高考排列与组合填空题
- 格式:doc
- 大小:17.50 KB
- 文档页数:1
高考数学一轮复习排列与组合专题练习及答案高考数学一轮复习排列与组合专题练习及答案一、填空题1.市内某公共汽车站有6个候车位(成一排),现有3名乘客随便坐在某个座位上候车,则恰好有2个连续空座位的候车方式的种数是________.[解析] 由于题目要求的是奇数,那么对于此三位数可以分成两种情况:奇偶奇,偶奇奇.如果是第一种奇偶奇的情况,可以从个位开始分析(3种选择),之后十位(2种选择),最后百位(2种选择),共322=12种;如果是第二种偶奇奇的情况,个位(3种情况),十位(2种情况),百位(不能是0,1种情况),共321=6种,因此总共12+6=18种情况.[答案] 182.若从1,2,3,,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有________种.[解析] 满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有CC=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的`取法共有5+60+1=66(种).[答案] 663.(2014福州调研)若一个三位数的十位数字比个位数字和百位数字都大,称这个数为伞数.现从1,2,3,4,5,6这六个数字中取3个数,组成无重复数字的三位数,其中伞数有________个.[解析] 分类讨论:若十位数为6时,有A=20(个);若十位数为5时,有A=12(个);若十位数为4时,有A=6(个);若十位数为3时,有A=2(个).因此一共有40个.[答案] 404.一个平面内的8个点,若只有4个点共圆,其余任何4点不共圆,那么这8个点最多确定的圆的个数为________.[解析] 从8个点中任选3个点有选法C种,因为有4点共圆所以减去C种再加1种,共有圆C-C+1=53个.[答案] 535.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有________种.[解析] 分两种情况:选2本画册,2本集邮册送给4位朋友有C=6(种)方法;选1本画册,3本集邮册送给4位朋友有C=4(种)方法,不同的赠送方法共有6+4=10(种).[答案] 106.用数字1,2,3,4,5,6六个数字组成一个六位数,要求数字1,2都不与数字3相邻,且该数字能被5整除,则这样的五位数有________个.[解析] 由题可知,数字5一定在个位上,先排数字4和6,排法有2种,再往排好的数字4和6形成的3个空位中插入数字1和3,插法有6种,最后再插入数字2,插法有3种,根据分步乘法计数原理,可得这样的六位数有263=36个.[答案] 367.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法有________种.[解析] 第一类,含有1张红色卡片,共有不同的取法CC=264(种);第二类,不含有红色卡片,共有不同的取法C-3C=220-12=208(种).由分类计数原理知不同的取法有264+208=472(种).[答案] 4728.在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的三位数共有________个.[解析] 在1,2,3,4,5这五个数字中有3个奇数,2个偶数,要求三位数各位数字之和为偶数,则两个奇数一个偶数,符合条件的三位数共有CCA=36(个).[答案] 36二、解答题9.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有1人的选派方法种数是多少?(用数字作答).[解] 分三类:选1名骨科医生,则有C(CC+CC+CC)=360(种);选2名骨科医生,则有C(CC+CC)=210(种);选3名骨科医生,则有CCC=20(种).骨科、脑外科和内科医生都至少有1人的选派方法种数是360+210+20=590种.10.四个不同的小球放入编号为1,2,3,4的四个盒子中.(1)若每个盒子放一球,则有多少种不同的放法?(2)恰有一个空盒的放法共有多少种?[解] (1)每个盒子放一球,共有A=24(种)不同的放法;(2)法一先选后排,分三步完成.第一步:四个盒子中选一只为空盒,有4种选法;第二步:选两球为一个元素,有C种选法;第三步:三个元素放入三个盒中,有A种放法.故共有4CA=144(种)放法.法二先分组后排列,看作分配问题.第一步:在四个盒子中选三个,有C种选法;第二步:将四个球分成2,1,1三组,有C种放法;第三步:将三组分到选定的三个盒子中,有A种放法.故共有CCA=144种放法.。
2024全国高考真题数学汇编排列、组合与二项式定理章节综合一、单选题1.(2024全国高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.232.(2024北京高考真题)在 4x的展开式中,3x的系数为()A.6B.6 C.12D.12二、填空题3.(2024天津高考真题)在63333xx的展开式中,常数项为.4.(2024上海高考真题)在(1)nx 的二项展开式中,若各项系数和为32,则2x项的系数为.5.(2024全国高考真题)1013x的展开式中,各项系数中的最大值为.6.(2024全国高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m为前两次取出的球上数字的平均值,n为取出的三个球上数字的平均值,则m与n之差的绝对值不大于12的概率为.7.(2024全国高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.参考答案1.B【分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解.【详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法,其中丙不在排头,且甲或乙在排尾的排法共有8种,故所求概率81=243P.解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种;当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24 ,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243.故选:B 2.A【分析】写出二项展开式,令432r,解出r 然后回代入二项展开式系数即可得解.【详解】 4x 的二项展开式为 442144C C1,0,1,2,3,4r rrr rr r T x xr,令432r,解得2r ,故所求即为 224C 16 .故选:A.3.20【分析】根据题意结合二项展开式的通项分析求解即可.【详解】因为63333x x的展开式的通项为63636216633C 3C ,0,1,,63rrr r r r r x T xr x,令 630r ,可得3r ,所以常数项为0363C 20 .故答案为:20.4.10【分析】令1x ,解出5n ,再利用二项式的展开式的通项合理赋值即可.【详解】令1x ,(11)32n ,即232n ,解得5n ,所以5(1)x 的展开式通项公式为515C rr r T x ,令52r -=,则3r ,32245C 10T x x .故答案为:10.5.5【分析】先设展开式中第1r 项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33rrr r r rr r,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x,010r 且r Z ,设展开式中第1r 项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r,294334r r,即293344r ,又r Z ,故8r ,所以展开式中系数最大的项是第9项,且该项系数为28101C 53.故答案为:5.6.715【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b ,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120 种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b ,故2()3c a b ,故32()3c a b ,故323a b c a b ,若1c ,则5a b ,则 ,a b 为: 2,3,3,2,故有2种,若2c ,则17a b ,则 ,a b 为: 1,3,1,4,1,5,1,6,3,4,3,1,4,1,5,1,6,1,4,3,故有10种,当3c ,则39a b ,则 ,a b 为:1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, 2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c ,则511a b ,同理有16种,当5c ,则713a b ,同理有10种,当6c ,则915a b ,同理有2种,共m 与n 的差的绝对值不超过12时不同的抽取方法总数为 22101656 ,故所求概率为56712015.故答案为:7157.24112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124 种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152******** .故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.。
运用两个基本原理例1.n个人参加某项资格考试,能否通过,有多少种可能的结果?例2.同室四人各写了一张贺年卡,先集中起来,然后每人从中拿一张别人的贺年卡,则四张贺年卡不同的分配方式有()(A)6种(B)9种(C)11种(D)23种解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。
其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。
下面介绍几种常用的解题方法和策略。
一.特殊元素(位置)的“优先安排法”:对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。
例1.用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有()。
A.24个 B.30个 C.40个 D.60个30。
例2.(1995年上海) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法()种.72例3.(2000年全国)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有()种.A33· A72=252例4.从0,1,……,9这10个数字中选取数字组成偶数,一共可以得到不含相同数字的五位偶数多少个?例5.8人站成两排,每排4人,甲在前排,乙不在后排的边上,一共有多少种排法?特殊优先,一般在后对于问题中的特殊元素、特殊位置要优先安排。
在操作时,针对实际问题,有时“元素优先”,有时“位置优先”。
练习1(89年全国)由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有个(用数字作答)。
36三.合理分类与准确分步含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。
排列组合历年高考试题荟萃排列组合(一)一、选择题( 本大题共60 题, 共计298 分)1、从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有A.8种B.12种C.16种D.20种2、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有………………………………()(A)(B)3 种(C)(D)种3、从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同工作,若其中甲、乙两名志愿者都不能从事翻译工作,则选派方案共有………………………()(A)280种B)240种C)180种D)96种4、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为……………………………………………………()A.6B.12C.15D.305、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为…()A.42B.30C.20D.126、从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种值.不同的种植方法共有…………()A.24种B.18种C.12种D.6种7、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有……………………………………………………()A.210种B.420种C.630种D.840种8、在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有…………………………………………………()A.56个B.57个C.58个D.60个9、直角坐标xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有 ( )A.25个B.36个C.100个D.225个10、从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为…………………()A.56B.52C.48D.4011直角坐标xOy平面上,平行直线x=n(n=0,1,2,…,5)与平行直线y=n(n=0,1,2,…,5)组成的图形中,矩形共有……………………………( )A.25个B.36个C.100个D.225个12、某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为………………… ()(A)A C (B) A C (C)A A (D)2A13、将4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有………………………………………………………………()A.12种B.24种C.36种D.48种14、在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有…………………………………………………()A.56个B.57个C.58个D.60个15、将标号1,2,…,10的10个球放入标号为1,2,…,10的10个盒子内,每个盒内放一个球,恰好有3个球的标号与其所在盒子的标号不一致的放入方法种数为……………………………………………………()(A)120 (B)240 (C)360 (D)72016、有两排座位,前排11个座位,后排12个座位.现安排2人就座,规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是A.234B.346C.350D.36317、从正方体的八个顶点中任取三个点为顶点作三角形,其中直角三角形的个数为A.56B.52C.48D.4018、在100件产品中有6件次品,现从中任取3件产品,至少有1件次品的不同取法的种数是…………………………………………………()A.C CB.C CC.C -CD.P -P19、从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有………………………………………………………………()A.210种B.420种C.630种D.840种20、从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有……………………………………()A.140种B.120种C.35种D.34种21、从6人中选4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有A.300种 B.240种 C.144种 D.96种22、把一同排6张座位编号为1,2,3,4,5,6的电影票全每人至少分1张,至多分2张,且这两张票具有连续的编号,那么不同的分法种数是()A.168B.96C.72D.14423、(5分)将9个人(含甲、乙)平均分成三组,甲、乙分在同一组,则不同分组方法的种数为()A.70B.140C.280D.84024、五个工程队承建某项工程的5个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有(A)种(B)种(C)种(D)种+扣1-0-4-9-9-3-1-4-3-5 此文档面飞送需要更多资料+学习方法的也可以+25、用n个不同的实数a1,a2,…,an可得n!个不同的排列,每个排列为一行写成一个n!行的数阵.对第i行ai1,ai2,…,ain,记bi= -ai1+2ai2 -3ai3+…+(-1)n nain,i=1,2,3,…,n!。
高考数学高三模拟试卷试题压轴押题排列组合典型题大全一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果?(3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?【解析】:(1)43(2)34(3)34【例2】把6名实习生分配到7个车间实习共有多少种不同方法?【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案.【例3】 8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、38C【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。
所以选A1、4封信投到3个信箱当中,有多少种投法?2、4个人争夺3项冠军,要求冠军不能并列,每个人可以夺得多项冠军也可以空手而还,问最后有多少种情况?3、4个同学参加3项不同的比赛(1)每位同学必须参加一项比赛,有多少种不同的结果?(2)每项竞赛只许一名同学参加,有多少种不同的结果?4、5名学生报名参加4项比赛,每人限报1项,报名方法的种数有多少?又他们争夺这4项比赛的冠军,获得冠军的可能性有多少?5、甲乙丙分10瓶汽水的方法有多少种?6、(全国II 文)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共(A)10种(B) 20种(C) 25种 (D) 32种7、5位同学报名参加并负责两个课外活动小组,每个兴趣小组只能有一个人来负责,负责人可以兼职,则不同的负责方法有多少种?8、4名不同科目的实习教师被分配到3个班级,不同的分法有多少种?思考:4名不同科目的实习教师被分配到3个班级,每班至少一个人的不同的分法有多少种?二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
概率历年高考题一、选择题1、(2004)5人站成一排照相,其中甲、乙二人必须相邻,则不同的排法有( )A 、24B 、48C 、60D 、722、(2005)从1、2、3、4、。
9中任取两个奇数和两个偶数排成没有重复数字的四位数,其个数为( )A 、1440B 、2880C 、720D 、都不对3、(2006)某种小麦发芽的概率是0.8,在一次试验的5粒种子中恰恰有4粒发芽的概率是( )A 、()1410.80.8⨯-B 、()4110.80.8⨯-C 、()44110.80.85C ⨯-D 、()14410.80.85C ⨯-4、(2006)从1、2、3中任取两个数组成无重复数字的两位数的个数是( )A 、2B 、4C 、6D 、85、(2007)从1、2、3、4、5中任取两个数组成无重复数字的两位偶数的个数( )A 、20B 、6C 、8D 、106、(2007)从集合A={1、2、3、4、5、6}中任取两个不同的数,则这两个数都是奇数的概率为( )A15 B 110 C 25 D 127、(2008)甲乙两队进行行篮球赛,甲队获胜的概率为0,6,如果比赛三场,甲队恰 好胜两场的概率是( )A .0,62B .0,62⨯0,4C .3⨯0,62⨯0,4D .3⨯0,6⨯0,42 8、(2008)4名学生争夺3项比赛冠军(无并列),获得冠军的可能性的种数为( )A .34B .43C .34C D .34P9、(2009)现有5套经济适用房分给4户居民,(每户只能拥有一套),则所有分法种数为( )A 、5!B 、20C 、45D 、5410、(2010)5个人站成一排,甲、乙两人之间无其它人的排法有( )种。
A 、48B 、24C 、120D 、14411、(2011)在相同环境下,某人投篮的命中率都是0.8,则其投篮10次恰有8次命中的概率是( )A .228100.80.2C ⋅B .282100.80.2C ⋅ C .822100.80.2C ⋅D .828100.80.2C ⋅12、(2012)如图所示,一个正方形及其内切圆,随机向正方形内抛一颗豆子,假设豆子落到正方形内,则豆子落到内切圆内的概率为( ) Aπ2 B ππ2- C π2 D 4π13. (2013) 某天上午共四节课,排语文、数学、体育、计算机课,其中体育不排在第一节,那么这天上午课程表的不同排法种数是( ) A .6 B .9 C.12 D.1814. (2013)在10的展开式中,10x 的系数是( )A .53- B.1 C .53 D .10215、(2014)从1,2,3,4,5中任取两个数字,组成无重复数字的两位偶数的个数为( )A 、20B 、12C 、10D 、816、(2014)直线y x k =-与抛物线24y x =交于两个不同的点A 、B ,且AB 的中点的横坐标为1,则k 的值为( )A 、1-或2B 、1-C 、2 D、1± 17、(2014)102x x ⎛⎫- ⎪⎝⎭的展开式中,常数项等于( )A 、55102CB 、()45102C - C 、64102CD 、()55102C -18、(2014)已知离散型随机变量ξ的概率分布如下表所示,则()1p ξ==( )A 、0.24B 、0.28C 、0.48D 、0.52二、填空题1、(2000)3名学生坐在一排7个座位上,若每人左右两边都有空座位,则不同的坐法种数是 。
2014-2009排列组合高考题及参考答案排列、组合高考题一、选择题1.(2014辽宁)6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A.144B.120C.72D.242.(2014大纲全国)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组.则不同的选法共有( )A.60种B.70种C.75种D.150种3.(2014四川)六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A.192种B.216种C.240种D.288种4.(2014重庆)某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B.120C.144D.1685.(2013山东理)试题用0,1,……,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.2796.(2013四川卷理)从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b,共可得到lg lga b-的不同值的个数是()A.9B.10C.18D.207.(2012辽宁)一排9个座位坐了3个三口之家,若每家人坐在一起,则不同的坐法种数为(A)3×3!(B) 3×(3!)3 (C)(3!)4(D) 9!8.(2012新课标)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有D8种()A12种()B10种()C9种() 9.(2012全国)将字母,,,,,a ab bc c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有A.12种B.18种C.24种D.36种10.(2011年高考全国卷理科7)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友每位朋友1本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种11.(2010山东理)某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位、节目乙不能排在第一位,节目丙必须排在最后一位,该台晚会节目演出顺序的编排方案共有(A )36种(B )42种 (C)48种(D )54种12.(2010全国卷I 理科)某校开设A 类选修课3门,B 类选择课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A) 30种 (B)35种 (C)42种 (D)48种13. (2010重庆理)某单位安排7位员工在10月1日至7日值班,每天安排1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有(A ) 504种(B ) 960种(C ) 1008种(D ) 1108种14.(2010四川文)由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是(A )36 (B )32 (C )28 (D )2415.(2010年高考四川卷理科10)由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A.72B.96C.108D.14416.8名学生和2位第师站成一排合影,2位老师不相邻的排法种数为()A.8289A AB.8289A CC.8287A AD.8287A C17.(2010全国理)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()A.12种B.18种C.36种D.54种18.(2009北京理)用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A .324B .328C .360D .64819.(2009全国Ⅰ理)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。
专题09排列组合高考常见小题全归类【命题规律】排列组合是高考重点考查的内容之一,今后在本节的考查形式依然以选择或者填空为主,以考查基本概念和基本方法为主,难度中等偏下,与教材相当.本节内容与生活实际联系紧密,考生可适当留意常见的排列组合现象,如体育赛事排赛、彩票规则等,培养数学应用的思维意识.【核心考点目录】核心考点一:两个计数原理的综合应用核心考点二:直接法核心考点三:间接法核心考点四:捆绑法核心考点五:插空法核心考点六:定序问题(先选后排)核心考点七:列举法核心考点八:多面手问题核心考点九:错位排列核心考点十:涂色问题核心考点十一:分组问题核心考点十二:分配问题核心考点十三:隔板法核心考点十四:数字排列核心考点十五:几何问题核心考点十六:分解法模型与最短路径问题核心考点十七:排队问题核心考点十八:构造法模型和递推模型核心考点十九:环排问题【真题回归】1.(2022·全国·统考高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有()A.12种B.24种C.36种D.48种2.(2021·全国·统考高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种3.(2020·山东·统考高考真题)现从4名男生和3名女生中,任选3名男生和2名女生,分别担任5门不同学科的课代表,则不同安排方法的种数是( )A .12B .120C .1440D .172804.(2020·海南·高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A .2种B .3种C .6种D .8种5.(2020·海南·统考高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种6.(2020·全国·统考高考真题)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k –j =3且j –i =4,则称ai ,aj ,ak 为原位大三和弦;若k –j =4且j –i =3,则称ai ,aj ,ak 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .157.(2022·全国·统考高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.8.(2020·全国·统考高考真题)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【方法技巧与总结】1、如图,在圆中,将圆分n 等份得到n 个区域1M ,2M ,3M ,,(2)n M n ,现取(2)k k 种颜色对这n 个区域涂色,要求每相邻的两个区域涂不同的两种颜色,则涂色的方案有(1)(1)(1)n n k k --+-种.2、错位排列公式1(1)(1)!!inn i D n n =-=+⋅∑ 3、数字排列问题的解题原则、常用方法及注意事项(1)解题原则:排列问题的本质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要表现在某元素不排在某个位子上,或某个位子不排某些元素,解决该类排列问题的方法主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子,若一个位子安排的元素影响到另一个位子的元素个数时,应分类讨论.4、定位、定元的排列问题,一般都是对某个或某些元素加以限制,被限制的元素通常称为特殊元素,被限制的位置称为特殊位置.这一类问题通常以三种途径考虑:(1)以元素为主考虑,这时,一般先解决特殊元素的排法问题,即先满足特殊元素,再安排其他元素; (2)以位置为主考虑,这时,一般先解决特殊位置的排法问题,即先满足特殊位置,再考虑其他位置; (3)用间接法解题,先不考虑限制条件,计算出排列总数,再减去不符合要求的排列数.5、解决相邻问题的方法是“捆绑法”,其模型为将n 个不同元素排成一排,其中某k 个元素排在相邻位置上,求不同排法种数的方法是:先将这k 个元素“捆绑在一起”,看成一个整体,当作一个元素同其他元素一起排列,共有11n k n k A -+-+种排法;然后再将“捆绑”在一起的元素“内部”进行排列,共有k k A 种排法.根据分步乘法计数原理可知,符合条件的排法共有11n k n k kk A A -+-+⋅种. 6、解决不相邻问题的方法为“插空法”,其模型为将n 个不同元素排成一排,其中某k 个元素互不相邻(1k n k ≤-+),求不同排法种数的方法是:先将(n k -)个元素排成一排,共有n k n k A --种排法;然后把k 个元素插入1n k -+个空隙中,共有1k n k A -+种排法.根据分步乘法计数原理可知,符合条件的排法共有n k n k A --·1k n k A -+种.7、解决排列、组合综合问题时需注意“四先四后”:(1)先分类,后分步:某些问题总体不好解决时,常常分成若干类,再由分类加法计数原理解决或分成若干步,再由分步乘法计数原理解决.常常既要分类,又要分步,其原则是先分类,再分步.(2)先特殊,后一般:解排列、组合问题时,常先考虑特殊情形(特殊元素,特殊位置等),再考虑其他情形.(3)先分组,后分配:对不同元素且较为复杂的平均分组问题,常常“先分组,再分配”. (4)先组合,后排列:对于既要选又要排的排列组合综合问题,常常考虑先选再排.【核心考点】核心考点一:两个计数原理的综合应用 【典型例题】例1.(2022·全国·高三专题练习)重庆九宫格火锅,是重庆火锅独特的烹饪方式.九宫格下面是相通的,实现了“底同火不同,汤通油不通”它把火锅分为三个层次,不同的格子代表不同的温度和不同的牛油浓度,其锅具抽象成数学形状如图(同一类格子形状相同):“中间格“火力旺盛,不宜久煮,适合放一些质地嫩脆、顷刻即熟的食物;“十字格”火力稍弱,但火力均匀,适合煮食,长时间加热以锁住食材原香;“四角格”属文火,火力温和,适合焖菜,让食物软糯入味.现有6种不同食物(足够量),其中1种适合放入中间格,3种适合放入十字格,2种适合放入四角格.现将九宫格全部放入食物,且每格只放一种,若同时可以吃到这六种食物(不考虑位置),则有多少种不同放法()A.108B.36C.9D.6例2.(2022春·黑龙江哈尔滨·高三哈尔滨七十三中校考阶段练习)某市抽调5位医生分赴4所医院支援抗疫,要求每位医生只能去一所医院,每所医院至少安排一位医生.由于工作需要,甲、乙两位医生必须安排在不同的医院,则不同的安排种数是()A.90B.216C.144D.240例3.(2022春·山东聊城·高三山东聊城一中校考期末)某大型联欢会准备从含甲、乙的6个节目中选取4个进行演出,要求甲、乙2个节目中至少有一个参加,且若甲、乙同时参加,则他们演出顺序不能相邻,那么不同的演出顺序的种数为()A.720B.520C.600D.264核心考点二:直接法【典型例题】例4.甲、乙、丙、丁、戊共5名同学进行劳动技术比赛,决出第1名到第5名的名次.甲和乙去询问成绩,回答者对甲说:“很遗憾,你和乙都没有得到冠军.”对乙说:“你当然不会是最差的.”从这两个回答分析,5人的名次排列方式共有()种A.54B.72C.96D.120A B C D E F共6名同学进行决赛,例5.某校开展研学活动时进行劳动技能比赛,通过初选,选出,,,,,决出第1名到第6名的名次(没有并列名次),A和B去询问成绩,回答者对A说“很遗㙳,你和B都末拿到冠军;对B说“你当然不是最差的”.试从这个回答中分析这6人的名次排列顺序可能出现的结果有()A .720种B .600种C .480种D .384种例6.甲、乙、丙、丁四人站成一列,要求甲站在最前面,则不同的排法有( ) A .24种 B .6种 C .4种 D .12种核心考点三:间接法 【典型例题】例7.将7个人从左到右排成一排,若甲、乙、丙3人中至多有2人相邻,且甲不站在最右端,则不同的站法有( ).A .1860种B .3696种C .3600种D .3648种例8.某学校计划从包含甲、乙、丙三位教师在内的10人中选出5人组队去西部支教,若甲、乙、丙三位教师至少一人被选中,则组队支教的不同方式共有( )A .21种B .231种C .238种D .252种例9.中园古代中的“礼、乐、射、御、书、数”合称“六艺”.“礼”主要指德育;“乐”主要指美育;“射”和“御”就是体育和劳动;“书”指各种历史文化知识;“数”指数学.某校国学社团开展“六艺”讲座活动,每周安排一次讲座,共讲六次.讲座次序要求“射”不在第一次,“数”和“乐”两次不相邻,则“六艺”讲座不同的次序共有( )A .408种B .240种C .1092种.D .120种核心考点四:捆绑法 【典型例题】例10.(2022·四川自贡·统考一模)在某个单位迎新晚会上有A 、B 、C 、D 、E 、F 6个节目,单位为了考虑整体效果,对节目演出顺序有如下具体要求,节目C 必须安排在第三位,节目D 、F 必须安排连在一起,则该单位迎新晚会节目演出顺序的编排方案共有( )种A .36B .48C .60D .72例11.(2022·四川宜宾·统考模拟预测)“四书” “五经”是我国9部经典名著《大学》《论语》《中庸》《孟子》《周易》《尚书》《诗经》《礼记》《春秋》的合称.为弘扬中国传统文化,某校计划在读书节活动期间举办“四书”“五经”知识讲座,每部名著安排1次讲座,若要求《大学》《论语》相邻,但都不与《周易》相邻,则排法种数为( )A .622622A A AB .6262A AC .622672A A A D .622662A A A例12.(2022春·四川内江·高三威远中学校校考期中)某一天的课程表要排入语文、数学、英语、物理、化学、生物六门课,如果数学只能排在第一节或者最后一节,物理和化学必须排在相邻的两节,则共有( )种不同的排法A .24B .144C .48D .96核心考点五:插空法 【典型例题】例13.(2022·全国·高三专题练习)电视台在电视剧开播前连续播放6个不同的广告,其中4个商业广告2个公益广告,现要求2个公益广告不能连续播放,则不同的播放方式共有( ).A .5424A A ⋅B .5424C C ⋅ C .4267A A ⋅D .4267C C ⋅例14.(2022·全国·高三专题练习)五声音阶是中国古乐的基本音阶,故有成语“五音不全”.中国古乐中的五声音阶依次为:宫、商、角、徽、羽,如果用上这五个音阶,排成一个五音阶音序,且商、角不相邻,徽位于羽的左侧,则可排成的不同音序有( )A .18种B .24种C .36种D .72种例15.(2022·全国·高三专题练习)A ,B ,C ,D ,E ,F 这6位同学站成一排照相,要求A 与C 相邻且A 排在C 的左边,B 与D 不相邻且均不排在最右边,则这6位同学的不同排法数为( )A .72B .48C .36D .24核心考点六:定序问题(先选后排) 【典型例题】例16.满足*(1,2,3,4)i x i ∈=N ,且123410x x x x <<<<的有序数组()1234,,,x x x x 共有( )个.A .49CB .49PC .410CD .410P例17.某次演出有5个节目,若甲、乙、丙3个节目间的先后顺序已确定,则不同的排法有( ) A .120种 B .80种C .20种D .48种例18.花灯,又名“彩灯”“灯笼”,是中国传统农业时代的文化产物,兼具生活功能与艺术特色.如图,现有悬挂着的8盏不同的花灯需要取下,每次取1盏,则不同取法总数为 ( )A .2520B .5040C .7560D .10080核心考点七:列举法 【典型例题】例19.(2022春·河南南阳·高三统考期末)2021年8月17日,国家发改委印发的《2021年上半年各地区能耗双控目标完成情况晴雨表》显示,青海、宁夏、广西、广东、福建、新疆、云南、陕西、江苏、浙江、安徽、四川等12个地区能耗强度同比不降反升,全国节能形势十分严峻.某地市为响应节能降耗措施,决定对非繁华路段路灯在晚高峰期间实行部分关闭措施.如图,某路段有十盏路灯(路两边各有五盏),现欲在晚高峰期关闭其中的四盏灯,为保证照明的需求,要求相邻的路灯不能同时关闭且相对的路灯也不能同时关闭,则不同的关闭方案有( )A .15种B .16种C .17种D .18种例20.三人互相传球,由甲开始发球,并作为第一次传球,经过5次传球后,球仍回到甲手中,则不同的传球方式共有( )A .6种B .8种C .10种D .16种例21.(2022·上海浦东新·上海市实验学校校考模拟预测)定义“规范01数列”{an }如下:{an }共有2m 项,其中m 项为0,m 项为1,且对任意2k m ≤,12,,,,k a a a 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有A .18个B .16个C .14个D .12个核心考点八:多面手问题 【典型例题】例22.我校去年11月份,高二年级有10人参加了赴日本交流访问团,其中3人只会唱歌,2人只会跳舞,其余5人既能唱歌又能跳舞.现要从中选6人上台表演,3人唱歌,3人跳舞,有种不同的选法.A .675B .575C .512D .545例23.某国际旅行社现有11名对外翻译人员,其中有5人只会英语,4人只会法语,2人既会英语又会法语,现从这11人中选出4人当英语翻译,4人当法语翻译,则共有( )种不同的选法A .225B .185C .145D .110例24.“赛龙舟”是端午节的习俗之一,也是端午节最重要的节日民俗活动之一,在我国南方普遍存在端午节临近,某单位龙舟队欲参加今年端午节龙舟赛,参加训练的8名队员中有3人只会划左桨,3人只会划右桨,2人既会划左桨又会划右桨.现要选派划左桨的3人、划右桨的3人共6人去参加比赛,则不同的选派方法共有()A.26种B.30种C.37种D.42种核心考点九:错位排列【典型例题】例25.编号为1、2、3、4、5的5个人分别去坐编号为1、2、3、4、5的五个座位,其中有且只有两个人的编号与座位号一致的坐法有()A.10种B.20种C.30种D.60种例26.将编号为1、2、3、4、5、6的小球放入编号为1、2、3、4、5、6的六个盒子中,每盒放一球,若有且只有两个盒子的编号与放入的小球的编号相同,则不同的放法种数为()A.90B.135C.270D.360例27.若5个人各写一张卡片(每张卡片的形状、大小均相同),现将这5张卡片放入一个不透明的箱子里,并搅拌均匀,再让这5人在箱子里各摸一张,恰有1人摸到自己写的卡片的方法数有()A.20B.90C.15D.45核心考点十:涂色问题【典型例题】例28.(2022春·陕西宝鸡·高三校考开学考试)某儿童游乐园有5个区域要涂上颜色,现有四种不同颜色的油漆可供选择,要求相邻区域不能涂同一种颜色,则符合条件的涂色方案有()种A.36B.48C.54D.72例29.(2022春·宁夏银川·高三校考开学考试)如图,用五种不同的颜色给图中的O,A,B,C,D,E六个点涂色(五种颜色不一定用完),要求每个点涂一种颜色,且图中每条线段的两个端点涂不同的颜色,则不同的涂法种数是()A.480B.720C.1080D.1200例30.(2022秋·河北石家庄·高二石家庄市第十五中学校考期中)用四种颜色给正四棱锥V ABCD的五个顶点涂色,要求每个顶点涂一种颜色,且每条棱的两个顶点涂不同颜色,则不同的涂法有()A.72种B.36种C.12种D.60种核心考点十一:分组问题【典型例题】例31.2021年春节期间电影《你好,李焕英》因“搞笑幽默不庸俗,真心实意不煽情”深受热棒,某电影院指派5名工作人员进行电影调查问卷,每个工作人员从编号为1,2,3,4的4个影厅选一个,可以多个工作人员进入同一个影厅,若所有5名工作人员的影厅编号之和恰为10,则不同的指派方法种数为()A.91B.101C.111D.121例32.已知有6本不同的书.(1)分成三堆,每堆2本,有多少种不同的分堆方法?(2)分成三堆,一堆1本,一堆2本,一堆3本,有多少种不同的分堆方法?核心考点十二:分配问题【典型例题】例33.(2022·浙江·模拟预测)杭州亚运会启动志愿者招募工作,甲、乙、丙、丁等4人报名参加了A B C三个项目的志愿者工作,每个项目需1名或2名志愿者,若甲不能参加A项目,乙不能参加B、C项,,目,那么共有______种不同的志愿者选拔方案.例34.(2022·上海长宁·统考一模)有甲、乙、丙三项任务,其中甲需2人承担,乙、丙各需1人承担;现从6人中任选4人承担这三项任务,则共有___________种不同的选法例35.(2022·四川南充·高三统考期中)随着高三学习时间的增加,很多高三同学心理压力加大.通过心理问卷调查发现,某校高三年级有5位学生心理问题凸显,需要心理老师干预.已知该校高三年级有3位心理老师,每位心理老师至少安排1位学生,至多安排3位学生,则共有______种心理辅导安排方法.核心考点十三:隔板法 【典型例题】例36.(2022·全国·高三专题练习)六元一次方程12610x x x +++=的正整数解有________组.例37.(2022·全国·高三专题练习)将10本完全相同的科普知识书,全部分给甲、乙、丙3人,每人至少得2本,则不同的分法数为( )A .720种B .420种C .120种D .15种例38.(2022春·山东济宁·高三济宁一中校考开学考试)()112x y z ++展开式为多项式,则其展开式经过合并同类项后的项数一共有( )A .12项B .24项C .39项D .78项核心考点十四:数字排列 【典型例题】例39.(2022春·四川绵阳·高三绵阳中学校考阶段练习)小小的火柴棒可以拼成几何图形,也可以拼成数字.如下图所示,我们可以用火柴棒拼出1至9这9个数字比如:“1”需要2根火柴棒,“7”需要3根火柴棒.若用8根火柴棒以适当的方式全部放入右面的表格中(没有放入火柴棒的空位表示数字“0”),那么最多可以表示无重复数字的三位数有______个例40.(2022·全国·高三专题练习)从0,2,4,6中任取2个数字,从1,3,5中任取2个数字,一共可以组成_____个没有重复数字的四位偶数.例41.(2022·天津宝坻·天津市宝坻区第一中学校考二模)用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为____ .核心考点十五:几何问题 【典型例题】例42.(2022秋·山东聊城·高二校考期中)从正方体六个面的对角线中任取两条作为一对,其中相互平行或相互垂直的有( )A.24对B.16对C.18对D.48对例43.(2022·全国·高考真题)在直角坐标系xOy中,已知AOB三边所在直线的方程分别为x y x y==+=,则AOB内部和边上整点(即横、纵坐标均为整数的点)的总数是()0,0,2330A.95B.91C.88D.75C分子是一种由60个碳原子构成的分子,它形似足球,例44.(2022·全国·高三专题练习)已知60C是单纯由碳原子结合形成的稳定分子,它具有60个顶点和若干个面,.各个面的形因此又名足球烯,60状为正五边形或正六边形,结构如图.已知其中正六边形的面为20个,则正五边形的面为()个.A.10B.12C.16D.20核心考点十六:分解法模型与最短路径问题【典型例题】例45.(2022秋·内蒙古·高二校考期中)如图,某城市的街区由12个全等的矩形组成(实线表示马路),CD段马路由于正在维修,暂时不通,则从A到B的最短路径有()A.33种B.23种C.20种D.13种例46.(2022·陕西西安·西安中学校考模拟预测)在某城市中,A,B两地有如图所示的方格型道路网,甲随机沿路网选择一条最短路径,从A地出发去往B地,且不经过C地,则不同的路径共有________条.例47.5400的正约数有()个A.48B.46C.36D.38核心考点十七:排队问题【典型例题】例48.(2022春·福建福州·高三福州四中校考阶段练习)甲、乙、丙三人相约一起去做核酸检测,到达检测点后,发现有,A B两支正在等待检测的队伍,则甲、乙、丙三人不同的排队方案共有______种.例49.(2022秋·安徽·高三芜湖一中校联考阶段练习)某医院对9个人进行核酸检测,为了防止排队密集,将9人分成两组,第一组5人,排队等候,由于甲、乙两人不熟悉流程,故无论在哪一组,排队都不在第一位,则第一组的不同排法种数为_________.(用数字作答)例50.(2022·上海·统考模拟预测)有七名同学排队进行核酸检测,其中小王站在正中间,并且小李、小张两位同学要站在一起,则不同的排队法有___________种.核心考点十八:构造法模型和递推模型【典型例题】例51.贾同学、王同学、文同学三人在操场踢球,每次传球,传球者将球随机将传给另外两位同学之一,足球最开始在文同学脚下,则:①n次传球之后,共有___________种可能的传球方法;②n次传球之后,足球回到文同学脚下的传球方法有___________种.例52.一只蚂蚁从一个正四面体ABCD的顶点A出发,每次从一个顶点爬行到另一个顶点,则蚂蚁爬行五次还在点A的爬行方法种数是__________.核心考点十九:环排问题【典型例题】例53.21个人按照以下规则表演节目:他们围坐成一圈,按顺序从1到3循环报数,报数字“3”的人出来表演节目,并且表演过的人不再参加报数.那么在仅剩两个人没有表演过节目的时候,共报数的次数为A.19B.38C.51D.57例54.现有一圆桌,周边有标号为1,2,3,4的四个座位,甲、乙、丙、丁四位同学坐在一起探讨一个数学课题,每人只能坐一个座位,甲先选座位,且甲、乙不能相邻,则所有选座方法有().A.6种B.8种C.12种D.16种【新题速递】一、单选题1.(2022·云南昆明·昆明一中模拟预测)如图所示某城区的一个街心花园,共有五个区域,中心区域E已被设计为代表城市特点的一个标志性塑像,要求在周围ABCD四个区域中种植鲜花,现有四个品种的鲜花可供选择,要求每个区域只种一个品种且相邻区域所种品种不同,则不同的种植方法的种数为()A.12B.24C.48D.842.(2022春·重庆渝中·高三重庆巴蜀中学校考阶段练习)某医院进行年度体检,有抽血、腹部彩超、胸部CT、电图、血压测量等五个检查项目.为了体检数据的准确性,抽血必须作为第一个项目完成,而李老师决定腹部彩超和胸部CT两项不连在一起接着检查.则不同顺序的检查方案一共有()A.6种B.12种C.18种D.24种3.(2022春·云南·高三校联考阶段练习)某单位准备从新入职的4名男生和3名女生中选2名男生和1名女生分配到某部门3个不同的岗位,不同的分配方案有()A.18种B.36种C.60种D.108种4.(2022春·河南许昌·高三阶段练习)中国空间站(China Space Station)的主体结构包括天和核心舱、问天实验舱和梦天实验舱.2022年10月31日15:37分,我国将“梦天实验舱”成功送上太空,完成了最后一个关键部分的发射,“梦天实验舱”也和“天和核心舱”按照计划成功对接,成为“T”字形架构,我国成功将中国空间站建设完毕.2023年,中国空间站将正式进入运营阶段.假设中国空间站要安排甲、乙等5名航天员进舱开展实验,其中“天和核心舱”安排2人,“问天实验舱”安排2人,“梦天实验舱”安排1人.若甲、乙两人不能同时在一个舱内做实验,则不同的安排方案共有()A.9种B.24种C.26种D.30种5.(2022·四川南充·统考一模)在某次红蓝双方举行的联合军演的演练中,红方参加演习的有4艘军舰,3架飞机;蓝方有2艘军舰,4架飞机.现从红、蓝两方中各选出2件装备(1架飞机或一艘军舰都作为一件装备,所有的军舰两两不同,所有的飞机两两不同)先进行预演,则选出的四件装备中恰有一架飞机的不同选法共有( )A .60种B .120种C .132种D .168种6.(2022春·四川·高三四川外国语大学附属外国语学校校考期中)某群主发了15元的红包,分成四份,四人领取,均为正整数元,已知其中“运气王”(“运气王”是指领到红包金额最多的人)领到7元,则这四个人不同领取红包的方法总数为( )A .84B .96C .108D .1207.(2022·河南·马店第一高级中学校联考模拟预测)如图,某水果店门前用3根绳子挂了6串香蕉,从左往右的串数依次为1,2,3.到了晚上,水果店老板要收摊了,假设每次只取1串(挂在一列的只能先收下面的),则将这些香蕉都取完的不同取法种数是( )A .144B .96C .72D .608.(2022春·河南·高三校联考阶段练习)将6名志愿者分配到3个社区参加服务工作,每名志愿者只分配到1个小区,每个小区至少分配1名志愿者,若分配到3个小区的志愿者人数均不相同,则不同的分配方案共有( )A .60种B .120种C .180种D .360种二、多选题9.(2022春·吉林·高三东北师大附中校考开学考试)某学生在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法正确的是( )A .若任意选择三门课程,选法总数为37CB .若物理和化学至少选一门,选法总数为12212525C C C C + C .若物理和历史不能同时选,选法总数为3175C C -D .若物理和化学至少选一门,且物理和历史不能同时选,选法总数为121255C C C -10.(2022春·江苏镇江·高三校考开学考试)现分配甲、乙、丙三名临床医学检验专家到A ,B ,C ,D ,E 五家医院进行核酸检测指导,每名专家只能选择一家医院,且允许多人选择同一家医院,则( )A .所有可能的安排方法有125种B .若A 医院必须有专家去,则不同的安排方法有61种C .若专家甲必须去A 医院,则不同的安排方法有16种D .若三名专家所选医院各不相同,则不同的安排方法有10种11.(2022·全国·高三专题练习)某单位从6男4女共10名员工中,选出3男2女共5名员工,安。
历年高考数学真题精选(按考点分类)专题45 排列组合(学生版)一.选择题(共20小题)1.(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种2.(2010•广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒B.1200秒C.1195秒D.1190秒3.(2007•全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种4.(2006•湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是()A.6B.12C.24D.18 5.(2009•陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为()A.432B.288C.216D.108 6.(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为() A.144B.120C.72D.24 7.(2012•浙江)若从1,2,3,⋯,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有()A.60种B.63种C.65种D.66种8.(2012•北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为()A .24B .18C .12D .69.(2008•全国卷Ⅰ)将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种10.(2010•重庆)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A .504种B .960种C .1008种D .1108种11.(2015•上海)组合数122(2m m m nn n C C C n m --++,m ,*)n N ∈恒等于( ) A .2m n C + B .12m n C ++ C .1m n C + D .11m n C ++12.(2010•重庆)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有( )A .30种B .36种C .42种D .48种13.(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种14.(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种15.(2006•全国卷Ⅰ)设集合{1I =,2,3,4,5}.选择I 的两个非空子集A 和B ,要使B中最小的数大于A 中最大的数,则不同的选择方法共有( )A .50种B .49种C .48种D .47种16.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有( )A .16个B .70个C .140个D .256个17.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A.12种B.18种C.24种D.36种18.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有( )A.6种B.9种C.10种D.15种19.(2016•新课标Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24B.18C.12D.9 20.(2013•全国)3位男同学与2位女同学排成一列,其中女同学相邻的不同排法共有( )A.48种B.36种C.24种D.18种二.填空题(共5小题)21.(2007•陕西)安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有种.(用数字作答)22.(2010•全国大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)23.(2007•重庆)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有种.(以数字作答)24.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有种(结果用数值表示)25.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)历年高考数学真题精选(按考点分类)专题45 排列组合(教师版)一.选择题(共20小题)1.(2009•全国卷Ⅰ)甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学.若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有( )A.150种B.180种C.300种D.345种【答案】D【解析】分两类(1)甲组中选出一名女生有112536225C C C=种选法;(2)乙组中选出一名女生有211562120C C C=种选法.故共有345种选法.2.(2010•广东)为了迎接2010年广州亚运会,某大楼安装5个彩灯,它们闪亮的顺序不固定.每个彩灯闪亮只能是红、橙、黄、绿、蓝中的一种颜色,且这5个彩灯闪亮的颜色各不相同,记这5个彩灯有序地闪亮一次为一个闪烁.在每个闪烁中,每秒钟有且只有一个彩灯闪亮,而相邻两个闪烁的时间间隔均为5秒.如果要实现所有不同的闪烁,那么需要的时间至少是()A.1205秒B.1200秒C.1195秒D.1190秒【答案】C【解析】由题意知共有5!120=个不同的闪烁,每个闪烁时间为5秒,共5120600⨯=秒;每两个闪烁之间的间隔为5秒,共5(1201)595⨯-=秒.那么需要的时间至少是6005951195+=秒.3.(2007•全国卷Ⅱ)5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A.10种B.20种C.25种D.32种【答案】D【解析】5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有5232=种.4.(2006•湖南)在数字1,2,3与符号+,-五个元素的所有全排列中,任意两个数字都不相邻的全排列个数是( )A .6B .12C .24D .18【答案】B【解析】在数字1,2,3与符号“+”,“ -”五个元素的所有全排列中,先排列1,2,3,有336A =种排法,再将“+”,“ -”两个符号插入, 有222A =种方法,共有12种方法,故选B . 5.(2009•陕西)从1,2,3,4,5,6,7这七个数字中任取两个奇数和两个偶数,组成没有重复数字的四位数,其中奇数的个数为( )A .432B .288C .216D .108【答案】C 【解析】由题意知本题是一个分步计数原理,第一步先从4个奇数中取2个再从3个偶数中取2个共224318C C =种, 第二步再把4个数排列,其中是奇数的共132312A A =种, ∴所求奇数的个数共有1812216⨯=种.6.(2014•辽宁)6把椅子排成一排,3人随机就座,任何两人不相邻的坐法种数为( )A .144B .120C .72D .24【答案】D【解析】使用“插空法“.第一步,三个人先坐成一排,有33A 种,即全排,6种;第二步,由于三个人必须隔开,因此必须先在1号位置与2号位置之间摆放一张凳子,2号位置与3号位置之间摆放一张凳子,剩余一张凳子可以选择三个人的左右共4个空挡,随便摆放即可,即有14C 种办法.根据分步计数原理,6424⨯=. 7.(2012•浙江)若从1,2,3,⋯,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A .60种B .63种C .65种D .66种【答案】D【解析】由题意知本题是一个分类计数问题,要得到四个数字的和是偶数,需要分成三种不同的情况,当取得4个偶数时,有441C =种结果, 当取得4个奇数时,有455C =种结果,当取得2奇2偶时有224561060C C =⨯= ∴共有156066++=种结果8.(2012•北京)从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中奇数的个数为( )A .24B .18C .12D .6【答案】B【解析】从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有236A =种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有236A =种;2排在百位,从1、3、5中选两个数字排在个位与十位,共有236A =种;故共有23318A =种9.(2008•全国卷Ⅰ)将1,2,3填入33⨯的方格中,要求每行、每列都没有重复数字,下面是一种填法,则不同的填写方法共有( )A .6种B .12种C .24种D .48种【答案】B【解析】填好第一行和第一列,其他的行和列就确定,323212A A ∴= 10.(2010•重庆)某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有( )A .504种B .960种C .1008种D .1108种【答案】C【解析】分两类:第一类:甲乙相邻排1、2号或6、7号,这时先排甲和乙,有222A ⨯种,然后排丁,有14A 种,剩下其他四个人全排列有44A 种,因此共有2142442384A A A ⨯=种方法 第二类:甲乙相邻排中间,若丙排7号,先排甲和乙,因为相邻且在中间,则有224A ⨯种,然后丙在7号,剩下四个人全排列有44A 种,若丙不排7号,先排甲和乙,因为相邻且在中间,则有224A ⨯种,然后排丙,丙不再1号和7号,有13A 种,接着排丁,丁不排在10月7日,有13A 种,剩下3个人全排列,有33A 种,因此共有242113242333(44)624A A A A A A +=种方法,故共有1008种不同的排法 11.(2015•上海)组合数122(2m m m nn n C C C n m --++,m ,*)n N ∈恒等于( ) A .2m n C +B .12m nC ++ C .1m n C +D .11m n C ++【答案】A 【解析】组合数1211211122m m m m m m m m m m n n n n n n n n n n C C C C C C C C C C ------+++++=+++=+=.12.(2010•重庆)某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天.若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有( )A .30种B .36种C .42种D .48种【答案】C【解析】根据题意,不同的安排方法的数目等于所有排法减去甲值14日或乙值16日的排法数,再加上甲值14日且乙值16日的排法,即221211645443242C C C C C C -⨯+= 13.(2009•黑龙江)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A .6种B .12种C .24种D .30种【答案】C【解析】根据题意,分两步,①由题意可得,所有两人各选修2门的种数224436C C =, ②两人所选两门都相同的有为246C =种,都不同的种数为246C = 14.(2007•全国卷Ⅰ)甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )A .36种B .48种C .96种D .192种【答案】C【解析】根据题意,甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,有24C 种,乙、丙各选修3门,有3344C C 种,则不同的选修方案共有23344496C C C =种 15.(2006•全国卷Ⅰ)设集合{1I =,2,3,4,5}.选择I 的两个非空子集A 和B ,要使B中最小的数大于A 中最大的数,则不同的选择方法共有( )A .50种B .49种C .48种D .47种【答案】B【解析】集合A 、B 中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有2510C =种选法,小的给A 集合,大的给B 集合;从5个元素中选出3个元素,有3510C =种选法,再分成1、2两组,较小元素的一组给A 集合,较大元素的一组的给B 集合,共有21020⨯=种方法;从5个元素中选出4个元素,有455C =种选法,再分成1、3;2、2;3、1两组,较小元素的一组给A 集合,较大元素的一组的给B 集合,共有3515⨯=种方法;从5个元素中选出5个元素,有551C =种选法,再分成1、4;2、3;3、2;4、1两组,较小元素的一组给A 集合,较大元素的一组的给B 集合,共有414⨯=种方法;总计为102015449+++=种方法.16.(2017•全国)4个数字1和4个数字2可以组成不同的8位数共有( )A .16个B .70个C .140个D .256个【答案】B【解析】4个数字1和4个数字2可以组成不同的8位数共有:88444470A A A =. 17.(2017•新课标Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种【答案】D【解析】4项工作分成3组,可得:246C =, 安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:33636A ⨯=种. 18.(2016•全国)从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有()A .6种B .9种C .10种D .15种【答案】C【解析】从1,2,3,4,5,6中任取三个不同的数相加,所得的最小值为1236++=,最大值为45615++=,1236++=,1247++=,1251348++=++=,1261352349++=++=++=,136********++=++=++=,14623624511++=++=++=,156********++=++=++=,34613++=,35614++=,45615++=共有:10种不同结果. 19.(2016•新课标Ⅱ)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数( )A .24B .18C .12D .9【答案】B【解析】从E 到F ,每条东西向的街道被分成2段,每条南北向的街道被分成2段, 从E 到F 最短的走法,无论怎样走,一定包括4段,其中2段方向相同,另2段方向相同,每种最短走法,即是从4段中选出2段走东向的,选出2段走北向的,故共有22426C C =种走法.同理从F 到G ,最短的走法,有12323C C =种走法. ∴小明到老年公寓可以选择的最短路径条数为6318⨯=种走法.20.(2013•全国)3位男同学与2位女同学排成一列,其中女同学相邻的不同排法共有()A .48种B .36种C .24种D .18种【答案】A 【解析】3位男同学与2位女同学排成一列,其中女同学相邻的不同排法共有:424248A A =种.二.填空题(共5小题)21.(2007•陕西)安排3名支教教师去4所学校任教,每校至多2人,则不同的分配方案共有 种.(用数字作答)【答案】60【解析】分2类:(1)每校最多1人:3424A =; (2)每校至多2人,把3人分两组,再分到学校:223436C A =,共有60种 22.(2010•全国大纲版Ⅰ)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答)【答案】30【解析】分以下2种情况:(1)A 类选修课选1门,B 类选修课选2门,有1234C C 种不同的选法;(2)A 类选修课选2门,B 类选修课选1门,有2134C C 种不同的选法.所以不同的选法共有12213434181230C C C C +=+=种. 23.(2007•重庆)某校要求每位学生从7门课程中选修4门,其中甲、乙两门课程不能都选,则不同的选课方案有 种.(以数字作答)【答案】25【解析】所有的选法数为47C ,两门都选的方法为2225C C , 故共有选法数为422725351025C C C -=-=. 24.(2019•上海)首届中国国际进口博览会在上海举行,某高校拟派4人参加连续5天的志愿者活动,其中甲连续参加2天,其他人各参加1天,则不同的安排方法有 种(结果用数值表示)【答案】24【解析】在五天里,连续的2天,一共有4种,剩下的3人排列,故有33424A =种 25.(2018•新课标Ⅰ)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有16种.(用数字填写答案)【答案】16【解析】1女2男,有122412C C=,2女1男,有21244C C=根据分类计数原理可得,共有12416+=种,故答案为:16第11页(共11页)。
题型一:计数原理与排列组合
1.(2023年新课标全国Ⅰ卷·第13题)某学校开设了4门体育类选修课和4门艺术类选修课,学生需从这8门课中选修2门或3门课,并且每类选修课至少选修1门,则不同的选课方案共有________种(用数字作答).
2.(2020年高考课标Ⅱ卷理科·第14题)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.
3.(2018年高考数学浙江卷·第16题)从1,3,5,7,9中任取2个数字,从0,2,4,6中任取2个数字,一共可以组成个没有重复数字的四位数.(用数字作答)
4.(2018年高考数学课标卷Ⅰ(理)·第15题)从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.。
(用数字填写答案)
5.用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1、2相邻的偶数有个(用数字作答).
6.(2014高考数学北京理科·第13题)把5件不同产品摆成一排, 若产品A与产品B相邻, 且产品A与产品C不相邻, 则不同的摆法有种.
7.(2015高考数学广东理科·第12题)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了条毕业留言。
(用数字做答)
8.(2017年高考数学天津理科·第14题)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有___________个.(用数字作答)
10.(2015高考数学上海理科·第8题)在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).
11.(2014高考数学浙江理科·第14题)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有_____种(用数字作答).
12.(2017年高考数学浙江文理科·第16题)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)。