的综合性能,如提高了耐热性和机械强度(如拉伸长度、弯曲强度、压缩强度、剪切强度),并且提高了对水蒸汽和气体的阻隔性能,耐环境应力龟裂性能优越。
电线电缆绝缘及护套材料的技术分析及对策电线电缆的绝缘及护套材料是保证电线电缆正常运行的重要组成部分。
本文将从技术分析的角度探讨电线电缆绝缘及护套材料的特点、存在的问题以及相应的对策。
电线电缆绝缘材料的主要特点是优异的电气绝缘性能和高温耐老化性能。
常用的电线电缆绝缘材料有PVC、XLPE和EPR等。
PVC具有良好的绝缘性能和机械强度,但其耐热性和耐老化性较差;XLPE具有优异的电气性能、机械强度和耐热性能,但价格较高;EPR具有良好的电气性能和耐热性能,但其加工性较差。
目前电线电缆绝缘材料存在一些问题。
升压电缆的绝缘材料在高温、高电压条件下容易发生剥落、老化等故障,降低了电缆的安全性能。
绝缘材料中可能含有有害物质,对环境和人体健康造成潜在风险。
部分电线电缆护套材料存在老化、腐蚀等问题,影响了电缆的使用寿命。
针对以上问题,可以采取一些对策进行改善。
在设计和选择电缆绝缘材料时,应优先考虑其耐高温和耐老化性能,确保电缆在高温和高电压环境下具备良好的安全性能。
研发无卤素电缆绝缘材料以替代部分含有有害物质的材料,以降低对环境和人体健康的危害。
可以加强对电缆绝缘材料的质量控制,确保提供高质量、安全可靠的材料。
对于电线电缆护套材料的问题,应加强护套材料的研发和改良,提高其耐老化、耐腐蚀等性能,延长电缆的使用寿命。
在电缆安装、使用和维护过程中,应加强对电缆护套的保护和维护,避免暴露在恶劣环境中,防止外力损伤和化学腐蚀。
电线电缆绝缘及护套材料的技术分析及对策是保证电线电缆安全运行的重要内容。
通过合理选择绝缘材料、研发无卤素材料,并加强材料质量控制,可以提高电缆的安全性能。
加强护套材料的研发和改良,以及加强电缆的保护和维护,可以延长电缆的使用寿命。
电线电缆绝缘材料及护套材料的老化分析摘要:电线电缆产品需求量的不断增加,进一步加剧了市场竞争的激烈程度。
各企业为在电线电缆行业中获得更大的市场份额,开始加大了对产品材料成本以及生产工艺等内容的研究力度。
电线电缆绝缘材料以及护套材料性能直接影响了电线电缆的质量问题、应用范围以及应用时间。
文章便结合电线电缆绝缘材料及护套材料常出现的质量问题,特别是针对于电线电缆绝缘材料及护套材料的老化问题进行探讨与分析。
关键词:电线电缆;绝缘材料;护套材料;老化;质量为了妥善解决市场产品同质化严重问题,保证企业自身竞争实力,电线电缆生产企业开始加大了对产品自身加工材料以及加工工艺的研究力度,期望通过合理研究,及时发现传统产品生产弊端,进而对其展开针对性的调整,为企业获取到更加可观的经济收益。
在正式展开产品绝缘与护套材料研究之前,首先应对电线电缆基本情况展开研究,以为后续分析工作开展奠定良好基础[1]。
1电线电缆绝缘材料及护套材料的重要性在电线电缆企业的实际生产过程当中,由于电线电缆绝缘材料以及护套材料在整个材料的总成本不到20%,因此很多电线电缆企业往往都忽视了绝缘材料以及护套材料的重要性,那么质量也极其容易被忽视,从而便导致了在供应商的选择上,材料型号的选择以及检验标准方面存在着很大的漏洞。
实际上,绝缘材料以及护套材料质量决定了电线电缆的绝缘性能,耐环境条件性能以及抗老化性能。
因此,在电信电缆的产品检验标准中,70%的检验应在电线电缆绝缘材料以及护套材料的质量检验相关。
而绝缘材料以及护套材料的质量不易控制。
电线电缆绝缘材料以及护套材料的检验需要用专门的设备来进行,而样品的制备过程也相当复杂,而且部分的性能测试检验长达十天左右。
因此,绝缘材料以及护套材料的质量问题不易控制。
而实际上若是能够做好成品的检验以及供应商的管理工作后,绝缘材料以及护套材料的质量问题是可以得到有效的控制的。
所以有效的提高绝缘材料以及护套材料的质量问题是提高电线电缆质量的重要基础[2]。
交联聚乙烯绝缘电缆与聚氯乙烯绝缘电缆比较交联聚乙烯绝缘电缆与聚氯乙烯绝缘电缆比较一、XLPE电缆与PVC电缆的区别:1.低压交联(XLPE)电缆自九十年代中期投入应用以来,发展迅速,目前已与聚氯乙烯(PVC)电缆各占市场一半份额。
交联电缆与聚氯乙烯电缆相比较,载流量较高,过载能力较强,使用寿命较长(PVC电缆环境较好时热寿命一般为20年,而XLPE电缆热寿命一般为40年);PVC燃烧时会分解释放大量黑烟和有毒气体,而XLPE燃烧时不会产生卤素有毒气体,交联电缆的优越性日益为设计和使用部门所认识。
2.普通PVC电线电缆(绝缘和护套)燃烧时延燃迅速,助长火势,1~2min即丧失供电能力,其燃烧分解释放的黑烟可达伸手不见五指的程度,造成人员呼吸和疏散困难。
更为严重的是,PVC燃烧时会分解释放氯化氢(HCL)和二噁英等剧毒腐蚀性卤素气体,是火灾中致人死命的主要原因(占火灾死亡因素的80%),并成稀盐酸导形电膜附着在电气设备上,严重降低设备的绝缘性能,形成难以清除的二次灾害。
二、电气、机械、耐气候性对比表三、毒性指数分析对比表、根据以上两个表,我们不难看出,交联聚乙烯绝缘电缆在电气性能、耐热性能、物理机械性能、耐气候性及毒性都比聚氯乙烯绝缘电缆好。
为提高聚乙烯的性能,研究了许多改性方法,对聚乙烯进行交联,通过聚乙烯分子间的的共价键形成一个网状的三维结构,迅速改善了聚乙烯树脂的性能,如:热形变性、耐磨性、耐化学药品性、耐应力开裂等一系列物理、化学性能是一种电缆料聚氯乙烯是一种树脂但是你指的那个也是一种电缆料只不过里面添加了多种成分你说的那个线可以这样说铜芯外面包裹的是交联聚乙烯电缆料再经过装铠或者包带再加一层聚氯乙烯护套电缆料这样的电缆交联聚乙烯绝缘挤塑温度多少挤出温挤出度一般为125-135度之间!这是交联聚乙烯普通聚乙烯一般为170-195度之间!聚乙烯的物理化学性质聚乙烯特性聚乙烯无臭,无毒,手感似蜡,具有优良的耐低温性能(最低使用温度可达-70~-100℃),化学稳定性好,能耐大多数酸碱的侵蚀(不耐具有氧化性质的酸),常温下不溶于一般溶剂,吸水性小,电绝缘性能优良;但聚乙烯对于环境应力(化学与机械作用)是很敏感的,耐热老化性差。
电缆的主要材料1、铜丝:采用电解铜作为原料,经连铸连轧工艺制成的的铜线称为低氧铜线;经上引法制成的铜线称为无氧铜线。
低氧铜线含氧量为100~250ppm,含铜量为99.9~9.95%,导电率为100~101%。
无氧铜线含氧量为4~20ppm,含铜量为99.96~9.99%,导电率为102%。
铜的比重为8.9g/cm3。
2、铝线:用作电线用的铝线都要进行退火软化过。
用作电缆用的铝线一般不用软化。
电线电缆用的铝的电阻率要求达到0.028264Ω.mm2/m,铝的比重为2.703g/cm3。
3、聚氯乙烯(PVC):聚氯乙烯塑料是以聚氯乙烯树脂为基础,加入各种配合剂混合而成的,如防老剂、抗氧剂、填料、光亮剂、阻燃剂等,其密度为1.38~1.46g/cm3左右。
聚氯乙烯材料的特点:力学性能优越,耐化学腐蚀,不延燃,耐候性好,电绝缘性能好,容易加工等。
聚氯乙烯材料的缺点:①燃烧时有大量有毒的烟雾发出;②热老化性能差。
聚氯乙烯有绝缘料与护套料之分。
4、聚乙烯(PE):聚乙烯是由精制的乙烯聚合而成的,按密度可分为低密度聚乙烯(LDPE)、中密度聚乙烯(MDPE)、高密度聚乙烯(HDPE)。
低密度聚乙烯的密度一般为0.91~0.925g/cm3;中密度聚乙烯的密度一般为0.925~0.94g/cm3;高密度聚乙烯的密度一般为0.94~0.97g/cm3。
聚乙烯材料的优点:①绝缘电阻和耐电压强度高;②在较宽的频带范围内,介电常数ε和介质损耗角正切值tgδ小;③富于可挠性,耐磨性能好;④耐热老化性能、低温性能及耐化学稳定性好;⑤耐水性能好,吸湿率低;⑥用它制作的电缆质量轻,使用敷设方便。
聚乙烯材料的缺点:①接触火焰时易燃烧;②软化温度较低。
注:版权归原作者所有如有侵权请立即与我们联系,我们将及时处理。
电线电缆产品质量问题及对策摘要:电线电缆产品是建筑、电力等领域的重要组成部分,其质量直接关系到使用安全和可靠性。
然而,目前市场上存在着电线电缆产品质量问题,如原材料不合格、加工工艺不规范、质量监管不到位等。
通过制定具有针对性的对策,可以有效提升电线电缆产品的质量水平,确保用户的使用安全和权益,推动电线电缆行业的健康发展。
关键词:电线电缆;产品质量问题;应对策略电线电缆产品作为现代生活和工业生产中的基础设施,承担着重要的电力传输和连接功能。
然而,在市场上,我们也经常听到关于电线电缆产品质量问题的报道,如短路、线路老化、使用寿命不长等。
这些问题直接影响着电气设备的运行安全和可靠性。
因此,解决电线电缆产品质量问题成为当前迫切需要解决的课题。
电线电缆产品质量问题的解决将为电气设备的安全运行提供更为坚实的保障,同时也对电线电缆行业的发展起到积极的推动作用。
1.电线电缆产品质量问题1.1原材料问题(1)铜材质问题:电线电缆产品通常使用铜作为导体材料,而铜的质量直接影响着电线电缆的电导率和传输能力。
如果使用低纯度的铜材料,电线电缆的电阻将增大,导致能量损耗增加和电流过载的风险。
(2)绝缘材料问题:绝缘材料在电线电缆中起到保护导体以及隔离导体之间的作用。
如果绝缘材料的质量不合格,可能会导致绝缘能力降低,容易发生短路、漏电等安全隐患。
(3)护套材料问题:护套是用来保护电线电缆免受外界物理力和环境因素的侵害,如温度、湿度、化学物质等。
如果护套材料的质量不达标,会导致电线电缆易老化、易损坏,进而降低产品的使用寿命。
1.2加工工艺问题(1)导体连接问题:电线电缆中的导体连接要求稳固和可靠,以确保电流的正常传输。
如果导体连接不良或存在松动,可能会导致电阻增大、发热以及电线电缆的故障。
(2)绝缘层处理问题:对绝缘层的加工处理需要注意保持一定的厚度和均匀性,以确保其良好的绝缘性能。
如果绝缘层存在缺陷、厚度不均匀等问题,可能会导致绝缘失效、漏电或短路的风险。
电线电缆绝缘材料的老化及质量控制摘要:随着时代的迅速发展,电线电缆企业的数量不断增加,企业之间产品的同质化现象也较为严重。
企业为提升电线电缆产品的质量,并有效控制产品生产的成本,应根据相关标准要求,最大限度地降低废品率。
电线电缆经过长时间的使用后,其外部绝缘材料的性能可出现劣化现象,即绝缘老化。
绝缘老化易引起火灾、电力故障等,严重威胁着人们的生命和财产安全,电线电缆绝缘材料的老化成为亟待解决的问题。
为此,本文侧重分析了电线电缆绝缘材料的老化及质量控制措施,希望为电线电缆的稳定运行提供参考依据。
关键词:电线电缆绝缘材料;老化;质量控制1电线电缆绝缘材料的概念电线电缆绝缘材料是用来隔离导体的材料,主要作用是防止电流在电线电缆外部或不同导体之间发生短路或漏电现象,从而保证电线电缆的安全可靠性。
绝缘材料通常具有较高的介电常数和绝缘电阻,能够有效地隔离导体,防止电流流失和能量损失。
常用的电线电缆绝缘材料包括聚氯乙烯(PVC)、交联聚乙烯(XLPE)、环氧树脂等,这些材料具有优良的电气绝缘性能、机械性能和热稳定性,能够满足不同电力设备和场合的需求。
在电力工程中,正确选择和使用电线电缆绝缘材料是确保电力设备运行安全和可靠的重要措施。
2电线电缆绝缘材料的老化分析2.1绝缘材料的热老化绝缘材料属于高分子材料,长期处于高温环境下易发生老化,造成化学结构改变,绝缘性能降低。
温度与绝缘材料的化学反应呈正相关关系,温度的持续升高,可加快材料的化学反应,同时可缩短绝缘材料的使用时长。
通常情况下,绝缘材料的热老化现象在温度相对稳定的地区表现不明显,而在温度较高的地区,绝缘材料发生热老化的速度会加快。
但温度并非绝缘材料产生热老化的主要原因,电线电缆在运行过程中可产生较多热量,该热量为引发绝缘材料热老化的关键因素,同时绝缘材料的氧化反应也可引起热老化。
为有效防止绝缘材料产生氧化反应,可采用抗氧化剂对材料进行保护。
2.2绝缘材料的机械老化绝缘材料在外界机械力的作用下可产生一定变化,该变化即为机械老化。