翅片换热面积
- 格式:docx
- 大小:25.09 KB
- 文档页数:1
翅片管换热器执行标准(一)
翅片管换热器执行标准
简介
•翅片管换热器是一种常用的换热设备,广泛应用于工业领域。
•为了保证翅片管换热器的安全、可靠运行,制定了相应的执行标准。
标准概述
•翅片管换热器执行标准是针对翅片管换热器设计、制造、安装和维护等各个环节的规范要求的统称。
•标准的制定目的是为了提高翅片管换热器的效率、延长使用寿命、降低故障率。
标准内容
1.设计要求
–标明了翅片管换热器的基本参数,如换热面积、换热系数等。
–确定了翅片管的材料选择、敷设方式等要求。
2.制造要求
–规定了翅片管换热器的加工工艺,包括翅片的制作、管道的焊接等。
–对焊接质量、表面处理、检测方法等进行了详细的要求。
3.安装要求
–确定了翅片管换热器的安装位置、连接方式等。
–确保换热器与其他设备的协调配合,并考虑到换热器的维护和清洗。
4.运行要求
–规定了翅片管换热器的工作压力、工作温度等操作条件。
–强调了设备的定期维护和保养,以及对异常情况的处理措施。
标准影响
•翅片管换热器执行标准的实施,对于提高换热器的性能稳定性、降低能耗、保证产品质量具有重要意义。
•标准的制定也对相关行业的发展起到了积极的推动作用。
结论
•翅片管换热器执行标准的制定是为了保证设备的质量和安全运行。
•遵守标准要求,能够提高翅片管换热器的效率和寿命,降低故障风险。
•希望各相关单位严格按照标准执行,共同推动行业的健康发展。
翅片管式热交换器的ε-NTU法换热量计算公式以及在空调机开发中的应用陆东铭【摘要】本文列表给出了翅片管式换热器分别作为冷凝器(干面)和蒸发器(湿面)时的ε-NTU法换热量计算公式,并阐述了其在空调机开发中的两个实际应用.【期刊名称】《家电科技》【年(卷),期】2018(000)009【总页数】3页(P77-79)【关键词】空调;ε-NTU法;换热量【作者】陆东铭【作者单位】上海三菱电机·上菱空调机电器有限公司上海 200135【正文语种】中文1 引言热交换器是空调机的四大部件之一,是影响空调机性能的重要因素。
采用ε-NTU 法对热交换器换热性能进行预测,可以对比不同热交换器的性能;尤其在系列空调机的开发中,通过对比所有热交换器的性能,使用最恶劣条件进行评价的原则,选取相应的热交换器作为代表来评价,可以大幅节约开发时间,提高开发效率。
当制冷系统的变化比较小时,采用ε-NTU法可以对制冷系统的性能进行简易计算。
本论文给出了采用ε-NTU法计算翅片管式热交换器换热量的方法,并阐述了ε-NTU法在实际空调机开发中的两个主要应用。
2 采用ε-NTU法对翅片管式热交换器进行换热量计算的方法2.1 翅片管式空气-制冷剂热交换器的几何学构成要素标准的翅片管式空气-制冷剂热交换器如图1所示,管内侧流体为制冷剂,管外侧流体为空气。
以管外径为φ=9.52mm的某热交换器为例,其几何学构成要素如下:管外径do=9.52mm、管壁厚tp=0.28mm、扩管率dR=1.05;管内径(扩管后)di=dR•do-2•tp=9.436mm;管段数NT=20、管列数NR=2;管段距S1=25.4mm、管列距S2=22.0mm;翅片壁厚tF=0.095mm、翅片片距Fp=1.5mm、NF翅片片数565;翅片翻边直径dc=do•dR+2•tF=10.186mm;翅片高度L1=NT•S1=508mm;翅片宽度L2=NR•S2=44mm;翅片积幅L3=NF•Fp=847.5mm;管抽取数Pr为0根。
句容翅片式换热器参数摘要:1.句容翅片式换热器概述2.句容翅片式换热器参数详解3.句容翅片式换热器的应用领域4.句容翅片式换热器的优势与特点正文:一、句容翅片式换热器概述句容翅片式换热器是一种高效节能的换热设备,主要由翅片管、翅片、进出口法兰等组成。
其结构紧凑,传热效率高,因此在工业、民用等领域得到了广泛应用。
二、句容翅片式换热器参数详解句容翅片式换热器的主要参数包括:1.翅片管尺寸:翅片管的尺寸决定了换热器的面积和流速,影响换热效果。
常见的翅片管尺寸有φ18、φ25、φ32 等。
2.翅片高度:翅片的高度决定了翅片与翅片之间的距离,影响热交换效率。
翅片高度一般为5-20mm。
3.翅片形式:翅片的形式包括水平翅片、波纹翅片、螺旋翅片等,不同形式的翅片对换热效果的影响较大。
4.材质:句容翅片式换热器的材质主要包括不锈钢、碳钢、铝等,根据不同的工作环境和介质选择合适的材质。
5.工作压力:句容翅片式换热器的工作压力分为低压和高压两种,一般低压换热器的工作压力在0.6MPa 以下,高压换热器的工作压力在0.6MPa 以上。
6.接口方式:句容翅片式换热器的接口方式有螺纹连接、焊接连接、法兰连接等,根据工程需要选择合适的接口方式。
三、句容翅片式换热器的应用领域句容翅片式换热器广泛应用于化工、石油、冶金、电力、船舶、集中供暖等领域,满足各种热交换需求。
四、句容翅片式换热器的优势与特点句容翅片式换热器具有以下优势与特点:1.高效节能:由于翅片的存在,使得换热器具有较大的热交换面积,提高了传热效率,降低了能耗。
2.结构紧凑:句容翅片式换热器的结构紧凑,占地面积小,便于安装和维护。
3.耐腐蚀性强:采用不锈钢等耐腐蚀材料制造,具有良好的耐腐蚀性能,适用于多种工作环境。
翅片管换热面积计算公式
翅片管的换热面积可以通过以下公式计算:
A = N × ΔL × (D - t)
其中,A代表翅片管的换热面积(单位为平方米),N代表翅片管
的数量,ΔL代表每根翅片管的有效长度(即翅片管的实际长度减去两端接头的长度),D代表翅片管的外径,t代表翅片管的壁厚。
需要注意的是,上述公式假设翅片管的截面为圆形,并且忽略了
翅片管两端与波动管(或流体管)之间的交错区域。
如果需要更精确
的计算,可以采用更加复杂的数学模型,考虑波动管与翅片管之间的
实际交错结构。
在实际应用中,翅片管的换热面积还受到因素如翅片形状、间距、翅片材料、流体速度等的影响。
因此,在具体应用中,还需根据实际
情况进行适当的修正和调整。
翅片管换热器的主要技术参数翅片管换热器的主要技术参数1. 引言翅片管换热器是一种常见的换热设备,其主要作用是通过翅片管的散热和换热功能,实现热量的传递和温度的调节。
翅片管换热器被广泛应用于工业生产中,包括化工、石油、电力等领域。
了解翅片管换热器的主要技术参数对于设计和运营人员来说至关重要,因此在本文中,我将详细介绍翅片管换热器的主要技术参数,并对其进行全面评估。
2. 翅片管换热器的主要技术参数2.1 散热面积翅片管换热器的散热面积是一个非常重要的技术参数。
它直接影响着换热效率和性能,通常用于评估散热器在一定工况下的换热能力。
散热面积的大小取决于翅片管换热器的设计尺寸和结构,同时也受到换热介质的流速、温度和物性参数的影响。
在实际应用中,需要对散热面积进行精确计算和评估,以保证换热器的正常运行和高效工作。
2.2 翅片间距翅片管换热器的翅片间距也是一个关键的技术参数。
翅片间距的大小直接影响着翅片管内流体的流动阻力和换热传递效率。
通常情况下,较小的翅片间距可以增加流体的湍流程度,进而提高换热传递效率,但也会增加流体的流动阻力;而较大的翅片间距则可以降低阻力,但换热效果会相应减弱。
在实际设计和运行中,需要对翅片间距进行合理选择和调节,以实现最佳的换热效果和能耗控制。
2.3 温差翅片管换热器的温差是指散热剂和换热剂之间的温度差,也是一个重要的技术参数。
温差的大小直接影响着翅片管换热器的换热速率和温度调节能力。
通常情况下,较大的温差可以提高换热速率,但也会增加能耗和运行成本;而较小的温差则可以降低能耗,但换热速率会相应减弱。
在实际应用中,需要对温差进行合理控制和调节,以实现能耗和换热效率的平衡。
3. 总结通过本文的介绍和评估,我对翅片管换热器的主要技术参数有了更深入和全面的了解。
熟悉这些技术参数,可以帮助我更好地设计和运行翅片管换热器,提高生产效率和降低能耗成本。
在实际应用中,需要根据具体的工艺条件和要求,合理选择和调节这些技术参数,以实现最佳的换热效果和运行性能。
●内翅片管式换热器●1前言管式换热器普遍用于石油,化工,冶金,电力等行业中,它具有结构简单,制造容易,材料广泛,适应性强等特点,是工业生产中的主要换热设备.目前,广泛应用的金属管式换热器是通过间壁来换热的,它传输的热量受到间壁面积和传热能力的限制,其综合传热系数不高,一般气一气换热的管式换热器仅为15~ZOW/m20C左右,管式插件换热器为30~3w/m2OC左右.由于管式换热存在着综合传热系数低,设备庞大等不足,为此各种插件热器,翅片管换热器等新型换热器应运而生.目前,开发新型高效换热器已成为换热器的发展趋势.内翅片管式换热器是我们最新研制开发的新型换热器,系国内首创,属于一代新型高效换热器,目前,已在工业中应用,取得了良好的效果.2内翅片管式换热器及其应用2.1内翅片管式换热器新型内翅片管式换热器的主要特点是:通过在换热管内扩展表面,强化管内传热的途径来提高换热器的性能.内翅片管采用纵向直肋,管内翅化比可达4~6,与一般光滑管相比,其管内给热系数可提高3~4倍左右.内翅片管的翅片采用焊接工艺焊接,其焊着率为i00.内翅片管式换热器与一般管式换热器在结构上差异不大,它们之间的区别主要在于换热管的不同.内翅片管如图1所示.内翅片管的规格见表1图1内翅片管内翅片管的规格袁袁1Do(ram)lh(mm)8(ram)晶L(ram)38—89l12—131~2l22{4--610000其中:Do一督径h一翅片高度a翅片厚度n一翅片散且一内翅化比L一翅片营长虚46与一般管式换热器相比,内翅片管式换热器具有以下优点:(1)管内给热系数相比.对于一般气一气换热管式换热器而言,管内热阻往往是控制热阻,因此,提高管内给热系数至关重要.采用翅片管时,管内翅化比可达4~6,管内给热系数可提高3~4倍,从而显著地强化了管内传热.(2)传热能力强.一般管式换热器的传热系数近似为K—a.a2/<a.十az),由于管内给热系数a的大幅度提高,K值也成倍提高了(a,a分别为管外,管内给热系数).(3)管壁温度低.管式换热器的管壁温度Tb一(a2tz/al十t)/(a2/al+1),显然,随着管内给热系数a的大幅提高,Tb是下降的,这时在高温下工作的换热器是十分重要的,可延长换热器的使用寿命(tt,t-分别为管外,管内流体的温度).(4)换热器结构紧凑.由于换热器传热系数K值的成倍提高,使得换热面积大为减少,换热器的体积也大为减小.2.2内翅片管式换热器的应用我们结台首钢余热利用工程,在蒸汽过热器上率先使用了内翅片管式换热器,如图2所示.2蒸汽过热器示意图1一垃热蒸汽出rn}2--按热营3一壳体;4一饱和蒸汽^rn}5一稠板;6一橱板其翅片管规格如图3所示管内,外翅片见表2,表3.圉3翅片管规格管内翅片表257I50』16f1.4l12f3.3管外翅片表3Dl(mm)lB(mm)lZ~(mm){f!!i:!l!:!其中:Do一管外径Dl一管内径Df一管外翅片外径h一翔片高度8一内翔片厚度n一翔片散岛一内翅化比p0一外翔化比△一外翔片厚度蒸汽过热器实测运行参数表4蒸汽风箱烟气人口/出口温度(℃)135/157188/15z热负荷'kw)~65按热面积(rⅡ)16.7综台传热系数(w/mk)~16547蒸汽过热器的实测运行参数见表4.其工艺流程见图4.图4工艺流程图1高温风箱;2过热器;3烟道4较水泵;5一除尘器;6气忾式热曾换热器,7汽包实践表明内翅片管式蒸汽过热器具有很高的综合传热系数,充分显示了它优越的强化传热性能.在生产中获得了良好的效果.2.3内翅片管式换热器的应用前景由于内翅片管是我们于2000年6月刚刚开发的新型换热器,它的应用范围还有很大的局限性.可以预见内翅片管式换热器必将在冶金,电力,石油,化工等行业有广泛的发展空问.下面仅以冶金加热炉空气预热器为例说明之.在工业窑炉中利用换热器回收窑炉废烟气的余热来预热空气或煤气可以提高理论燃烧温度,提高热效率,节能降耗,产生明显的经济效益,因此,空气预热器已成为工业窑炉的重要组成部分,被广泛应用.传统的空气预热器大多为管式换热器或插件换热器,它们存在着空气温度低,管壁温度高,结构庞大,尤其在高温条件下,使用寿命短等弊端.例如,当烟气温度为800C时,在标准流速,换热器体积相同条件下,一般管状换热器的空气预热温度~320C.管壁温度~570C,而内翅片管式换热器可将空气预热到~500C,管壁温度~420℃,可见内翅片管式换热器的优点是十分明显的.内翅片管的材质可以是碳钢或不锈钢.在它的管外还可以设置各种扩展面,如环肋,直肋,针肋等来满足各种不同工况的需要,从而进一步提高换热器的性能.3结束语内翅片管是一种薪型高教换热器,属于国内首创,与一般管式换热器相比,具有综台传热系数大,管壁温度低,结构紧凑,使用寿命长等特点,在冶金,电力,石油,化工的行业中具有广泛的应用前景.。
翅片管换热系数1. 什么是翅片管换热系数?翅片管换热系数是描述翅片管换热性能的一个重要参数。
换热系数是指在单位时间内,单位面积的热量传递量与温度差之间的比值。
对于翅片管换热器而言,翅片管换热系数是指翅片管内部与外部之间的热传导和对流换热效果的综合指标。
2. 翅片管换热系数的影响因素翅片管换热系数受到多种因素的影响,下面将对一些主要因素进行介绍。
2.1 翅片形状和尺寸翅片的形状和尺寸对换热系数有较大的影响。
通常情况下,翅片的面积越大,换热系数越高。
此外,翅片形状的选择也会对换热系数产生影响。
常见的翅片形状有矩形、梯形等,不同形状的翅片在不同工况下的换热效果也有所差异。
2.2 流体流速流体流速是影响翅片管换热系数的重要因素之一。
当流体流速增加时,流体与翅片管之间的对流换热效果增强,换热系数也会相应增加。
因此,在设计翅片管换热器时,需要根据流体流速的要求来确定翅片的尺寸和形状。
2.3 翅片材料和表面处理翅片的材料选择和表面处理也会对换热系数产生影响。
一般来说,热导率较高的材料可以提高翅片管的换热系数。
此外,通过对翅片表面进行特殊处理,如增加表面粗糙度或涂覆特殊涂层,也可以提高换热系数。
2.4 温度差温度差是影响翅片管换热系数的另一个重要因素。
温度差越大,换热系数越高。
因此,在实际应用中,需要根据具体的工况来选择合适的翅片管,以获得较高的换热系数。
3. 计算翅片管换热系数的方法计算翅片管换热系数是翅片管换热器设计的重要一环。
下面介绍两种常用的计算方法。
3.1 理论计算方法理论计算方法是通过数学模型和理论公式来计算翅片管换热系数。
这种方法需要根据具体的翅片管结构和工况条件,建立相应的数学模型,并利用热传导和流体力学的基本原理进行计算。
理论计算方法通常精度较高,但需要较多的计算和理论基础。
3.2 实验测定方法实验测定方法是通过实际试验来测定翅片管换热系数。
这种方法通常需要搭建实验装置,在实验室或现场进行试验。
制冷剂系统翅片式换热器设计及计算制冷剂系统的换热器的传热系数可以通过一系列实验关联式计算而得,这是因为在这类换热器中存在气液两相共存的换热过程,所以比较复杂,现在多用实验关联式进行计算。
之前的传热研究多对于之前常用的制冷剂,如R12,R22,R717,R134a等,而对于R404A和R410A的,现在还比较少。
按照传热过程,换热器传热量的计算公式为:Q=KoFΔtm (W)Q—单位传热量,WKo—传热系数,W/(m2.C)F—传热面积,m2Δtm—对数平均温差,CΔtmax—冷热流体间温差最大值,对于蒸发器,是入口空气温度—蒸发温度,对于冷凝器,是冷凝温度—入口空气温度。
Δtmin—冷热流体间温差最小值,对于蒸发器,是出口空气温度—蒸发温度,对于冷凝器,是冷凝温度—出口空气温度。
传热系数K值的计算公式为:K=1/(1/α1+δ/λ+1/α2)但换热器中用的都是圆管,而且现在都会带有肋片(无论是翅片式还是壳管式),换热器表面会有污垢,引入污垢系数,对于蒸发器还有析湿系数,在设计计算时,一般以换热器外表面为基准计算传热,所以对于翅片式蒸发器表述为:Kof--以外表面为计算基准的传热系数,W/(m2.C)αi—管内侧换热系数,W/(m2.C)γi—管内侧污垢系数,m2.C/kWδ,δu—管壁厚度,霜层或水膜厚度,mλ,λu—铜管,霜或水导热率,W/m.Cξ,ξτ—析湿系数,考虑霜或水膜使空气阻力增加系数,0.8-0.9(空调用亲水铝泊时可取1)αof—管外侧换热系数,W/(m2.C)Fof—外表面积,m2Fi—内表面积,m2Fr—铜管外表面积,m2Ff—肋片表面积,m2ηf—肋片效率,公式分析:从收集的数据(见后表)及计算的结果来看,空调工况的光滑铜管内侧换热系数在2000-4000 W/(m2.C)(R22取前段,R134a取后段,实验结果表明,R134a的换热性能比R22高)之间。
因为现在蒸发器多使用内螺纹管,因此还需乘以一个增强因子1.6-1.9。
翅片换热面积
摘要:
1.翅片换热面积的定义与作用
2.翅片换热面积的计算方法
3.翅片换热面积的影响因素
4.翅片换热面积的优化策略
5.翅片换热面积在实际应用中的优势
正文:
翅片换热面积是指翅片在换热器中所占据的面积,它对于换热器的性能有着至关重要的影响。
翅片换热面积的计算方法是根据换热器的设计参数以及翅片的高度、间距等因素进行计算的。
翅片换热面积的影响因素有很多,主要包括翅片的高度、间距、材料等。
其中,翅片的高度和间距会直接影响到翅片换热面积的大小,而翅片的材料则会影响到翅片的导热性能,从而影响到翅片换热面积的效果。
为了优化翅片换热面积,我们可以从以下几个方面入手:首先,通过合理的设计,使得翅片的高度和间距达到最佳值;其次,选择导热性能好的材料作为翅片的材料;最后,通过使用先进的制造技术,提高翅片的制造精度,从而提高翅片换热面积的效果。
翅片换热面积在实际应用中具有很多优势。
翅片管为了提高换热效率,通常在换热管的表面通过加翅片,增大换热管的外表面积(或内表面积),从而达到提高换热效率的目的,这样的换热管叫做翅片管。
翅片管作为换热元件,长期工作于高温烟气的工况下,比如锅炉换热器用翅片管使用环境恶劣,高温高压且处于腐蚀性气氛,这要求翅片管应具有很高的性能指标。
1) 防腐性能(Anti-corrosion)2) 耐磨性能(Anti-wear)3) 低的接触热阻(lower contact resistance)4) 高的稳定性(Higher Stability)5) 防积灰能力高频焊螺旋翅片管是目前应用最为广泛的螺旋翅片管之一,现广泛应用于电力、冶金、水泥行业的预热回收以及石油化工等行业.高频焊螺旋翅片管是在钢带缠绕钢管的同时,利用高频电流的集肤效应和邻近效应,对钢带和钢管外表面加热,直至塑性状态或熔化,在缠绕钢带的一定压力下完成焊接。
这种高频焊实为一种固相焊接。
它与镶嵌、钎焊(或整体热镀锌)等方法相比,无论是在产品质量(翅片的焊合率高,可达95%),还是生产率及自动化程度上,都是更为先进。
我公司的主要产品:高频焊翅片管、无缝翅片管、工业翅片管、翅片管换热器,热管、热管换热器等。
我公司技术力量雄厚,生产设备先进,凭借优质的产品质量,迅速的交货,良好的销售服务,诚信的合同往来,合理优惠的价格,在同行业中有很高的声誉,产品畅销全国,赢得了广大用户的赞誉,我们期待您的合作!高频焊接螺旋翅片管名称符号单位数值钢管直径d mm16~140钢管壁厚S mm2~10钢管长度L m<25翅片厚度δmm0.5~4.0翅片高度h mm5~30翅片间距(螺距)t mm 3.5~40钢管材质碳钢、合金钢、不锈钢翅片材质碳钢、合金钢、不锈钢翅片形式实齿、开齿螺旋翅片管产品规格及参数表钢管钢带每米钢管绕带钢每米翅片管规格重量螺距规格重量(kg/m) 长度重量换热面积(m2)(kg/m) (mm) (mm) (m) (kg)25x2.5 1.39 5 1.2×12.5 0.118 23.56 2.77 0.686 25x2.5 1.39 8 1.2×12.5 0.118 14.73 1.73 0.458 32x3 2.15 8 1.2×12.5 0.118 17.48 2.06 0.549 32x3 2.15 8 1.2×15 0.141 18.46 2.61 0.668 32x3 2.15 10 1.2×12.5 0.118 13.98 1.65 0.459 32x3 2.15 10 1.2×15 0.141 14.77 2.09 0.555 38x3.5 2.98 8 1.2×12.5 0.118 19.83 2.34 0.627 38x3.5 2.98 8 1.2×15 0.141 20.81 2.94 0.758 38x3.5 2.98 10 1.2×12.5 0.118 15.87 1.87 0.525 38x3.5 2.98 10 1.2×15 0.141 16.65 2.35 0.630 42x3.5 3.32 8 1.2×12.5 0.118 21.40 2.52 0.679 42x3.5 3.32 8 1.2×15 0.141 22.38 3.16 0.818 42x3.5 3.32 8 1.2×20 0.188 24.35 4.59 1.125 42x3.5 3.32 10 1.2×12.5 0.118 17.12 2.02 0.569 42x3.5 3.32 10 1.2×15 0.141 17.91 2.53 0.68042x3.5 3.32 10 1.2×20 0.188 19.48 3.67 0.926 51x3.5 4.10 8 1.2×12.5 0.118 24.94 2.94 0.795 51x3.5 4.10 8 1.2×15 0.141 25.92 3.66 0.952 51x3.5 4.10 8 1.2×20 0.188 27.88 5.25 1.294 51x3.5 4.10 10 1.2×12.5 0.118 19.95 2.35 0.668 51x3.5 4.10 10 1.2×15 0.141 20.73 2.93 0.794 51x3.5 4.10 10 1.2×20 0.188 22.31 4.20 1.068 51x3.5 4.10 12 1.2×12.5 0.118 16.62 1.96 0.584 51x3.5 4.10 12 1.2×15 0.141 17.28 2.44 0.688 51x3.5 4.10 12 1.2×20 0.188 18.59 3.50 0.916 材质:普通碳素钢、不锈钢、耐腐蚀钢基管:无缝钢管、高频电焊钢管产品展示:U型翅片管高频焊翅片管普通翅片管无缝管翅片管工业用翅片管高频焊翅片管工业翅片管散热器复合翅片管Welcome To Download !!!欢迎您的下载,资料仅供参考!。
翅片换热面积
翅片换热面积是指翅片管散热器在换热过程中,通过翅片管表面与周围介质进行热量交换的面积。
翅片管的换热面积包括了基管外径扩展后的总面积之和,由三个部分组成:基管面积、翅片正反两个面的面积,以及翅片顶端的面积。
1. 基管面积:基管是翅片管的主要部分,其外径扩展后的面积即为基管面积。
2. 翅片正反两个面的面积:翅片有正反两面,两面都参与热交换,因此需要计算两面面积。
3. 翅片顶端的面积:翅片顶端也会参与热交换,因此需要计算这部分面积。
在计算翅片管的换热面积时,需要考虑到翅片管的形状、尺寸、排列方式等因素,这些因素会影响到翅片管的换热效果。
例如,如果翅片管的翅片高度增加,换热面积也会相应增加,但是翅片高度增加到一定程度后,换热效果会逐渐减弱。
此外,翅片管的排列方式也会影响换热效果,如正三角形排列的翅片管具有较高的换热效率。
翅片换热面积是衡量翅片管散热器换热能力的重要指标,也是设计和优化翅片管散热器的重要参数之一。