多传感器信息融合
- 格式:doc
- 大小:356.00 KB
- 文档页数:11
多传感器信息融合近年来,随着计算机技术、通讯技术的发展,特别是军事上的迫切要求,多传感器信息融合技术得到了迅速的发展。
信息融合作为一门跨学科的综合信息处理理论,涉及系统论、信息论、控制论、人工智能和计算机通信等众多的领域和科学,它被广泛应用于自动目标识别、战场监视、自动飞行器导航、机器人、遥感、医疗诊治、图像处理等领域。
信息融合技术首先应用于军事领域,包括航空目标的探测、识别和跟踪,以及战场监视、战术态势估计和威胁估计等;在地质科学领域上,信息融合应用于遥感技术,包括卫星图像和航空拍摄图像的研究;在机器人技术和智能航行器研究领域,信息融合主要被应用于机器人对周围环境的识别和自动导航;信息融合技术也被应用于医疗诊断以及一些复杂工业过程控制领域。
1多传感器信息融合的定义传感器获得的信息有3类:冗余信息、互补信息和协同信息。
冗余信息是由多个独立传感器提供的关于环境信息中同一特征的多个信息,也可以是某一传感器在一段时间内多次测量得到的信息。
在一个多传感器系统中,若每个传感器提供的环境特征是彼此独立的,即感知的是环境各个不同侧面的信息,则这些信息称为互补信息。
在一个多传感器系统中,若一个传感器信息的获得必须依赖另一个传感器的信息,或一个传感器必须与另一个传感器配合工作才能获得所需的信息时,则这两个传感器提供的信息称为协同信息。
多传感器信息融合,又称多传感器数据融合,指的是对不同知识源和多个传感器所获得的信息进行综合处理,消除多传感器信息之间可能存在的冗余和矛盾,利用信息互补,降低不确定性,以形成对系统环境相对完整一致的理解,从而提高智能系统决策和规划的科学性、反应的快速性和正确性,进而降低决策风险过程。
图1是多传感器信息融合的示意图,传感器之间的冗余信息增强了系统的可靠性,多传感器之间的互补信息扩展了单个传感器的性能。
一般而言,多传感器融合系统具有以下优点:一是提高系统的可靠性和鲁棒性,二是扩展时间上和空间上的观测范围,三是增强数据的可信任度,四是增强系统的分辨能力。
多传感器信息融合及其运用多传感器信息融合是指利用不同传感器获取的信息并结合,以提高信息的准确性、完整性和可靠性。
随着科技的不断发展,传感器技术已经成为人们生活和工作中不可或缺的一部分,而多传感器信息融合技术的运用也越来越广泛。
本文将介绍多传感器信息融合的原理、技术和应用,并探讨其在各个领域的重要性和发展前景。
一、多传感器信息融合的原理和技术多传感器信息融合的原理是将来自不同传感器的信息进行整合,以得到更完整、准确的信息。
在实际应用中,多传感器信息融合通常包括数据融合、特征融合和决策融合三个方面。
数据融合是指将来自不同传感器的原始数据进行整合和处理,以得到更准确和可靠的信息。
这包括数据的预处理、校正、修正、配准、对齐、筛选和融合等过程。
数据融合技术主要包括数学建模、统计分析、数据处理、信号处理和图像处理等方法。
特征融合是指在数据融合的基础上,通过提取和融合不同传感器获取的特征信息,以得到更全面和丰富的信息。
特征融合技术主要包括特征提取、特征匹配、特征提取、特征融合和特征选择等方法。
决策融合是指在特征融合的基础上,通过运用不同的决策算法和技术,对融合后的信息进行最终的判定和决策。
决策融合技术主要包括模式识别、机器学习、人工智能、专家系统和智能控制等方法。
多传感器信息融合技术在军事、航空航天、环境监测、智能交通、医疗健康、工业制造、物联网等领域具有广泛的应用价值和前景。
在军事领域,多传感器信息融合技术被广泛应用于军事侦察、目标识别、导航定位、火力打击等方面,能够提高情报作战和精确打击的能力,提高作战效能和战场生存能力。
在航空航天领域,多传感器信息融合技术被广泛应用于航空器导航、空中交通管理、航天器控制、星座导航、太空探测等方面,能够提高航行安全和导航精度,提高系统可靠性和性能指标。
在环境监测领域,多传感器信息融合技术被广泛应用于气象预测、地震预警、海洋观测、污染监测等方面,能够提高监测精度和覆盖范围,提高预警和应急响应能力。
多传感器信息融合研究综述多传感器信息融合是指从多个传感器获取的不同类型的数据进行整合和分析,以获得更准确、更完整的信息。
随着传感技术的不断进步和应用的扩大,多传感器信息融合成为了许多领域的研究热点,如环境监测、交通管理、智能机器人等。
本文将从多传感器信息融合的定义、分类、算法以及应用领域等方面进行综述。
首先,多传感器信息融合的定义。
多传感器信息融合是指通过不同类型的传感器获取的数据进行融合和分析,以提高信息的精确性和可靠性。
这些传感器可以是同种类型的,如多个摄像头用于图像融合;也可以是不同类型的,如摄像头和温湿度传感器用于环境监测。
其次,多传感器信息融合可分为数据级信息融合和特征级信息融合。
数据级信息融合是指直接采用传感器原始数据进行处理和融合,如数据融合、数据对准等。
特征级信息融合是指从传感器数据中提取有用的特征,并将这些特征进行融合和分析,如特征抽取、特征选择等。
数据级信息融合和特征级信息融合可以相互补充,提高信息融合的准确性和鲁棒性。
再次,多传感器信息融合的算法主要包括基于模型的方法和基于数据的方法。
基于模型的方法是指根据传感器的物理模型和系统模型,将传感器数据与模型进行匹配和融合,如卡尔曼滤波器、粒子滤波器等。
基于数据的方法是指根据大量的历史数据进行统计分析和建模,以获得传感器数据之间的关联性,并进行数据融合和预测,如神经网络、支持向量机等。
最后,多传感器信息融合在许多领域都得到了广泛的应用。
在环境监测方面,多传感器信息融合可以帮助提高空气质量、水质监测的准确性;在交通管理方面,多传感器信息融合可以帮助更准确地监测交通流量、路况等信息;在智能机器人方面,多传感器信息融合可以帮助机器人实现自主导航、目标识别等功能。
综上所述,多传感器信息融合是通过将不同类型的传感器数据进行整合和分析,以提高信息的精确性和可靠性的方法。
多传感器信息融合可以分为数据级信息融合和特征级信息融合,其算法主要包括基于模型的方法和基于数据的方法。
一、概述随着物联网、智能交通系统、智能制造等领域的迅速发展,传感器技术的应用日益广泛。
多传感器信息融合技术作为其中一种重要技术,其原理和应用备受关注。
本文将针对多传感器信息融合技术的原理和应用进行深入探讨。
二、多传感器信息融合技术的原理1. 传感器信息融合概述传感器信息融合是利用多个传感器获得的信息,通过合理的融合算法和处理方法,得到比单个传感器更准确、更全面的信息。
传感器信息融合技术在多领域有着广泛的应用,如军事、航空航天、智能交通等。
2. 传感器融合的优势多传感器信息融合技术的优势主要表现在提高信息获取的准确性、可靠性和全面性等方面。
通过融合多个传感器的信息,可以弥补单个传感器信息不足的缺陷,提高信息的综合利用效率。
3. 传感器信息融合的原理传感器信息融合的原理主要包括数据融合和决策融合两个方面。
数据融合是将来自不同传感器的原始数据进行整合处理,得到更完整、更准确的信息;决策融合则是基于融合后的数据进行分析和判断,得出最终的决策结果。
4. 传感器信息融合的方法在实际应用中,常见的传感器信息融合方法包括卡尔曼滤波、粒子滤波、最大似然估计等。
这些方法在不同的应用场景下都能够有效地实现传感器信息的融合和提取。
三、多传感器信息融合技术的应用1. 智能交通系统中的应用在智能交通系统中,通过融合多个传感器的信息,如地磁传感器、摄像头、雷达等,可以实现对车辆、行人的实时监测和跟踪,提高交通管理的效率和精准度。
2. 智能制造领域中的应用在智能制造领域,通过融合各类传感器的信息,可以实现对生产过程的实时监测和控制,提高生产效率和产品质量。
3. 军事领域中的应用在军事领域,多传感器信息融合技术被广泛应用于目标探测、识别和追踪等方面,可以提高军事作战的效能和保障国家安全。
四、多传感器信息融合技术的发展趋势1. 传感器融合技术的发展随着传感器技术的不断发展和进步,传感器信息融合技术也在不断演进,新的传感器类型和融合算法不断涌现。
多传感器信息融合技术研究多传感器信息融合技术(Multi-sensor Information Fusion Technology)是一种通过整合多种传感器信息来获得更好结果的技术。
多传感器信息融合技术能够有效地解决单一传感器无法完成的任务,例如环境感知、目标检测和定位等。
本文将讨论多传感器信息融合技术的概念、应用、挑战和未来发展方向。
一、多传感器信息融合技术的概念多传感器信息融合技术是指通过整合多种类型的传感器信息,以及运用人工智能和机器学习算法等技术,将信息转换为更精确的数据和知识。
多传感器信息融合技术能够将多种数据源(如可见光、红外、声音、气体、温度等)的信息相结合,以获取丰富的信息和更完整的数据。
通过多传感器信息融合技术,可以提高传感器的工作效率和准确性。
二、多传感器信息融合技术的应用1.智能交通:多传感器信息融合技术已经在智能交通领域得到了广泛应用。
通过整合多种类型的传感器(如雷达、视频、红外、微波、光学等),交通系统可以实时监测交通流量、车辆速度和事故等情况,并实现智能化的交通管制。
2.工业生产:在工业生产中,多传感器信息融合技术可以帮助企业检测设备故障、监测生产过程和优化生产效率。
通过整合不同类型传感器的信息,可以更精确地实现设备状态监测和故障诊断。
3.智能家居:多传感器信息融合技术可以帮助智能家居系统实现个性化的家居控制。
例如,通过整合温度、湿度、光线等传感器的信息,系统可以自动地调整室内温度和照明等环境,提供更舒适和安全的家庭环境。
三、多传感器信息融合技术的挑战多传感器信息融合技术的应用还面临一些挑战。
首先,不同类型传感器所采集的信息不一定匹配,因此需要对传感器信息进行标准化处理。
其次,传感器之间可能存在互相影响的情况,例如传感器之间的干扰或协作。
最后,多传感器信息融合技术需要用复杂的算法实现数据的整合和分析,算法的复杂度和计算量也需要考虑。
四、多传感器信息融合技术的未来发展方向未来多传感器信息融合技术的发展趋势将更加注重智能化和自主化。
多传感器信息融合技术(二)引言概述:多传感器信息融合技术在现代智能系统中扮演着重要的角色。
通过将来自不同传感器的信息进行整合和分析,可以获得更准确、全面的环境信息,从而提高系统的感知、决策和控制能力。
本文将介绍多传感器信息融合技术的相关概念、应用场景以及其在智能系统中的作用。
正文:一、多传感器信息融合技术的基本原理1. 传感器信息的获取与处理2. 信息融合的定义与分类3. 信息融合的基本原理和方法4. 信息融合中的数据预处理及特征提取5. 信息融合中的数据关联与融合方法二、多传感器信息融合技术的应用场景1. 环境监测与控制系统2. 智能交通与车辆控制系统3. 人体生理及运动监测系统4. 无人系统及机器人导航系统5. 智能医疗系统三、多传感器信息融合技术在智能系统中的作用1. 提高系统感知能力2. 提升决策和控制效果3. 增强对复杂环境的适应能力4. 改善系统的鲁棒性和可靠性5. 优化系统的资源利用效率四、多传感器信息融合技术的挑战与未来发展方向1. 传感器异构性与信息不确定性2. 大规模数据的处理与存储3. 隐私保护与信息安全性4. 深度学习与人工智能的结合5. 自适应信息融合方法的研究五、总结通过对多传感器信息融合技术的概述和探讨,我们可以看到它在提高智能系统感知能力、决策与控制效果方面的重要作用。
然而,要克服传感器异构性、信息不确定性等挑战并进一步推动技术的发展,还有一些问题需要解决。
未来,结合深度学习与人工智能的发展趋势,自适应信息融合方法的研究将成为重要的研究方向。
多传感器信息融合技术的不断创新和应用将为智能系统带来更多的机遇和挑战。
多传感器信息融合0前言移动机器人的定位问题是提高移动机器人自主能力的关键问题之一。
具体来说,定位是利用先验环境地图信息、机器人位姿的当前估计及传感器的观测值等输入信息,经过一定的处理和变换,产生更加准确地对机器人当前位姿的估计。
机器人的定位方式有很多种,如,基于光电寻线的定位、基于声纳的机器人自主定位、基于全景视觉的定位及基于激光测距的定位等。
可以看出:机器人的定位方式取决于所采用的传感器。
目前,在移动机器人上使用较多的传感器有视觉传感器、里程计和惯导系统、超声传感器、激光测距仪、GPS 定位系统等。
其中,视觉传感器具有信息量大、感应时间短的优点,但往往获得的数据噪声大、信息处理时间长;激光传感器在测距范围和方向上具有较高的精度,但价格昂贵;超声波传感器虽然角度分辨力较低,但它处理信息简单、成本低、速度快,因此,在自主移动机器人上得到了广泛的应用;里程计是一种相对定位传感器,它通过累计计算得到定位信息,缺点是存在累计误差问题,因此,可结合绝对定位传感器,如超声传感器等,提供较准确的定位。
各传感器都有它自己的局限性,因此,移动机器人往往同时装备多种传感器,各自提供关于机器人定位的消息。
目前的趋势是:根据传感器的可靠性。
使用不同类型的传感器来测量相关数据。
本文采用扩展卡尔曼滤波( EKF) 技术,将里程计和超声波传感器所提供的数据进行融合定位。
1 机器人运动模型的建立由于移动机器人机构复杂,为了便于构造运动学模型与规划控制机器人的位姿,本文选择两轮驱动小车作为运动平台。
将整个机器人本体看作一个刚体,车轮视为刚性轮,并在运动不是太快而转弯半径较大时,不考虑车轮与地面侧向滑动的情况,其简化运动学模型如图1 所示。
图 1 两轮驱动机器人运动学模型为了确定机器人在平面中的位置,建立平面全局参考坐标系O X Y 和机器人局部参考坐标系O R X R Y R , 把O R X R Y R 坐标系原点建立在 2个驱动轮轴心连线的中点0R 上,并将该点作为机器人的位置参考点。
相交于点OR 的 2个轴分别定义为XR 和YR 轴。
在 O X Y 坐标系下, O R 的位置由坐标x 和y 确定, 坐标系 O X Y 和O R X R Y R 之间的角度差(也是机器人线速度的方向)由θ给定。
可以将机器人的姿态描述为具有这3个元素的向量:[,,]T x y θ。
图1中,l ω,τω分别为左右两驱动轮的转动角速度,r 为两轮半径,b 为两驱动轮之间的距离,OR 点速度(也就是机器人的线速度) 为()/2l v r τωω=+, 分别投影到 O X Y 坐标系上得.cos cos ()/2l x v r τθθωω==*+ ,.sin sin ()/2l y v r τθθωω==*+。
移动机器人的角速度.()/r l r b θωω=-。
于是,机器人的运动方程为 ...cos cos 22sin sin 22r r x r r y r r b b θθθθθ⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭ ⎪⎝⎭ (1)将方程(1)进行离散化,并加上模型噪声,可得机器人的离散随机状态空间表达式(1)(())()X k f X k w k +=+ (2)式中()[(),(),()]T X k x k y k k θ=;()w k 为模型误差,是零均值的高斯白噪声;()k θ为方差,T 为采样时间()cos ()/2(())()sin ()/2()cos ()/2l r l r r l x k Tr f X k y k Tr k Tr θωωθωωθθωω++⎛⎫ ⎪=++ ⎪ ⎪+-⎝⎭ (3)式(3)就是移动机器人的运动模型,也是系统的状态方程。
2 传感器观测模型的建立2.1 里程计里程计的工作原理是根据安装在2个驱动轮电机上的光电编码器来检测车轮在一定时间内转过的弧度,进而推算机器人相对位姿的变化。
设车轮半径为r ,光电码盘为P 线/转,t 时间内光码盘输出的脉冲数为N ,则该车轮移动距离s ∆为2*N s r p π∆= (4)假设由光电码盘检测出机器人左右轮的移动距离分别为l s ∆和r s ∆,且两轮的间距为b ,机器人从位姿()[(),(),()]T X k x k y k k θ=运动到(1)[(1),(1),(1)]T X k x k y k k θ+=+++。
则机器人移动的距离()/2l r s s s ∆=∆+∆, 机器人转过的角度()/l r s s b θ∆=∆-∆。
因此,在已知初始位置的情况下,即可求出前轮转过的距离,若采样时间取得足够短,通过计算出在时间内机器人位置的横、纵坐标和方向的变化量,进行累加, 可推出机器人在全局坐标中的位置坐标和方向角,从而获得自定位信息。
2.2 超声波传感器超声波传感器的基本原理是发送(超声)压力波包,一般为40-45kHz ,当波包遇到物体后,就会被反弹回,通过测量该波包反射和回到接收器所占用的时间,引起反射的物体距离 d 可以根据声音传播速度 C 和飞越时间 t 进行计算2ct d =(5)其模型可简化为在一个固定的波带开放角方位之内,传感器到莫一物体的最短距离。
其读数与机器人所在的环境和传感器的安装位置有关。
设第i 只超声波传感器在OR XR YR 坐标系中的坐标为(,)Ri Ri x y ,其方向(与R X 轴的夹角)为Ri θ。
假定在地k 个采样时刻,机器人的位置为()[(),(),()]T X k x k y k k θ=,则经过一个旋转平移的坐标变换,可将第i 只超声波传感器在O R X R Y R 坐标系中的坐标为(,)Ri Ri x y 转换到OXY 坐标系中的坐标((),())i i x k y k ,写成齐次坐标的形式为()sin ()cos ()()()cos ()sin ()()00111i Ri i Ri x k x k k x k y k k k y k y θθθθ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ (6)同时,将超声波传感器的方向Ri θ转换为与OXY 坐标系的X 轴的夹角()i k θ ()()i Ri k k θθθ=+ (7)机器人移动所在的环境中的反射墙面与障碍等可用OXY 平面上的直线0j j j a x b y c ++=来表示(j=1,2,3,……为环境中的墙与障碍物得个数)。
超声波的测量原理如图2所示图 2 超 声波传感器的测量示意图设arctan(/)j j j a b α=,δ为超声波传感器的波带开放角。
根据超声波传感器的测量原理, 当第i 只超声波传感器和第j 个物体之间满足/2[()/2,()/2]j i i a k k πθσθσ-∈-+时,超声波传感器i 测得的到第j 个物体的距离为j i a x b y cd ++=传感器测出的数据超出了其测量范围,则超出范围的数据也要去除。
因此,在每个采样时刻,不是所有的超声波传感器的读数都被使用,而是结合环境地图来决定应该使用哪些读数。
可以得到该多传感器系统的随机观测模型为()(())()Z k h X k v k =+ (8)其中,()v k 为观测误差,是零均值的高斯白噪声,方差为R(k)。
()Z k 包括里程计的输出与超声波传感器的读数,所以,()Z k 的维数为里程计输 出向量个数加上超声传感器的只数。
里程计的输出为112233()()()()()()()()()z k x k v k z k y k v k z k k v k θ=+⎧⎪=+⎨⎪=+⎩ (9)超声波传感器的输出为33()()j i i i z k d v k ++=+ (10) 定位算法的结构如图3所示。
图3定位算法框图3 EKF 算法EKF 假设系统状态的概率分布是高斯分布,噪声是相互独立的。
式(2)与式(8)分别为机器人的运动模型和传感器模型。
1)初始化已冻结i 气人的状态向量0X ∧和误差协方差矩阵0P 。
2)预测机器人位置:根据机器人在k 时刻的位置预测时间k+1时刻的位置 (1/)((1/))X k k f X k ∧∧+= (11)(1/)()(1/)()()T P k k F k P k F k Q k +=+ (12) 其中,P 为X 的误差协方差矩阵,F 为f 的Jacobian 矩阵,可得3)观测 传感器的预测值为,用来对预测状态进行校正的量为实际的测量值与预测值之差,即信息为,信息的协方差矩阵为,H 为测量方程中(())h X k 的Jacobian 矩阵22221001000()()1sin(())cos(())ri j ri j j j j j H k h k a b x k y k a b a b θαθα∧∧⎛⎫ ⎪ ⎪ ⎪=∇= ⎪⎪+++⎪++⎭(14)式中ri x ,ri y 为第i 只超声波传感器的参数;j a ,j b 为外部环境中第j 个物体的参数;H (k )的行数是不固定的,与各个采样时间实际所使用的超声波传感器的只数有关。
4)对于每一次测量,由于测量的不确定性,需要对每次测量进行校验来决定是否匹配。
若测量结果满足下式,则测量值匹配。
否则,不匹配并舍弃 12(1)(1)(1)T k S k k G γγ-+++≤ (15)式中2G 为正确性检验门。
5)纠正EKF 的增益矩阵W 更新为1(1)(1/)(1)T W k P k k H S k -+=++ (16)机器人的状态纠正为 (1/1)(1/)(1)(1)X k k X k k w k k γ∧∧++=++++ (17)协方差矩阵更新为 (1/1)((1)())(1/)P k k I W k H k P k k ++=-++ (18) 6)返回步骤(2)递归执行上述步骤(2—5)。
4 实验实验环境设为四周是垂直的墙壁,移动机器人逆时针沿着墙面做矩形轨线运动,用里程计和超声波传感器进行自定位。
图4曲线分别表示系统的观测真值 Z( k ),观测估计()Z k ∧,状态真值X( k ),状态先验估计(1/)X k k ∧+,状态后验估计(1/1)X k k ∧++。
图4系统观测向量与状态向量曲线图5为仅使用里程计的位置估计,图6为融合里程计和超声波传感器数据信息后的位置估计。
机器人的移动速度为0.25m /s , 采样时间T=lS ,估计的初始位置为(0,0),实际的初始位置为(0.15,0),P 0 =105I , 模型噪声的方差取为0.1,测量噪声方差取为0.8。
图 5 实际位置与里程计定位信息图 6 实际位置与传感器融合定位信息从实验结果中可以看出:由于里程计的测量噪声不断地被累加,其估计过程中估量值与实际量之间在转角处偏差大,在运动不到2圈时,位姿估计信息就已经完全丢失,估计效果较差。