多传感器融合系统特点及体系结构
- 格式:docx
- 大小:10.17 KB
- 文档页数:2
多传感器数据融合技术综述一、多传感器数据融合的定义数据融合技术(Multiple Sensor Information Fusion,MSIF)又称信息融合技术,它的研究起源于军事指挥智能通讯系统,即C3I (Command,Control,Communication and Intelligence)系统建设的需求,早期研究也多来自于军事方面的应用。
而随着工业系统的复杂化和智能化,该技术已被推广到民用领域,如医疗诊断、机械故障诊断、空中交通管制、遥感、智能制造、智能交通、工业智能控制及刑侦等等。
作为前沿领域技术,无论是军用系统还是民用系统,都趋向于采用数据融合技术来进行信息综合处理。
在知识爆炸的信息时代,数据融合技术就显得尤其重要,它能避免数据富有但信息贫乏的情况发生。
数据融合是关于协同利用多传感器信息,进行多级别、多方面、多层次信息检测、相关、估计和综合以获得目标的状态和特征估计以及态势和威胁评估的一种多级信息自动处理过程。
它将不同来源、不同模式、不同时间、不同地点、不同表现形式的信息进行融合,最后得出被感知对象的精确描述。
数据融合其实也就是对数据的提取和处理,得出最终的有效信息。
多传感器数据融合也就是用各种不同的传感器观测信息,然后将不同来源、不同形式、不同时间、不同地点的信息通过计算机技术,对按时间顺序获得的若干传感器的观测信息,用某种方法自动分析、综合,得到更加有效的信息。
二、国内外研究概况美国国防部JDL(Joint Directors of Laboratories)从军事应用的角度将数据融合定义为一种多层次、多方面的处理过程,即把来此许多传感器和信息源的数据和信息加以联合(Association)、相关(Correlation)和组合(Combination),以获得精确的位置估计(Position Estimation)和身份估计(Identity Estimation),以及对战情况和威胁及其重要程度进行了适时的完整评价。
导航系统中的多传感器融合技术近年来,随着导航系统逐步成为一个不可或缺的工具,其多传感器融合技术得到了越来越多的应用和重视。
多传感器融合技术旨在通过整合多种不同传感器的信息,从而提高导航系统的精度、可靠性和鲁棒性。
本文将从定义、发展历程和应用实践三个方面探讨导航系统中的多传感器融合技术。
一、定义多传感器融合技术是指将多个传感器的观测结果进行合成和集成,从而提高系统的测量精度和可靠性的技术。
多传感器融合技术的主要目的是降低系统的不确定性,提高精度和鲁棒性,同时充分利用各种传感器的优势,弥补彼此的局限性,从而达到更加准确的测量结果。
二、发展历程多传感器融合技术自20世纪60年代开始发展。
当时主要用于军事领域的目标跟踪和飞机制导系统等。
随着卫星导航系统的发展,多传感器融合技术开始应用于国防和民用领域。
在民用方面,最早的应用是汽车导航系统。
随着GPS等卫星导航系统的普及和发展,多传感器融合技术得到了广泛的应用和发展。
三、应用实践目前,多传感器融合技术已经被广泛地应用于各种导航系统中,如汽车导航、飞行导航、机器人导航等。
在汽车导航系统中,多传感器融合技术将GPS、惯性导航、激光雷达等多个传感器的信息进行整合,通过算法的优化和校正,提高了导航系统的测量精度和可靠性。
在飞行导航系统中,多传感器融合技术将GPS、惯性导航、气压高度计、机械指示器等多个传感器的信息融合,从而提高了机组的飞行安全性和导航精度。
在机器人导航中,多传感器融合技术可以将激光雷达、相机、惯性导航等多个传感器的信息融合起来,提高了机器人的自主导航能力和在复杂环境下的运行鲁棒性。
总之,多传感器融合技术已经成为现代导航系统的重要组成部分。
应用于导航系统,多传感器融合技术可以弥补不同传感器的缺陷,提高测量精度和可靠性,应用范围广泛。
随着技术的不断进步和应用实践的不断深入,多传感器融合技术将在导航系统中发挥更为重要的作用。
第16卷第5期V o l.16N o.5 控 制 与 决 策CON T ROL A N D D EC IS ION 2001年9月Sep t.2001 文章编号:100120920(2001)0520518205多传感器信息融合及其应用综述王耀南,李树涛(湖南大学电气与信息工程学院,湖南长沙410082)摘 要:多传感器数据融合广泛应用于自动目标识别、战场监视、自动飞行器导航与控制、机器人、工业过程控制、遥感、医疗诊断、图像处理、模式识别等领域。
介绍了多传感器数据融合技术的概念、处理模型、融合层次等问题,综述了近年来多传感器融合技术的研究进展和应用,预测了未来的发展趋势。
关键词:多传感器;信息融合;复杂工业过程控制中图分类号:T P14 文献标识码:AM ultisen sor I nformation Fusion and Its Application:A SurveyW A N G Y ao2nan,L I S hu2tao(Co llege of E lectrical and Info r m ati on Engineering,H unan U niversity,Changsha410082,Ch ina)Abstract:M ultisenso r info r m ati on fusi on is being app lied to a w ide variety of fields such as autom atedtarget recogniti on,battlefield surveillance,guidance and contro l of autonomous veh icles,robo tics,in2dustrial p rocess contro l,m edical diagno stics,i m age p rocessing and pattern recogniti on.T he concep t ofm ultisenso r info r m ati on fusi on is introduced,and the p roblem of p rocessing model and fusi on level ofm ultisenso r info r m ati on fusi on are discussed.A review of the state of the art and developm ent trend arep resented.Key words:m ultisenso r;info r m ati on fusi on;comp lex industrial p rocess contro l1 引 言 近年来,多传感器信息融合技术不论在军事领域还是在民事领域都受到了广泛的关注[1~3]。
一、概述随着物联网、智能交通系统、智能制造等领域的迅速发展,传感器技术的应用日益广泛。
多传感器信息融合技术作为其中一种重要技术,其原理和应用备受关注。
本文将针对多传感器信息融合技术的原理和应用进行深入探讨。
二、多传感器信息融合技术的原理1. 传感器信息融合概述传感器信息融合是利用多个传感器获得的信息,通过合理的融合算法和处理方法,得到比单个传感器更准确、更全面的信息。
传感器信息融合技术在多领域有着广泛的应用,如军事、航空航天、智能交通等。
2. 传感器融合的优势多传感器信息融合技术的优势主要表现在提高信息获取的准确性、可靠性和全面性等方面。
通过融合多个传感器的信息,可以弥补单个传感器信息不足的缺陷,提高信息的综合利用效率。
3. 传感器信息融合的原理传感器信息融合的原理主要包括数据融合和决策融合两个方面。
数据融合是将来自不同传感器的原始数据进行整合处理,得到更完整、更准确的信息;决策融合则是基于融合后的数据进行分析和判断,得出最终的决策结果。
4. 传感器信息融合的方法在实际应用中,常见的传感器信息融合方法包括卡尔曼滤波、粒子滤波、最大似然估计等。
这些方法在不同的应用场景下都能够有效地实现传感器信息的融合和提取。
三、多传感器信息融合技术的应用1. 智能交通系统中的应用在智能交通系统中,通过融合多个传感器的信息,如地磁传感器、摄像头、雷达等,可以实现对车辆、行人的实时监测和跟踪,提高交通管理的效率和精准度。
2. 智能制造领域中的应用在智能制造领域,通过融合各类传感器的信息,可以实现对生产过程的实时监测和控制,提高生产效率和产品质量。
3. 军事领域中的应用在军事领域,多传感器信息融合技术被广泛应用于目标探测、识别和追踪等方面,可以提高军事作战的效能和保障国家安全。
四、多传感器信息融合技术的发展趋势1. 传感器融合技术的发展随着传感器技术的不断发展和进步,传感器信息融合技术也在不断演进,新的传感器类型和融合算法不断涌现。
多传感器系统的协同数据融合方法分析在现代科技的快速发展和应用需求的推动下,多传感器系统(Multi-sensor system)的应用越来越广泛。
多传感器系统往往由多个传感器组成,可以实时采集和处理大量的数据。
然而,由于不同传感器之间存在差异,数据的质量和精度可能存在差异,因此需要对数据进行融合以获得更准确、可靠的结果。
本篇文章将重点探讨多传感器系统的协同数据融合方法。
1. 多传感器系统的数据融合意义在单一传感器系统中,只能依靠一个传感器获得数据信息,如图像、声音等,这限制了其应用范围和数据可靠性。
而多传感器系统则可以通过融合多个传感器获得的数据信息,提高数据质量和精度,实现更多样化的应用。
数据融合的意义在于多个传感器之间可以相互补充,减少数据噪声,提高系统的性能。
例如,在环境监测中,可以利用多传感器系统通过融合不同传感器的数据来获得更准确的环境参数,如温度、湿度、二氧化碳浓度等;在智能交通系统中,使用多传感器融合可以提供更全面的交通状况信息,实现更高效的交通管理。
2. 多传感器系统的数据融合方法数据融合方法可以分为两类:基于信息融合和基于模型融合。
基于信息融合是指根据传感器获得的信息进行融合;基于模型融合是指根据已有的数学模型进行数据融合。
下面将分别介绍这两种方法。
2.1 基于信息融合的方法基于信息融合的方法主要是通过对传感器数据的加权组合来得到最终的结果。
常见的融合方法有加权平均、特征融合和决策级融合。
加权平均方法是最简单的融合方法,将不同传感器获得的数据根据其可靠性和权重进行加权平均,得到最终结果。
然而,这种方法忽略了不同传感器之间的相关性和误差。
特征融合方法是在加权平均的基础上,通过对传感器数据进行特征提取,再进行融合。
例如,在目标跟踪中,可以通过计算不同传感器提供的目标位置和速度等特征,然后将这些特征进行融合以提高跟踪的精度和准确性。
决策级融合方法是将不同传感器的决策进行融合,以进行最终的决策。
多传感器融合系统特点及体系结构
所谓多传感器信息融合(Multi-sensor Information Fusion,MSIF),就是利用
计算机技术将来自多传感器或多源的信息和数据,在一定的准则下加以自动分析和综合,以完成所需要的决策和估计而进行的信息处理过程。
多传感器信息融合是用于包含处于不同位置的多个或者多种传感器的信息处理技术。
随着传感器应用技术、数据处理技术、计算机软硬件技术和工业化控制技术的发展成熟,多传感器信息融合技术已形成一门热门新兴学科和技术。
多传感器信息融合技术的基本原理就像人的大脑综合处理信息的过程一样,将各种传感器进行多层次、多空间的信息互补和优化组合处理,最终产生对观测环境的一致性解释。
在这个过程中要充分地利用多源数据进行合理支配与使用,而信息融合的最终目标则是基于各传感器获得的分离观测信息,通过对信息多级别、多方面组合导出更多有用信息。
这不仅是利用了多个传感器相互协同操作的优势,而且也综合处理了其它信息源的数据来提高整个传感器系统的智能化。
多传感器融合系统具有四个显著的特点:
1、信息的冗余性:对于环境的某个特征,可以通过多个传感器(或者单个传感器的多个不同时刻)得到它的多份信息,这些信息是冗余的,并且具有不同的可靠性,通过融合处理,可以从中提取出更加准确和可靠的信息。
此外,信息的冗余性可以提高系统的稳定性,从而能够避免因单个传感器失效而对整个系统所造成的影响。
2、信息的互补性:不同种类的传感器可以为系统提供不同性质的信息,这
些信息所描述的对象是不同的环境特征,它们彼此之间具有互补性。
如果定义一个由所有特征构成的坐标空间,那么每个传感器所提供的信息只属于整个空间的一个子空间,和其他传感器形成的空间相互独立。