人教版数学八年级下册全套教案--可直接打印
- 格式:docx
- 大小:36.89 KB
- 文档页数:2
人教版数学八年级下册教案全册最新版一、教学内容1. 第十三章:平面几何初步13.1 平面图形的识别与性质13.2 线段、角的度量与计算13.3 全等三角形13.4 等腰三角形与直角三角形2. 第十四章:数据的收集与处理14.1 数据的收集与整理14.2 频数与频率14.3 数据的表示方法14.4 可能性与概率二、教学目标1. 理解平面几何的基本概念,掌握平面图形的性质及计算方法。
2. 学会运用全等三角形的性质解决问题,提高空间想象能力。
3. 能够熟练运用数据的收集、整理、表示方法,培养数据分析能力。
三、教学难点与重点1. 教学难点:平面几何图形的性质及计算方法全等三角形的判定与性质数据的收集、整理、表示方法2. 教学重点:掌握平面几何基本概念,提高空间想象能力学会运用全等三角形的性质解决问题培养数据分析能力四、教具与学具准备1. 教具:多媒体教学设备黑板、粉笔平面几何模型、全等三角形模型2. 学具:笔、纸、尺子、圆规统计表格、数据分析软件(可选)五、教学过程1. 实践情景引入:通过展示生活中的平面几何图形,引出本章的学习内容。
通过小组合作,收集、整理数据,激发学生对数据分析的兴趣。
2. 例题讲解:对平面几何图形的性质及计算方法进行讲解,举例说明。
通过全等三角形的判定与性质,讲解相关例题。
3. 随堂练习:让学生完成平面几何图形的识别、性质及计算练习。
让学生运用全等三角形的性质解决问题,并进行小组讨论。
4. 课堂小结:对学生的练习情况进行反馈,解答学生疑问。
六、板书设计1. 知识框架:平面几何初步平面图形的识别与性质线段、角的度量与计算全等三角形等腰三角形与直角三角形数据的收集与处理数据的收集与整理频数与频率数据的表示方法可能性与概率2. 例题、练习题及解答:展示典型例题、练习题,给出解答步骤。
七、作业设计1. 作业题目:平面几何图形的性质及计算方法练习题。
全等三角形的判定与性质应用题。
数据收集、整理、表示方法实践题。
2024年人教版数学八年级下册教案全册一、教学内容1. 第十四章:因式分解1.1 提公因式法1.2 运用公式法1.3 分组分解法1.4 交叉相乘法2. 第十五章:分式2.1 分式的概念与性质2.2 分式的乘除法2.3 分式的加减法2.4 分式方程3. 第十六章:数据分析3.1 平均数3.2 中位数与众数3.3 方差与标准差3.4 数据的收集与处理二、教学目标1. 让学生掌握因式分解的四种方法,并能灵活运用。
2. 使学生理解分式的概念与性质,掌握分式的运算方法,并能解决实际问题。
3. 培养学生的数据分析能力,掌握数据的收集、处理与分析方法。
三、教学难点与重点1. 教学难点:(1)因式分解的灵活运用。
(2)分式的乘除法与加减法。
(3)数据分析方法的实际应用。
2. 教学重点:(1)因式分解的四种方法。
(2)分式的概念、性质与运算。
(3)数据的收集、处理与分析。
四、教具与学具准备1. 教具:PPT、黑板、粉笔、教学挂图。
2. 学具:练习本、铅笔、直尺、橡皮。
五、教学过程1. 引言(5分钟)通过实际生活中的例子,引出因式分解的重要性,激发学生的学习兴趣。
2. 新课导入(15分钟)1.14节:提公因式法1.15节:运用公式法1.16节:分组分解法1.17节:交叉相乘法3. 例题讲解(20分钟)结合教材例题,详细讲解因式分解的四种方法。
4. 随堂练习(15分钟)布置随堂练习,巩固所学知识。
5. 知识拓展(10分钟)介绍分式的概念与性质,引导学生了解分式的运算方法。
6. 课堂小结(5分钟)7. 课后作业布置(5分钟)布置作业,要求学生课后巩固所学知识。
六、板书设计1. 黑板左侧:因式分解四种方法。
2. 黑板右侧:分式的概念、性质与运算。
3. 中间部分:例题、随堂练习及解答。
七、作业设计1. 作业题目:(1)分解因式:x^25x+6(2)分解因式:16a^29b^2(3)计算:\(\frac{3}{4} \div \frac{2}{5}\)(4)计算:\(\frac{5}{6} + \frac{1}{3} \frac{1}{2}\)(5)已知平均数为25,求这组数据:18、23、x、27、30的方差。
八年级数学下册全套教案(共4篇 Word版含解析)新人教版八年级数学下册全套教案(共4篇 Word版含解析)新人教版.doc第十六章分式.doc 第十七章反比例函数.doc 第十八章勾股定理.doc 第十九章平行四边形.doc 第二十章数据的分析.doc第十六章分式16.1分式16.1.1从分数到分式一、教学目标1.了解分式、有理式的概念.2.理解分式有意义的条件,分式的值为零的条件;能熟练地求出分式有意义的条件,分式的值为零的条件. 二、重点、难点1.重点:理解分式有意义的条件,分式的值为零的条件. 2.难点:能熟练地求出分式有意义的条件,分式的值为零的条件. 3.认知难点与突破方法难点是能熟练地求出分式有意义的条件,分式的值为零的条件.突破难点的方法是利用分式与分数有许多类似之处,从分数入手,研究出分式的有关概念,同时还要讲清分式与分数的联系与区别. 三、例、习题的意图分析本章从实际问题引出分式方程100=60,给出分式的描述性的定义:像这样分20?v20?v母中含有字母的式子属于分式. 不要在列方程时耽误时间,列方程在这节课里不是重点,也不要求解这个方程.1.本节进一步提出P4[思考]让学生自己依次填出:10,s,200,v.为下面的7a33s[观察]提供具体的式子,就以上的式子分数有什么相同点和不同点?100,60,sa20?v20?vAB,v,有什么共同点?它们与s可以发现,这些式子都像分数一样都是(即A÷B)的形式.分数的分子A与分母B 都是整数,而这些式子中的A、B都是整式,并且B中都含有字母.P5[归纳]顺理成章地给出了分式的定义.分式与分数有许多类似之处,研究分式往往要类比分数的有关概念,所以要引导学生了解分式与分数的联系与区别.希望老师注意:分式比分数更具有一般性,例如分式除的商(除式不能为零),其中包括所有的分数 .2. P5[思考]引发学生思考分式的分母应满足什么条件,分式才有意义?由分数的分母不能为零,用类比的方法归纳出:分式的分母也不能为零.注意只有满足了分式的分母不能为零这个条件,分式才有意义.即当B≠0时,分式A 可以表示为两个整式相BA 才有意义. B3. P5例1填空是应用分式有意义的条件―分母不为零,解出字母x的值.还可以利用这道题,不改变分式,只把题目改成“分式无意义”,使学生比较全面地理解分式及有关的概念,也为今后求函数的自变量的取值范围,打下良好的基础.4. P12[拓广探索]中第13题提到了“在什么条件下,分式的值为0?”,下面补1分母不能充的例2为了学生更全面地体验分式的值为0时,必须同时满足两个条件:○2分子为零.这两个条件得到的解集的公共部分才是这一类题目的解. 为零;○四、课堂引入1.让学生填写P4[思考],学生自己依次填出:10,s,200,v.7a33s2.学生看P3的问题:一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用实践,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?请同学们跟着教师一起设未知数,列方程.设江水的流速为x千米/时. 轮船顺流航行100千米所用的时间为时,所以100=60. 20?v20?v100,60,sa20?v20?v100小时,逆流航行60千米所用时间60小20?v20?v3. 以上的式子和不同点?五、例题讲解,v,有什么共同点?它们与分数有什么相同点sP5例1. 当x为何值时,分式有意义.[分析]已知分式有意义,就可以知道分式的分母不为零,进一步解出字母x的取值范围.[提问]如果题目为:当x为何值时,分式无意义.你知道怎么解题吗?这样可以使学生一题二用,也可以让学生更全面地感受到分式及有关概念.(补充)例2. 当m为何值时,分式的值为0? 2(1)(2) (3)mm?1m?2m?3m?1m?1..1分母不能为零;○2分子为[分析] 分式的值为0时,必须同时满足两个条件:○零,这样求出的m的解集中的公共部分,就是这类题目的解. [答案] (1)m=0 (2)m=2 (3)m=1 六、随堂练习1.判断下列各式哪些是整式,哪些是分式? 9x+4, 7 , 9?y, m?4, 8y?3,1x205y2x?92. 当x取何值时,下列分式有意义?(1)(2)(3)3. 当x为何值时,分式的值为0?5x21?3x3x?2x?53?2x2x?5x2?4x?77x(1)(2) (3)x2?1x2?x 七、课后练习1.列代数式表示下列数量关系,并指出哪些是正是?哪些是分式?(1)甲每小时做x个零件,则他8小时做零件个,做80个零件需小时.(2)轮船在静水中每小时走a千米,水流的速度是b千米/时,轮船的顺流速度是千米/时,轮船的逆流速度是千米/时. (3)x与y的差于4的商是 .x2?12.当x取何值时,分式无意义?3x?2x?13. 当x为何值时,分式的值为0?x2?x八、答案:六、1.整式:9x+4, 9?y, m?4 分式: 7 , 8y?3,120532xy2x?92.(1)x≠-2 (2)x≠ (3)x≠±2 3.(1)x=-7 (2)x=0 (3)x=-180x七、1.18x, ,a+b,s,x?y; 整式:8x, a+b, x?y;a?b44分式:80, sxa?b 2. X = 3. x=-12316.1.2分式的基本性质一、教学目标1.理解分式的基本性质.2.会用分式的基本性质将分式变形. 二、重点、难点1.重点: 理解分式的基本性质.2.难点: 灵活应用分式的基本性质将分式变形. 3.认知难点与突破方法教学难点是灵活应用分式的基本性质将分式变形. 突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形. 三、例、习题的意图分析1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的最高次幂的积,作为最简公分母.教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5. 四、课堂引入1.请同学们考虑:与相等吗?与相等吗?为什么?2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?3.提问分数的基本性质,让学生类比猜想出分式的基本性质. 五、例题讲解3415209243834152092438感谢您的阅读,祝您生活愉快。
人教版数学八年级下册教案全册完整版一、教学内容1. 第十一章:数据的收集与整理11.1 数据的收集11.2 数据的整理与表示2. 第十二章:概率初步12.1 概率的基本概念12.2 概率的计算3. 第十三章:图形的平移与旋转13.1 平移13.2 旋转4. 第十四章:相似图形14.1 位似图形14.2 相似图形的性质与判定二、教学目标1. 理解并掌握数据的收集与整理方法,能运用图表进行数据表示。
2. 了解概率的基本概念,学会计算简单事件发生的概率。
3. 掌握图形的平移与旋转,理解相似图形的性质与判定方法。
4. 培养学生的观察能力、逻辑思维能力和空间想象力。
三、教学难点与重点1. 教学难点:数据的整理与表示方法的选择与应用概率的计算方法相似图形的性质与判定2. 教学重点:数据收集与整理的实际应用概率的实际意义与计算图形的平移与旋转在实际问题中的运用四、教具与学具准备1. 教具:黑板、粉笔、尺子、圆规、三角板、教学课件2. 学具:直尺、圆规、三角板、计算器、练习本五、教学过程1. 导入:通过实际情景引入,激发学生的学习兴趣。
第十一章:以一次班级考试成绩的收集与整理为例,导入数据的收集与整理。
第十二章:以抛硬币、掷骰子等游戏为例,导入概率的基本概念。
第十三章:以生活中的平移与旋转现象为例,导入图形的平移与旋转。
第十四章:以相似图形在生活中的应用为例,导入相似图形的学习。
2. 新课讲解:详细讲解教材内容,结合实际例题,使学生对所学知识有深入理解。
第十一章:讲解数据的收集方法,如问卷调查、实验等;数据的整理与表示,如条形图、折线图、扇形图等。
第十二章:讲解概率的基本概念,如必然事件、不可能事件、随机事件等;概率的计算方法,如列表法、树状图法等。
第十三章:讲解图形的平移与旋转,以及在实际问题中的应用。
第十四章:讲解位似图形和相似图形的性质与判定方法。
3. 随堂练习:布置典型题目,巩固所学知识,并及时给予解答与指导。
第一章三角形的证明1、等腰三角形①定理:两角分别相等且其中一组等角的对边相等的两个三角形全等(AAS)②全等三角形的对应边相等、对应角相等③定理:等腰三角形的两底角相等,即位等边对等角④推论:等腰三角形顶角的平分线、底边上的中线以及底边上的高线互相重合⑤定理:等边三角形的三个内角都想等,并且每个角都等于60°⑥定理:有两个角相等的是三角形是等腰三角形(等角对等边)⑦定理:三个角都相等的三角形是等边三角形⑧定理;有一个角等于60°的等腰三角形是等边三角形⑨定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半⑩反证法:在证明时,先假设命题的结论不成立,然后推导出与定义,基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立。
2、直角三角形①定理:直角三角形的两个锐角互余②定理有两个角互余的三角形是直角三角形③勾股定理:直角三角形两条直角边的平方和等于斜边的平方④如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形⑤在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题⑥一个命题是真命题,它的逆命题不一定是真命题。
如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,其中一个定理称为另一个定理的逆定理⑦定理:斜边和一条直角边分别相等的两个直角三角形全等3、线段的垂直平分线①定理:线段垂直平分线上的点到这条线段两个端点的距离相等②定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上4、角平分线①定理:角平分线上的点到这个角的两边的距离相等②定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上1.学会根据定义判别分式方程与整式方程,了解分式方程增根产生的原因,掌握验根的方法。
2.掌握可化为一元一次方程或一元二次方程的分式方程的解法,会用去分母求方程的解。
人教版数学八年级下册教案全册最新版教案:人教版数学八年级下册一、教学内容1. 第一章:二次根式本章主要内容包括二次根式的概念、性质和运算。
通过学习,学生能够理解二次根式的意义,掌握二次根式的性质,学会二次根式的运算方法。
2. 第二章:锐角三角函数本章主要内容包括锐角三角函数的概念和性质。
通过学习,学生能够理解锐角三角函数的意义,掌握锐角三角函数的性质,学会运用锐角三角函数解决实际问题。
3. 第三章:平行四边形的判定与性质本章主要内容包括平行四边形的判定和性质。
通过学习,学生能够理解平行四边形的判定方法,掌握平行四边形的性质,学会运用平行四边形的性质解决实际问题。
4. 第四章:矩形、菱形、正方形的性质本章主要内容包括矩形、菱形、正方形的性质。
通过学习,学生能够理解矩形、菱形、正方形的性质,学会运用矩形、菱形、正方形的性质解决实际问题。
5. 第五章:因式分解本章主要内容包括因式分解的概念和方法。
通过学习,学生能够理解因式分解的意义,掌握因式分解的方法,学会运用因式分解解决实际问题。
6. 第六章:分式本章主要内容包括分式的概念、性质和运算。
通过学习,学生能够理解分式的意义,掌握分式的性质,学会分式的运算方法。
7. 第七章:不等式本章主要内容包括不等式的概念、性质和运算。
通过学习,学生能够理解不等式的意义,掌握不等式的性质,学会不等式的运算方法。
8. 第八章:事件的概率本章主要内容包括事件的概率的概念和计算方法。
通过学习,学生能够理解事件概率的意义,掌握事件概率的计算方法,学会运用事件概率解决实际问题。
二、教学目标1. 学生能够掌握二次根式的概念、性质和运算方法。
2. 学生能够理解锐角三角函数的意义,掌握锐角三角函数的性质。
3. 学生能够理解平行四边形的判定方法,掌握平行四边形的性质。
4. 学生能够理解矩形、菱形、正方形的性质。
5. 学生能够掌握因式分解的概念和方法。
6. 学生能够理解分式的意义,掌握分式的性质,学会分式的运算方法。
新人教版八年级数学下册教案全册第一单元分式与有理数第一课有理数加减法本课程旨在教授学生有理数的加减法。
通过具体的生活实例和练题,让学生掌握有理数的加减法运算规则和方法。
研究目标- 理解有理数的概念和表示方法- 掌握有理数的加法和减法运算规则- 能够在实际生活中运用有理数进行加减法运算课程内容1. 有理数的概念和表示方法2. 有理数的加法运算规则3. 有理数的减法运算规则4. 实际生活中的加减法运算练授课步骤1. 引入:通过问题引发学生对有理数加减法的思考,激发学生的研究兴趣。
2. 理论讲解:介绍有理数的概念和表示方法,并讲解有理数的加法和减法运算规则。
3. 实例演示:通过具体的实例演示有理数的加减法运算过程,帮助学生理解运算规则。
4. 练训练:设计一系列的练题,让学生巩固和应用所学的加减法运算规则。
5. 总结提高:总结本课所学的内容,并提出下节课的预任务。
教学资源- 教材:新人教版八年级数学下册- 实例演示用的实物或图片- 练题和答案评估方式- 检查课堂讨论的参与度- 作业完成情况- 答题准确率第二课分式的概念与性质本课程旨在介绍分式的概念和性质。
通过生动的例子和实践操作,使学生理解分式的含义和相关性质。
研究目标- 了解分式的概念和表示方法- 掌握分式的化简和扩展方法- 能够应用分式解决实际问题课程内容1. 分式的概念和表示方法2. 分式的化简和扩展方法3. 分式的实际应用授课步骤1. 引入:通过生活中的实例引发学生对分式的思考,激发学生的研究兴趣。
2. 理论讲解:介绍分式的概念和表示方法,并讲解分式的化简和扩展方法。
3. 实例演示:通过具体的实例演示分式的化简和扩展过程,帮助学生掌握方法。
4. 实践操作:设计分组活动,让学生通过实际操作解决分式相关问题。
5. 总结提高:总结本课所学的内容,并提出下节课的预任务。
教学资源- 教材:新人教版八年级数学下册- 实际生活中的分数例子- 分组活动所需的材料评估方式- 检查课堂讨论的参与度- 实践操作的表现和成果- 练题和作业的完成情况及准确率...(继续编写其他单元的教案)。
人教版八年级数学下册全册教案(9篇)人教版八年级数学下册教案篇一1、掌握一次函数解析式的特点及意义2、知道一次函数与正比例函数的关系3、理解一次函数图象特点与解析式的联系规律1、一次函数解析式特点2、一次函数图象特征与解析式的联系规律1、一次函数与正比例函数关系2、根据已知信息写出一次函数的表达式。
ⅰ.提出问题,创设情境问题1 小明暑假第一次去北京.汽车驶上a地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知a地直达北京的高速公路全程为570千米,小明想知道汽车从a地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.分析我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,根据题意,s和t的函数关系式是s=570-95t.说明找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.问题2 小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的'存款与从现在开始的月份之间的函数关系式.分析我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:y=50+12x.问题3 以上问题1和问题2表示的这两个函数有什么共同点?ⅰ.导入新课上面的两个函数关系式都是左边是因变量y,右边是含自变量x的代数式。
并且自变量和因变量的指数都是一次。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当b=0时,称y是x的正比例函数。
例1:下列函数中,y是x的一次函数的是()①y=x-6;②y=2x;③y=;④y=7-x x8a、①②③b、①③④c、①②③④d、②③④例2 下列函数关系中,哪些属于一次函数,其中哪些又属于正比例函数?(1)面积为10cm2的三角形的底a(cm)与这边上的高h(cm);(2)长为8(cm)的平行四边形的周长l(cm)与宽b(cm);(3)食堂原有煤120吨,每天要用去5吨,x天后还剩下煤y吨;(4)汽车每小时行40千米,行驶的路程s(千米)和时间t(小时).(5)汽车以60千米/时的速度匀速行驶,行驶路程中y(千米)与行驶时间x(时)之间的关系式;(6)圆的面积y(厘米2)与它的半径x(厘米)之间的关系;(7)一棵树现在高50厘米,每个月长高2厘米,x月后这棵树的高度为y(厘米)分析确定函数是否为一次函数或正比例函数,就是看它们的解析式经过整理后是否符合y=kx+b(k≠0)或y=kx(k≠0)形式,所以此题必须先写出函数解析式后解答.解(1)a?20,不是一次函数.h(2)l=2b+16,l是b的一次函数.(3)y=壹五0-5x,y是x的一次函数.(4)s=40t,s既是t的一次函数又是正比例函数.(5)y=60x,y是x的一次函数,也是x的正比例函数;(6)y=πx2,y不是x的正比例函数,也不是x的一次函数;(7)y=50+2x,y是x的一次函数,但不是x的正比例函数例3 已知函数y=(k-2)x+2k+1,若它是正比例函数,求k的值.若它是一次函数,求k的值.分析根据一次函数和正比例函数的定义,易求得k的值.解若y=(k-2)x+2k+1是正比例函数,则2k+1=0,即k=?若y=(k-2)x+2k+1是一次函数,则k-2≠0,即k≠2.例4 已知y与x-3成正比例,当x=4时,y=3.(1)写出y与x之间的函数关系式;(2)y与x之间是什么函数关系;(3)求x=2.5时,y的值.解(1)因为y与x-3成正比例,所以y=k(x-3).又因为x=4时,y=3,所以3=k(4-3),解得k=3,所以y=3(x-3)=3x-9.(2) y是x的一次函数.(3)当x=2.5时,y=3×2.5=7.5.1.2例5 已知a、b两地相距30千米,b、c两地相距48千米.某人骑自行车以每小时12千米的速度从a地出发,经过b地到达c地.设此人骑行时间为x(时),离b地距离为y (千米).(1)当此人在a、b两地之间时,求y与x的函数关系及自变量x取值范围.(2)当此人在b、c两地之间时,求y与x的函数关系及自变量x的取值范围.分析(1)当此人在a、b两地之间时,离b地距离y为a、b两地的距离与某人所走的路程的差.(2)当此人在b、c两地之间时,离b地距离y为某人所走的路程与a、b两地的距离的差.解(1) y=30-12x.(0≤x≤2.5)(2) y=12x-30.(2.5≤x≤6.5)例6 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进油管,不开出油管,油罐的进油至24吨后,将进油管和出油管同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进油管,只开出油管,直至将油罐内的油放完.假设在单位时间内进油管与出油管的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.分析因为在只打开进油管的8分钟内、后又打开进油管和出油管的16分钟和最后的只开出油管的三个阶级中,储油罐的储油量与进出油时间的函数关系式是不同的,所以此题因分三个时间段来考虑.但在这三个阶段中,两变量之间均为一次函数关系.解在第一阶段:y=3x(0≤x≤8);在第二阶段:y=16+x(8≤x≤16);在第三阶段:y=-2x+88(24≤x≤44).ⅰ.随堂练习根据上表写出y与x之间的关系式是:________________,y是否为x一的次函数?y 是否为x有正比例函数?2、为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按0.6元/米3收费;每户每月用水量超过6米3时,超过部分按1元/米3收费。
人教版数学八年级下册教案全册完整版一、教学内容1. 第十三章:平面几何1.1 线段和直线1.2 角1.3 多边形1.4 平行四边形1.5 矩形、菱形、正方形2. 第十四章:函数2.1 函数的定义2.2 一次函数2.3 二次函数2.4 反比例函数2.5 函数的应用二、教学目标1. 理解并掌握平面几何的基本概念和性质,能够运用几何知识解决实际问题。
2. 掌握函数的定义、图像和性质,能够运用函数知识解决实际问题。
3. 培养学生的逻辑思维能力和解决问题的能力。
三、教学难点与重点1. 教学难点:几何图形的性质和判定函数图像的绘制和性质分析2. 教学重点:几何图形的分类和性质函数的定义和性质四、教具与学具准备1. 教具:黑板橡皮、直尺、圆规等绘图工具多媒体设备2. 学具:笔记本铅笔、橡皮、直尺、圆规等绘图工具五、教学过程1. 导入:利用生活实例引入平面几何和函数的概念,激发学生学习兴趣。
2. 新课内容:详细讲解教材中的知识点,通过例题和随堂练习巩固所学内容。
3. 课堂讲解:对重点、难点知识进行详细讲解,结合实际应用进行分析。
4. 课堂练习:设计不同难度的练习题,让学生独立完成,并及时给予指导和反馈。
六、板书设计1. 人教版数学八年级下册教案2. 内容:章节和知识点例题和解答过程重点、难点提示七、作业设计1. 作业题目:第十三章:1.1 画出线段和直线1.2 判断角的类型1.3 绘制多边形1.4 判断平行四边形1.5 分析矩形、菱形、正方形的性质第十四章:2.1 解释函数的定义2.2 绘制一次函数图像2.3 分析二次函数性质2.4 解释反比例函数2.5 解决函数应用问题2. 答案:八、课后反思及拓展延伸1. 反思:2. 拓展延伸:设计相关竞赛题目,提高学生运用几何和函数知识解决问题的能力。
鼓励学生进行课后自主学习,拓展知识面。
重点和难点解析一、教学内容1. 几何图形的性质和判定重点和难点解析:这部分内容涉及到的几何图形种类繁多,性质和判定方法各异。
人教版数学八年级下册教案全册最新版一、教学内容1. 第十四章:因式分解14.1 提取公因式法14.2 运用公式法14.3 分组分解法2. 第十五章:分式15.1 分式的概念及性质15.2 分式的乘除法15.3 分式的加减法15.4 分式方程二、教学目标1. 理解并掌握因式分解的三种方法,能够灵活运用各种方法解题。
2. 理解分式的概念及性质,掌握分式的乘除法和加减法,能够解决实际生活中的分式问题。
3. 学会解分式方程,并能将其应用于实际问题的解决。
三、教学难点与重点1. 教学难点:因式分解的分组分解法、分式的加减法及分式方程的解法。
2. 教学重点:因式分解的三种方法、分式的乘除法及性质、分式方程的解法。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、教学挂图。
2. 学具:学生用书、练习本、计算器。
五、教学过程1. 引入实践情景,提出问题,激发学生兴趣。
2. 讲解因式分解的概念及提取公因式法,通过例题进行讲解,引导学生随堂练习。
3. 介绍运用公式法进行因式分解,讲解典型例题,让学生进行分组讨论和练习。
4. 引入分组分解法,结合实际例题,引导学生学会分组分解。
5. 过渡到分式章节,讲解分式的概念及性质,通过例题使学生理解分式的乘除法。
6. 讲解分式的加减法,结合实际例题,让学生进行课堂练习。
7. 介绍分式方程,讲解解法,并引导学生解决实际问题。
六、板书设计1. 因式分解三种方法的步骤和适用范围。
2. 分式的概念、性质、乘除法和加减法公式。
3. 分式方程的解法步骤。
七、作业设计1. 作业题目:因式分解:完成课后习题14.1、14.2、14.3。
分式:完成课后习题15.1、15.2、15.3。
分式方程:完成课后习题15.4。
2. 答案:见教材课后习题答案。
八、课后反思及拓展延伸1. 反思:关注学生在因式分解和分式章节的学习过程中遇到的困难,针对学生的问题进行个别辅导。
2. 拓展延伸:引导学生探究因式分解和分式在实际问题中的应用,提高学生的数学应用能力。
人教版数学八年级下册全套教案--可直接
打印
教案概述
本文档提供了人教版数学八年级下册全套教案,适用于教师直接打印使用。
教案内容涵盖了八年级下册的所有数学知识点,旨在帮助学生全面理解和掌握数学的基础概念和解题方法。
教案特点
- 全面:教案内容涵盖了八年级下册所有数学知识点,包括数与代数、图形与几何、数据与统计以及函数与方程等方面。
- 详细:教案对每个知识点都进行了详细的解释和讲解,提供了相应的例题和练题,帮助学生巩固理论知识并提高解题能力。
- 实用:教案提供了直接打印的版本,方便教师备课和教学使用。
使用方法
教师可以根据课程进度和学生实际情况选择对应的教案进行教学。
每个教案包含了教学目标、课前导入、知识讲解、例题演示、练题训练等部分,教师可以根据需要进行灵活调整。
教学效果
通过使用本套教案,教师能够更好地组织课堂教学,提高学生
的研究效果和成绩。
学生能够系统全面地研究和掌握八年级下册数
学知识,并运用所学知识解决实际问题。
注意事项
请教师在使用教案时注意以下事项:
- 根据学生实际情况,灵活调整教案内容和难度。
- 课堂教学时注重引导学生思考和互动,培养学生的数学思维
能力。
- 鼓励学生多做练,巩固所学知识。
- 给予学生及时的反馈和评价,帮助他们及时发现问题和提高。
结语
人教版数学八年级下册全套教案是一份实用的教学辅助材料,
能够有效提升教学质量和学生学习成绩。
希望教师们能够合理利用
该教案,为学生的数学学习提供更好的支持。