编码器分类
- 格式:docx
- 大小:18.28 KB
- 文档页数:6
光电编码器分类及作用光电编码器是一种通过光电转换将输出轴的机械几何位移量转换为脉冲或数字量的传感器,主要由光源、码盘、光学系统及电路4部分组成,光电编码器主要有增量式编码器、绝对式编码器、混合式绝对值编码器、旋转变压器、正余弦伺服电机编码器等,其中增量式编码器、绝对式编码器、混合式绝对值编码器属于数字量编码器,旋转变压器、正余弦伺服电机编码器属于模拟量编码器.一、增量式编码器增量式编码器可以将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,通过计数设备来知道其位置.增量式光电编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,但是不能通过输出脉冲区别出在哪个位置上的增量。
它能够产生与位移增量等值的脉冲信号,其作用是提供一种对连续位移量离散化或增量化以及位移变化(速度)的传感方法,它是相对于某个基准点的相对位置增量,不能够直接检测出轴的绝对位置信息。
一般来说,增量式光电编码器输出A、B 两相互差90°电度角的脉冲信号(即所谓的两组正交输出信号),从而可方便地判断出旋转方向。
同时还有用作参考零位的Z 相标志(指示)脉冲信号,码盘每旋转一周,只发出一个标志信号。
标志脉冲通常用来指示机械位置或对积累量清零。
二、绝对式编码器绝对式编码器每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
其位置是由输出代码的读数确定的。
当电源断开时,绝对型编码器并不与实际的位置分离。
重新上电时,位置读数仍是当前的。
绝对编码器能够直接进行数字量大的输出,在码盘上会有若干的码道,码道数就是二进制位数。
在每条码道上都会由透光与不透光的扇形区域组成,通过采用光电传感器对信号进行采集。
在码盘两侧分别设置有光源和光敏元件,这样光敏元件则能够根据是否接受到光信号进行电平的转换,输出二进制数。
并且在不同位置输出不同的数字码。
从而可以检测绝对位置。
但是分辨率是由二进制的位数来决定的,也就是说精度取决于位数。
编码器主要分类编码器可按以下方式来分类。
1、按码盘的刻孔方式不同分类(1)增量型:就是每转过单位的角度就发出一个脉冲信号(也有发正余弦信号,然后对其进行细分,斩波出频率更高的脉冲),通常为A相、B 相、Z相输出,A相、B相为相互延迟1/4周期的脉冲输出,依据延迟关系可以区分正反转,而且通过取A相、B相的上升和下降沿可以进行2或4倍频;Z相为单圈脉冲,即每圈发出一个脉冲。
(2)肯定值型:就是对应一圈,每个基准的角度发出一个与该角度对应二进制的数值,通过外部记圈器件可以进行多个位置的记录和测量。
2、按信号的输出类型分为:电压输出、集电极开路输出、推拉互补输出和长线驱动输出。
3、以编码器机械安装形式分类(1)有轴型:有轴型又可分为夹紧法兰型、同步法兰型和伺服安装型等。
(2)轴套型:轴套型又可分为半空型、全空型和大口径型等。
4、以编码器工作原理可分为:光电式、磁电式和触点电刷式。
常见故障1、编码器本身故障:是指编码器本身元器件消失故障,导致其不能产生和输出正确的波形。
这种状况下需更换编码器或修理其内部器件。
2、编码器连接电缆故障:这种故障消失的几率最高,修理中常常遇到,应是优先考虑的因素。
通常为编码器电缆断路、短路或接触不良,这时需更换电缆或接头。
还应特殊留意是否是由于电缆固定不紧,造成松动引起开焊或断路,这时需卡紧电缆。
3、编码器+5V电源下降:是指+5V电源过低,通常不能低于4.75V,造成过低的缘由是供电电源故障或电源传送电缆阻值偏大而引起损耗,这时需检修电源或更换电缆。
4、肯定式编码器电池电压下降:这种故障通常有含义明确的报警,这时需更换电池,假如参考点位置记忆丢失,还须执行重回参考点操作。
5、编码器电缆屏蔽线未接或脱落:这会引入干扰信号,使波形不稳定,影响通信的精确性,必需保证屏蔽线牢靠的焊接及接地。
6、编码器安装松动:这种故障会影响位置掌握精度,造成停止和移动中位置偏差量超差,甚至刚一开机即产生伺服系统过载报警,请特殊留意。
编码器的分类编码器的定义:编码器(encoder)是一种用于运动控制的传感器。
它利用光电、电磁、电容或电感等感应原理,检测物体的机械位置及其变化,并将此信息转换为电信号后输出,作为运动控制的反馈,传递给各种运动控制装置。
编码器的用途:编码器被广泛应用于需要精准确定位置及速度的场合,如机床、机器人、电机反馈系统以及测量和控制设备等。
编码器的分类:编码器的分类概览1、按照机械结构形式,编码器可以分为旋转编码器(rotary encoder)和线性编码器(linear encoder)。
·旋转编码器的应用最为广泛,主要用于测量机械设备的角度、速度或者电机的转速。
·线性编码器主要用于测量线性位移,又可以分为拉线编码器(wire draw encoder)和直线编码器(line encoder)两类。
·拉线编码器是拉线盒(wire draw mechanism)与旋转编码器的机械组合,通过拉线盒这种机械装置将机械设备的直线运动转化为圆周运动,从而可以使用旋转编码器进行测量线性位移。
·直线编码器通常由阅读器(reader)和测量标尺(measuring ruler)组成,通过检测阅读器与测量标尺之间的相对位置,从而计算出机械位置及其变化。
2、按照电气输出形式,编码器可以分为增量型编码器(incremental encoder)和绝对值型编码器(absolute encoder)。
·增量型编码器的输出为周期性重复的信号,如方波或者正弦波脉冲。
因此,可以分为方波增量型编码器和正余弦波增量型编码器。
(1) 方波增量型编码器是最常用的编码器之一,通过计算方波脉冲的数量和频率得出长度和速度。
方波增量型编码器有电压型输出,如TTL(也称长线驱动、线驱动或RS422)和HTL(也称推挽输出或推拉输出)等,和开关型输出,如NPN 开路集电极输出和PNP开路集电极输出。
(2)正余弦波增量型编码器的输出一般为1Vpp或者0.5Vpp的正弦波和余弦波,通过计算正余弦的幅值可以精确的细分出微小的角度。
编码器的分类、特点及其应用详解编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。
编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺。
按照读出方式编码器可以分为接触式和非接触式两种;按照工作原理编码器可分为增量式和绝对式两类。
增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。
绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。
根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z 相;A、B两组脉冲相位差90度,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。
显然,吗道必须N条吗道。
目前国内已有16位的绝对编码器产品。
1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
二、光电编码器的应用增量型编码器与绝对型编码器区别1、角度测量。
编码器的分类编码器的定义:编码器(encoder)是一种用于运动控制的传感器。
它利用光电、电磁、电容或电感等感应原理,检测物体的机械位置及其变化,并将此信息转换为电信号后输出,作为运动控制的反馈,传递给各种运动控制装置。
编码器的用途:编码器被广泛应用于需要精准确定位置及速度的场合,如机床、机器人、电机反馈系统以及测量和控制设备等。
编码器的分类:编码器的分类概览1、按照机械结构形式,编码器可以分为旋转编码器(rotary encoder)和线性编码器(linear encoder)。
·旋转编码器的应用最为广泛,主要用于测量机械设备的角度、速度或者电机的转速。
·线性编码器主要用于测量线性位移,又可以分为拉线编码器(wire draw encoder)和直线编码器(line encoder)两类。
·拉线编码器是拉线盒(wire draw mechanism)与旋转编码器的机械组合,通过拉线盒这种机械装置将机械设备的直线运动转化为圆周运动,从而可以使用旋转编码器进行测量线性位移。
·直线编码器通常由阅读器(reader)和测量标尺(measuring ruler)组成,通过检测阅读器与测量标尺之间的相对位置,从而计算出机械位置及其变化。
2、按照电气输出形式,编码器可以分为增量型编码器(incremental encoder)和绝对值型编码器(absolute encoder)。
·增量型编码器的输出为周期性重复的信号,如方波或者正弦波脉冲。
因此,可以分为方波增量型编码器和正余弦波增量型编码器。
(1) 方波增量型编码器是最常用的编码器之一,通过计算方波脉冲的数量和频率得出长度和速度。
方波增量型编码器有电压型输出,如TTL(也称长线驱动、线驱动或RS422)和HTL(也称推挽输出或推拉输出)等,和开关型输出,如NPN 开路集电极输出和PNP开路集电极输出。
(2)正余弦波增量型编码器的输出一般为1Vpp或者0.5Vpp的正弦波和余弦波,通过计算正余弦的幅值可以精确的细分出微小的角度。
编码器工作原理及型号分类编码器是一种将输入信息转换为特定输出形式的装置。
它主要用于数码通信、控制系统、无线通信等领域。
编码器的工作原理是将输入信息进行标准化的编码处理,以便于传输、存储或处理。
编码器可以根据不同的编码方式和输出形式进行分类。
根据编码方式的不同,编码器可分为数字编码器和模拟编码器。
数字编码器将输入信号转换为数字形式的编码输出,而模拟编码器则将输入信号转换为模拟形式的编码输出。
数字编码器常见的分类方式有以下几种:1.绝对编码器:绝对编码器将每一个输入位置映射到一个唯一的编码输出,无需进行位置标定或零位校准。
绝对编码器常用于需要高精度和高速度定位的系统中。
2.增量编码器:增量编码器将位置变化表示为脉冲序列,通过计算脉冲数量判断位置的变化。
增量编码器相对于绝对编码器来说成本更低,但需要进行零位校准。
3. Gray编码器:Gray编码器将每个相邻位置的编码只有一个位数不同,避免了因为位置变化引起多位编码同时变化的问题。
Gray编码器常用于需要防止位置识别误差的系统中。
4.自适应编码器:自适应编码器根据输入信号的特性自动选择最佳的编码方式。
它可以根据输入信号的范围和精度要求,灵活地调整编码方式。
模拟编码器主要分为角度编码器和位移编码器。
角度编码器将角度信号转换为模拟的编码输出,常见的种类有光学角度编码器、磁性角度编码器等。
位移编码器将位移信号转换为模拟的编码输出,常见的种类有电容位移编码器、磁性位移编码器等。
编码器的选择根据具体应用场景和需求进行。
在选择编码器时需要考虑的因素包括精度要求、速度要求、传输距离、环境条件等。
常见的编码器型号有CUI Inc.的AMT系列绝对磁性编码器、Banner Engineering的QMH26和QMH40系列绝对光学编码器、Honeywell的CDW系列增量式编码器等。
总之,编码器是一种将输入信息转换为特定输出形式的装置,可以根据编码方式和输出形式进行分类。
编码器分类及工作原理编码器是一种常用的电子设备,用于将模拟信号或数字信号转换为特定编码格式的信号,以便传输、存储或处理。
根据其分类和工作原理的不同,编码器可以分为以下几种类型:1. 数字编码器:数字编码器将模拟信号转换为数字信号,常见的数字编码器有模数转换器(ADC)和带通滤波器。
ADC将连续变化的模拟信号转换为数字形式,通常通过采样和量化来实现。
带通滤波器则用于从连续模拟信号中提取特定频段的信号。
2. 脉冲编码器:脉冲编码器将输入信号转换为脉冲序列。
它通常使用不同的脉冲宽度、脉冲间隔或脉冲位置来表示不同的输入信号。
常见的脉冲编码器有脉冲编码调制(PCM)和脉冲位置调制(PPM)等。
3. 压缩编码器:压缩编码器将输入信号进行压缩,以减少数据的存储空间或传输带宽。
压缩编码器使用各种算法和技术,如无损压缩和有损压缩,以实现高效的数据压缩。
4. 视频编码器:视频编码器是一种专门用于处理视频信号的编码器。
它将视频信号转换为数字格式,并使用特定的视频编码算法,如H.264、MPEG-2等,对视频数据进行压缩和编码。
5. 音频编码器:音频编码器将音频信号转换为数字格式,并使用特定的音频编码算法,如MP3、AAC等,对音频数据进行压缩和编码。
编码器的工作原理可以简单概括为以下几个步骤:1. 信号采集:编码器通过传感器或输入接口采集输入信号,可以是模拟信号或数字信号。
2. 信号处理:采集到的信号经过预处理,如滤波、放大、抽样等,以满足编码器的要求。
3. 信号编码:编码器根据所采用的编码算法,将输入信号转换为特定的编码格式。
编码过程可以包括量化、编码表查找、差分编码等操作。
4. 编码输出:编码后的信号以数字形式输出,可以传输给其他设备、存储到介质中或进行进一步处理。
编码器在许多领域中广泛应用,如通信、音视频处理、数据存储和传输等。
它们通过将信号转换为特定的编码格式,提高了信号的传输效率、存储空间利用率和处理速度,对现代电子技术的发展起到了重要作用。
编码器的分类
根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。
1.增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90度,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。
其缺点是无法输出轴转动的绝对位置信息。
2.绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。
这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。
显然,吗道必须N条吗道。
目前国内已有16位的绝对编码器产品。
3.混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。
编码器分类
1、按信号的原理分:增量式编码器、肯定式编码器、混合式编码器1)增量式编码器
直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90,从而可便利地推断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。
它的优点是原理构造简洁,机械平均寿命可在几万小时以上,抗干扰力量强,牢靠性高,适合于长距离传输。
其缺点是无法输出轴转动的肯定位置信息。
2)肯定式编码器
利用自然二进制或循环二进制(格雷码)方式进行光电转换的。
肯定式编码器与增量式编码器不同之处在于圆盘上透光、不透光的线条图形,肯定编码器可有若干编码,依据读出码盘上的编码,检测肯定位置。
编码的设计可采纳二进制码、循环码、二进制补码等。
它的特点是:
(1)可以直接读出角度坐标的肯定值;
(2)没有累积误差;
(3)电源切除后位置信息不会丢失。
但是辨别率是由二进制的位数来打算的,也就是说精度取决于位数,目前有10位、14位等多种。
3)混合式肯定值编码器
它输出两组信息:一组信息用于检测磁极位置,带有肯定信息功能;另一组则完全同增量式编码器的输出信息。
肯定值编码器是一种直接编码和直接测量的检测装置。
它能指示肯定值位置,没有累积误差,电源切除后,位置信息不丢失。
常用的编码器有编码盘和编码尺,统称为码盘。
从编码器的使用记数来分类,有二进制编码、二进制循环码(葛莱码)、二-十进制码等编码器。
从结构原理分类,有接触式、光电式和电磁式等几种。
混合式肯定值编码器就是把增量制码与肯定制码同做在一块码盘上。
在圆盘的最外圈是高密度的增量条纹,中间有四个码道组成肯定式的四位葛莱码,每1/4同心圆被葛莱码分割成16个等分段。
该码盘的工作原理是三极记数:粗、中、精计数。
码盘转的转数由对“一转脉冲”的计数表示。
在一转以内的角度位置有葛莱码的4*16不同的数值表示。
每1/4圆葛莱码的细分有最外圆的增量码完成。
增量式光电编码器:测速,测转动方向,测移动角度、距离(相对)。
A:工作原理图
B:工作原理:
1)光电编码器的组成:一个中心有轴的光电码盘,在圆盘上有规章地刻有透光和不透光的线条,在圆盘两侧,安放发光元件和光敏元件。
当圆回旋转时,光敏元件接收的光通量随透光线条同步变化,光敏元件输出波形经过整形后变为脉冲,获得四组正弦波信号组合:A、/A、B、/B ,每个正弦波相差90度相位差(相对于一个周波为360度)用以推断旋转方向。
码盘上有Z相标志(参考机械零位),每转一圈输出一个Z相脉冲以代表零位参考位。
2)由于A、B两相相差90度,可通过比较A相在前还是B相在前,
以判别编码器的正转与反转,假如A相脉冲比B相脉冲超前则光电编码器为正转,否则为反转;通过零位脉冲,可获得编码器的零位参考位。
3)当脉冲数已固定,而需要提高辨别率时,可利用90°相位差A、B 两路信号,对原脉冲数进行2倍频或4倍频。
4)轴的每圈转动,增量型编码器供应肯定数量的脉冲。
周期性的测量或者单位时间内的脉冲计数可以用来测量移动的速度。
假如在一个参考点后面脉冲数被累加,计算值就代表了转动角度或行程的参数。
双通道编码器输出脉冲之间相差为90。
能使接收脉冲的电子设备接收轴的旋转感应信号,因此可用来实现双向的定位掌握;另外,三通道增量型旋转编码器每一圈产生一个称之为零位信号的脉冲。
C:关于码盘
a)脉冲信号
1.A相
2.B相
3.Z相
编码器的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有肯定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。
编码器以每旋转360度供应多少的通或暗刻线称为辨别率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。
c)机械转速和电气转速
机械转速
编码器的机械转速以每分钟最大可以旋转多少圈表示——rpm。
电气转速
编码器的电气转速也称为开关频率,是读取每个脉冲信号的反应速度,以每秒多少次表示——Hz。
1.最大工作速度应同时兼顾编码器的机械转速、电气转速以及编码器后续接收设备的开关频率。
Nmax=Fmax×60/Z;Nmax:最大转速;Fmax:最高响应频率;Z:每转输出脉冲数
2.每秒钟光电编码器输出的脉冲个数:
N=电机的转速n×每转线数/60
例如,当电机的转速n=1000转/分,线数为600,则每秒钟光电编码器的脉冲个数应为
N=1000 × 600/60=10000(个)脉冲
若n=1转/分
则N=1 × 600/60 =10(个)
d)信号输出:正弦波(电流或电压)、方波(TTL、HTL)、集电极开路(PNP、NPN)、推拉式
TTL为长线差分驱动(对称A,/A;B,/B;Z,/Z);
HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。
e)信号连接
连接设备:计数器、plc、计算机
连接方式:
1. 单相连接:
用于正反向计数和测速
2. A、B两相连接:
用于正反向计数、推断正反向和测速
3. A、B、Z三相连接:
用于带参考位修正的位置测量。
1)PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。
2)三相连接:
由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。
对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。
对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。