第三章光合作用
- 格式:ppt
- 大小:1.08 MB
- 文档页数:28
第三章光合作用一、名词解释1. 光合作用2. 光合强速率3. 原初反应4. 光合电子传递链5. PQ穿梭6. 同化力7. 光呼吸8. 荧光现象9. 磷光现象10. 光饱和点11. 光饱和现象12. 光补偿点13. 光能利用率14. 二氧化碳饱和点15. 二氧化碳补偿点16. 光合作用单位17. 作用中心色素18. 聚光色素19. 希尔反应20. 光合磷酸化21. 光系统22. 红降现象23. 双增益效应24. C3植物25. C4植物26. 量子产额27. 量子需要量28. 光合作用‘午睡’现象三、填空题1. 光合色素按照功能不同分类为和。
2. 光合作用的最终电子供体是,最终电子受体是。
3. 光合作用C3途径CO2的受体是,C4途径的CO2的受体是。
4. 光合作用单位由和两大部分构成。
5. PSI的原初电子供体是,原处电子受体是。
6. PSII的原初电子受体是,最终电子供体是。
7. 光合放氧蛋白质复合体又称为,有种存在状态。
8. C3植物的卡尔文循环在叶片的细胞中进行,C4植物的C3途径是在叶片的细胞中进行。
9. 在卡尔文循环中,每形成1摩尔六碳糖需要摩尔ATP,摩尔NADPH+H+。
10. 影响光合作用的外部因素有、、、和。
11. 光合作用的三大步聚包括、和。
12. 光合作用的色素有、和。
13. 光合作用的光反应在叶绿体的中进行,而暗反应是在进行。
14. 叶绿素溶液在透射光下呈色,在反射光下呈色。
15. 光合作用属于氧化还原反应,其中中被氧化的物质是,被还原的物质时是。
16. 类胡萝卜素吸收光谱最强吸收区在,它不仅可以吸收传递光能,还具有的作用。
17. 叶绿素吸收光谱有光区和光区两个最强吸收区。
18. 光合作用CO2同化过程包括、、三个大的步骤。
19.根据光合途径不同,可将植物分为、、三种类别。
20. 尔文循环按反应性质不同,可分为、、三个阶段。
21. 在光合作用中,合成淀粉的场所是,合成蔗糖的场所是。
第三章植物的光合作用一、名词解释1. 光合作用2. 荧光现象3. 原初反应4. 同化力5. Hill 反应6. 红降现象7. 爱默生效应8. PQ 穿梭9. 聚光(天线)色素10. 光合磷酸化11. C3植物12. C4植物13. 光呼吸14. 温室效应15. 光饱和点16. 光补偿点17. 代谢源18. 代谢库二、填空题1. 根据功能的不同叶绿体色素可以分为 ______________ 和 _____________ 两大类。
2. 叶绿素从第一单线态回到基态所放出的光称为 _________ ,从第一三线态回到基态所放出的光称为 ________ 。
3.C3植物、C4植物和CAM 植物所共有的CO2受体是 ___________ 。
4.PSI 为 ______ 波光反应,其主要特征是 ______ 。
5. 维持植物正常的生长所需的最低日照强度应 ______ 于光补偿点。
6. 叶绿体色素吸收光能后,其光能主要以_____ 方式在色素分子之间传递。
在传递过程中,其波长逐渐_____ ,能量逐渐 _____。
7. 植物体内的有机物是通过 ______ 进行长距离运输的,其中含量最高的有机物是______ 。
8.______ 现象和 ______ 证明了光合作用可能包括两个光系统。
9.PSII ______ 波光反应,其主要特征是 ______ 。
10. 影响韧皮部运输的主要环境因素是_____ 和_____ (举主要 2 种)。
11.CAM 植物,夜间其液泡的 pH_____ ,这是由于积累了大量 _____引起的。
12.PSI 中,电子的原初供体是_____ ,电子原初受体是_____ 。
13. 在光合链中,电子的最终供体是_____ ,电子最终受体是_____ 。
14. 光合链上的 PC ,中文叫_____ ,它是通过元素_____ 的变价来传递电子的。
15. 筛管汁液中,阳离子以_____ 最多,阴离子以_____ 为主。
植物生理学第三章植物的光合作用植物的光合作用是指植物利用光能将二氧化碳和水转化成有机物质(如葡萄糖)和氧气的过程。
其反应方程式为:6CO2+6H2O+光能→C6H12O6+6O2光合作用是植物最重要的生理过程之一,它不仅是植物能够生存和生长的基础,还能为其他生物提供氧气和有机物质。
光合作用通过光合色素和叶绿体等生理结构,具有高效和专一性的特点。
植物的光合作用可以分为两个阶段:光能捕获和光化学反应、以及碳固定和假单胞菌循环。
在光能捕获和光化学反应阶段,植物的光合色素(如叶绿素)能够捕获太阳光,并将其转化为化学能。
光合作用发生在叶绿体内,主要以叶绿体膜的光合作用单位,光系统(PSI和PSII)为中心。
光系统中的光合色素吸收太阳光,并将其能量传递给反应中心,激发电子。
通过光合色素的电子传递链,电子在PSII和PSI之间进行转移,最终转移到还原辅酶NADP+上,形成还原辅酶NADPH。
在碳固定和假单胞菌循环阶段,植物利用还原辅酶NADPH和ATP的能量,将二氧化碳转化为有机化合物。
这个过程称为Calvin循环,也叫柠檬酸循环。
Calvin循环包括三个主要步骤:碳固定、还原和再生。
首先,二氧化碳与从光合作用过程中产生的核酮糖五磷酸(RuBP)结合,形成不稳定的六碳中间体。
然后,该中间体通过一系列酶的作用,将其分解为两个三碳化合物,3-磷酸甘油醇醛(3-PGA)。
最后,3-PGA经过一系列的加氢还原反应和磷酸化反应,合成出葡萄糖和其他有机物质。
光合作用的速率受到光照、温度、二氧化碳浓度和水分等环境条件的影响。
光合速率随着光照强度的增大而增加,但达到一定的饱和点后,光合速率趋于稳定。
温度对光合作用的影响是复杂的。
在适宜温度下,光合速率随着温度的升高而增加,因为反应速率加快。
然而,当温度超过一定范围时,光合作用会受到抑制,因为高温会破坏光系统和酶的结构。
二氧化碳浓度越高,光合速率越快。
水分对光合作用的影响主要是通过调节植物的气孔进行的。
第三章光合作用名词解释:1、光合作用:绿色植物利用光能,把二氧化碳和水合成有机物质,并释放出氧气的过程。
2、光合速率:即光合强度,指单位时间单位叶面积所吸收的二氧化碳或释放的氧量,或单位时间单位叶面积所积累的干物质量,常用以下单位表示:CO2m g·dm-2·h-13、净光和强度:即表现光合强度,指总光合减去被测部位同时进行的呼吸强度。
4、原初反应:是光合作用的起点,指光合色素吸收日光能所引起的光物理及光化学过程。
包括光能的吸收和色素分子激发态的形成;天线色素分子间能量的传递;作用中心对光能的捕获、电荷分离。
5、光化学反应:是指反应中心色素分子吸收光能所引起的氧化还原反应。
6、反应中心:由反应中心色素分子及其原初电子受体与原初电子供体所组成,聚光色素分子吸收光能,传递到反应中心,反应中心色素分子被光量子所激发,失去电子呈氧化态,原初电子受体接受电子而被还原,反应中心色素分子失去电子即带正电荷,又可从它的原初电子供体获得电子而回复原状。
7、同化力:在电子传递及光合磷酸化作用中形成的NADPH+H+和ATP,随后用于CO2的同化,故称为同化力。
8、光呼吸:指绿色植物细胞在光下吸收O2,氧化乙醇酸,放出CO2的过程,称为光呼吸9、光饱和现象:在光照强度较低时,光合速率随光强的增加而相应增加;光强进一步提高时,光合速率的增加逐渐减小,当超过一定光强时即不再增加,这种现象称光饱和现象10、光饱和点:开始达到光饱和现象时的光照强度称为光饱和点。
11、光补偿点:在在光饱和点以下,光合速率随光照强度的减小而降低,到某一光强时,光合作用中吸收的CO2与呼吸作用中释放的CO2达动态平衡,这时的光照强度称为光补偿点。
12、CO2饱和点:在一定范围内,植物净光合速度随CO2浓度增加而增加,但到达一定程度时再增加CO2浓度,净光合速率不再增加,这时的CO2浓度称为二氧化碳饱和点13、CO2补偿点:在CO2饱和点以下,光合作用吸收的CO2与呼吸同光呼吸释放的CO2 达动态平衡,这时环境中的CO2浓度称为CO2补偿点。
第三章植物的光合作用一、名词解释1. C3途径2. C4途径3. 光系统4. 反应中心5. 原初反应6. 荧光现象7. 红降现象8. 量子产额9. 爱默生效应10. PQ循环11. 光合色素12. 光合作用13. 光合单位14. 反应中心色素15. 聚光色素16. 解偶联剂17. 光合磷酸化18. 光呼吸19. 光补偿点20. CO2补偿点21. 光饱和点22. 光能利用率23. 光合速率二、缩写符号翻译1. Fe-S2. PSI3. PSII4. OAA5. CAM6. NADP+7. Fd 8. PEPCase 9. RuBPO10. P680、P700 11. PQ 12. PEP13. PGA 14. Pheo 15. RuBP16. RubisC(RuBPC) 17. Rubisco(RuBPCO)三、填空题1. 光合作用的碳反应是在中进行的,光反应是在中进行的。
2. 在光合电子传送中最终电子供体是,最终电子受体是。
3. 在光合作用过程中,当形成后,光能便转化成了活跃的化学能;当形成后,光能便转化成了稳定的化学能。
4. 叶绿体色素提取掖液在反射光下观察呈色,在透射光下观察呈色。
5. P700的原初电子供体是,原初电子受体是。
6. 光合作用的能量转换功能是在类囊体膜上进行的,所以类囊体亦称为。
7. 光合作用中释放的氧气来自于。
8. 与水光解有关的矿质元素为。
9. 和两种物质被称为同化能力。
10. 光的波长越长,光子所持有的能量越。
11. 叶绿素吸收光谱的最强吸收区有两个:一个在,另一个在。
12. 光合磷酸化有三种类型:、、。
13. 根据C4化合物和催化脱羧反应的酶不同,可将C4途径分为三种类型:、、。
14. 一般来说,正常叶子的叶绿素和类胡萝卜素的分子比例为;叶黄素和胡萝卜素的分子比例为。
15. 光合作用中,淀粉的形成是在中,蔗糖的形成是在中。
16. C4植物的C3途径是在中进行的;C3植物的卡尔文循环是在中进行的。
第三章植物的光合作用_植物生理学第三章:植物的光合作用植物的光合作用是植物生理学中一个非常重要的过程,通过光合作用,植物能够将光能转化为化学能,并且产生出氧气和有机物质,为植物自身生长和发育提供能量和养分,也间接地为其他生物提供能源。
植物的光合作用是在叶绿体中进行的。
叶绿体是植物细胞中的一种细胞器,它含有叶绿素,可以吸收太阳光中的能量。
光合作用主要包括光能的吸收、光能的转换和产物的合成三个过程。
首先,光能的吸收过程。
植物的叶绿体中含有多种不同类型的叶绿素,它们能够吸收不同波长的光。
叶绿素中的色素分子吸收光子后激发,成为激发态叶绿素。
不同的叶绿素吸收不同波长的光,其中最主要的是吸收红光和蓝光的叶绿素a,然后是辅助叶绿素如叶绿素b和叶黄素等。
叶绿体中的叶绿素主要吸收短波长的光,因此植物呈现出绿色。
其次,光能的转换过程。
当叶绿素吸收光子之后,其中的电子被激发出来,并且通过一系列的电子传递过程,在两个光化学反应中最终形成高能态分子ATP和NADPH。
这两种高能物质是植物光合作用最重要的产物,它们为植物提供了能量和电子。
ATP是一种能量通货,它可以通过释放磷酸基团的能量来驱动其他细胞活动。
NADPH是一种电子载体,它可以将电子传递给碳固定反应中的酶,驱动二氧化碳的还原反应。
最后,产物合成过程。
产生的ATP和NADPH被用来驱动碳固定反应,也就是光合作用的第二阶段。
在这个阶段中,植物利用ATP和NADPH将二氧化碳还原成有机物质。
这个过程中最重要的酶是光合酶RuBisCO,它将二氧化碳与一种五碳糖RuBP反应生成六碳糖,然后分解成两个三碳糖PGA。
PGA在一系列酶催化作用下转化为三碳糖G3P,部分G3P能够通过其他途径转化为其他有机物质,但大部分会再次参与碳固定反应生成更多的RuBP。
总结起来,植物的光合作用是植物生理学中的一个重要过程,通过光合作用植物能够利用太阳能将二氧化碳和水转化为有机物质并产生氧气。