平方根立方根讲义
- 格式:doc
- 大小:196.50 KB
- 文档页数:12
平方根、算术平方根、立方根重点例题讲解平方根、算术平方根、立方根,这三个概念听起来好像很高大上,但其实它们都是我们日常生活中经常用到的数学知识。
今天,我就来给大家讲解一下这三个概念,让你在生活中轻松运用数学。
我们来说说平方根。
平方根就是一个数的正平方根,也就是一个数的平方等于这个数本身的那个数。
比如说,4的平方根是2,因为2乘以2等于4;9的平方根是3,因为3乘以3等于9。
平方根在我们生活中有很多应用,比如说计算土地面积、测量身高等等。
你可能会问:“我怎么知道一个数的平方根是多少呢?”这就需要用到计算器或者手算的方法了。
如果你不会手算,也没关系,我可以教你一个简单的方法:把那个数想象成一个正方形,然后找到它的边长,边长的平方就是那个数的平方根。
我们来说说算术平方根。
算术平方根就是一个数的正平方根,但是它只考虑奇数的情况。
比如说,5的算术平方根是无理数,因为5不能表示成两个整数相乘的形式;而4的算术平方根是2,因为2乘以2等于4。
算术平方根在我们生活中也有很多应用,比如说计算房间面积、测量长度等等。
你可能会问:“我怎么知道一个数的算术平方根是多少呢?”这同样需要用到计算器或者手算的方法。
如果你不会手算,也可以试试下面的方法:把那个数想象成一个正方形,然后找到最短的那条边,这条边的长度就是那个数的算术平方根。
我们来说说立方根。
立方根就是一个数的三次方根,也就是一个数的三次方等于这个数本身的那个数。
比如说,8的立方根是2,因为2乘以2乘以2等于8;27的立方根是3,因为3乘以3乘以3等于27。
立方根在我们生活中也有很多应用,比如说计算体积、计算速度等等。
你可能会问:“我怎么知道一个数的立方根是多少呢?”这同样需要用到计算器或者手算的方法。
如果你不会手算,也可以试试下面的方法:把那个数想象成一个正方体,然后找到最短的那条棱,这条棱的长度就是那个数的立方根。
平方根、算术平方根、立方根这三个概念虽然看起来有点复杂,但是只要掌握了它们的规律和方法,就可以在生活中轻松运用数学了。
数的开方【教学内容】第十六章数的开方16.1 平方根16.2 立方根【知识点精析】一、平方根1.平方根如果一个数的平方等于a,那么这个数叫做a的平方根,即如果x2=a,则x叫做a的平方根,记作x=a±,其中a叫被开方数。
2.平方根的性质(1)任何一个正数的平方根有两个,它们互为相反数。
如正数a 的平方根是a+与-a恰是一对相反数;±,其中a(2)零的平方根是零,即00=;(3)负数没有平方根。
3.算术平方根正数a的正的平方根,叫做a的算术平方根。
4.开平方求一个非负数的平方根的运算,叫做开平方。
开平方与平方互为逆运算。
5.求一个正数的平方根的基本方法和基本步骤(1)明确(或易求出)所要求的正数是哪一个数的平方的。
①先写出是哪个数的平方等于已知的数;②再求出这个正数的算术平方根;③最后求出这个正数的平方根。
(2)不易求出所要求的正数是哪个数的平方的。
方法1:利用数学用表的平方根表查。
方法2:利用计算器计算。
6.注意的问题(1)负数没有平方根;(2)a的非负性,即当a≥0时,a≥0,非负数的算术平方根一定是非负数;(3)用计算器求一个正数的平方根应注意精确度,或根据精确度取近似数。
二、立方根1.立方根如果一个数的立方等于a,那么这个数叫做a的立方根,即如果x3=a,则x叫做a的立方根,记作:x=3a,其中a叫做被开方数,3叫做根指数。
2.立方根的性质任何一个正数的立方根是一个正数,即a>0时,3a>0;任何一个负数的立方根是一个负数,即a<0时,3a<0;零的立方根仍是零,即a=0时,3a=0。
3.开立方求一个数的立方根的运算叫做开立方。
开立方与立方互为逆运算。
4.求一个数的立方根的基本方法和基本步聚(1)明确(或易求出)所要求的数是哪一个数的立方的;①先指出所要求立方根的那个数是哪个数的立方;②根据立方根的定义,求出这个数的立方根。
(2)不易求出所要求的那个数是哪个数的立方的:①利用数学用表中的立方根表查;②利用计算器计算。
一般地,如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 就叫做a 的立方根(cube root, 也叫做三次方根).如:2是8的立方根,的立方根是--273,0是0的立方根。
注:正数的立方根是正数,负数的立方根是负数,0的立方根是0。
二、同步题型分析1、说说谁“有理”,谁“无理” 以下各数:-1,23,3.14,-π,3.⋅3,0,2,27,24,-0.2020020002……(相邻两个2之间0的个数逐次加1)其中,是有理数的是_____________,是无理数的是_______________. 在上面的有理数中,分数有______________,整数有______________. 答案:有理数:-1,23,3.14,3.3,0,2,27,24. 无理数:-π,-0.2020020002…… 分数:23,3.3,27整数:-1,0,2,242、在“()05,3.14 ,-π,()23,0.123334, 0.212212221…”这6个数中,无理数的个数是( )A .2个B .3个C .4个D .5个3、下列语句正确的是( ) A.3.78788788878888是无理数B.无理数分正无理数、零、负无理数C.无限小数不能化成分数D.无限不循环小数是无理数4、在直角△ABC 中,△C =90°,AC =23,BC =2,则AB 为( )A.整数B.分数C.无理数D.不能确定答案:B5、面积为3的正方形的边长______有理数;面积为4的正方形的边长______有理数.(填“是”或“不是”) 答案:不是,是)解:解:()28=±64±=即()2711=±)解:解:解:利用平方根来解下列方程.(2x-1)2-169=0变式训练:、下列计算正确的是(=±2 B ()0.02±0.0004±即()225=±11的平方根是(2)∵(x ﹣1)3=8, ∴x ﹣1=2, ∴x=3. 点评: 本题考查了学生开平方、立方的能力,也考查了解方程的方法,比较容易解答.变式训练1.求下列各式中的x :(1)4x 2=9; (2)1﹣(x+1)3=1001. 解答:解:(1)∵x 2=, ∴;(2)∵1﹣(x+1)3=1001,∴(x+1)3=﹣1000,∴x+1=﹣10,∴=﹣11.1、判断题(1)-0.01是0.1的平方根.………………………………………………………… …( )(2)-52的平方根为-5.……………………………………………………………… ( ) (3)0和负数没有平方根.……………………………………………………………… ( )(4)因为161的平方根是±41,所以161=±41.……………………………………… ( )(5)正数的平方根有两个,它们是互为相反数.…………………………………… ( ) 2、选择题(1)下列各数中没有平方根的数是( )A.-(-2)3B.3-3C.aD.-(a 2+1)(2)2a 等于( )A.aB.-aC.±aD.以上答案都不对(3)如果a (a >0)的平方根是±m ,那么( )A.a 2=±mB.a =±m2C.a =±mD.±a =±m(4)若正方形的边长是a ,面积为S ,那么( )A.S 的平方根是aB.a 是S 的算术平方根C.a =±SD.S =a3、填空题(1)若9x 2-49=0,则x =________.(2)若12 x 有意义,则x 范围是________.(3)已知|x -4|+y x +2=0,那么x =________,y =________.(4)如果a <0,那么2a =________,(a -)2=________.4、已知一个正方形ABCD 的面积是4a 2 cm 2,点E 、F 、G 、H 分别为正方形ABCD 各边的中点,依次连结E 、F 、G 、H 得一个正方形.(1)求这个正方形的边长.(2)求当a =2 cm 时,正方形EFGH 的边长大约是多少厘米?(精确到0.1cm )图1参考答案1.(1)× (2)× (3)× (4)× (5)√2.(1)D (2)D (3)D (4)B3.(1)±37 (2)x ≥-21(3)x =4,y =-8 (4)-a ,-a 4.(1)2a cm (2)2.8 cm【巩固练习】1、算术平方根等于它本身的数是( )A 、 1和0B 、0C 、1D 、 1±和0 2、2)6(-的平方根是( )A 、-6B 、36C 、±6D 、±6 3、满足53<<-x 的整数x 是( ) A 、3,2,1,0,1,2-- B 、3,2,1,0,1- C 、3,2,1,0,1,2-- D 、2,1,0,1-4、下列说法错误的是( )A. 1的平方根是1B. –1的立方根是-1C.2是2的平方根 D. –3是2)3(-的平方根5、已知x ,y 是实数,且34x ++(y-3)2=0,则xy 的值是( ) A .4 B .-4 C .94 D .-946、下列说法中正确的是( )A .9的平方根是3B .16的算术平方根是±2 C. 16的算术平方根是4 D. 16的平方根是±27、下列说法中,正确的是( )[来源:学&科&网Z&X&X&K]A.一个有理数的平方根有两个,它们互为相反数B.一个有理数的立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是-1,0,18、已知第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长. 答案:7cm。
第7讲平方根、立方根一、学习目标1、了解算术平方根、平方根、立方根的概念,会用根号表示数的算术平方根、平方根和立方根.2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,能用立方运算求某些数的立方根.3、能进行方根的估算,会区分立方根与平方根的不同.考情分析中考对这部分知识的考查一般分成两种情况:一是在实数的运算中,一是在解决综合问题中.虽然很少单独考查,但是由于它是学习无理数的前奏,是实数运算中必不可少的内容,故中考时常与其他知识综合考查.二、基础知识·轻松学1.算术平方根一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算数平方根,a a”,a叫做被开方数.【精讲】(1)被开方数a表示非负数,即a≥0.(2)0的算术平方根是0.(3)a也表示非负数,即a≥0.即:非负数的算术平方根是非负数.负数不存在算术平方根,即a<0时,a=4,5是252.平方根(1)平方根的概念:一般地,如果一个数的平方等于a,这个数就叫做a的平方根(或二次方根).就是说,如果x2=a,那么x就叫做a的平方根.因为3和-3的平方都是9,所以3和-3都是9的平方根.(2)平方根的性质:○1正数有两个平方根,它们是互为相反数.记作:a±.○20的平方根是0,记作:00=.○3负数没有平方根.【精讲】算术平方根与平方根的区别与联系:(1)区别①定义不同:如果x2=a,那么x叫做a的平方根,正数a的正的平方根叫做a的算术平方根.②个数不同:正数有两个平方根, 而算术平方根只有一个.±, 正数a的算术平方根③表示方法不同:正数a的平方根表示为a表示为a.④结果不同:正数的算术平方根一定是正数, 正数的平方根是一正一负.(2)联系①具有包含关系:平方根包含算术平方根,算术平方根是平方根中的一个.②存在条件相同:平方根和算术平方根都是只有非负数才有.③0的平方根、算术平方根均为0.3.开平方求一个数a(a≥0)的平方根的运算,叫做开平方.【精讲】(1)开方与平方互为逆运算.(2)正数的平方根有两个,它们互为相反数;其中正的平方根就是这个数的算术平方根.4.立方根如果一个数的立方等于a,这个数就叫做a的立方根(也叫做三次方根) .用式子表示就是,如果x3=a,那么x叫做a的立方根.因为2的立方为8,所以8的立方根为2.5.开立方求一个数的立方根的运算,叫做开立方.一个数a的立方根用符号表示,读作“三次根号a,其中a是被开方数,3是根指数.注意:根指数3不能省略.【精讲3】平方根与立方根的联系与区别(1)联系①都与相应的乘方运算互为逆运算.开平方与平方互为逆运算,开立方与立方互为逆运算.②平方根、立方根都是开方的结果.③0的平方根、立方根都有一个是0.(2)区别:(1)定义不同如果一个数的平方等于a ,这个数就叫做a 的平方根;如果一个数的立方等于a ,这个数就叫做a 的立方根.(2)写法不同在用符号表示平方根时,根指数2可省略,而用符号表示立方根时,根指数3不能省略.(3)个数不同任何一个正数有两个平方根,0的平方根有一个是0,负数没有平方根;任何一个数都有一个立方根.(4)表示法不同正数a 的平方根表示为±a ,a 的立方根表示为3a .(5)被开方数的取值范围不同 ±a 中的被开方数a 是非负数;3a 中的被开方数可以是任何数.三、重难疑点·轻松破1.求算术平方根和平方根因为平方与开平方互为逆运算,因此我们可以通过平方运算来求一个数的平方根,也可以通过平方运算来检验一个数是不是另一个数的平方根.一般的,.被开方数的小数点向右或向左每移动两位,算术平方根则相应地向右或向左移动一位.例1. 求下列各数的平方根:0 (6) a 5 -4 0.0289 3 361225 2 196 162)())(()()()(2222515(1) 1961423611922515 196 143611915141=±=±±±±±±=±解:因为()()因为()所以的平方根是:所以的平方根是:即:即:2222930.02890.1740.02890.170.17ππππ=±-=±±-±±=±()因为()()因为()()所以的平方根是:所以()的平方根是:即:63226335a a (6) 00a a 0 0aπ±±=±=±±=±即:()因为()因为所以的平方根是:所以的平方根是:即:0=点评:求一个数的平方根,也就是求一个非负数是什么数的平方.由于正数的算术平方根是正数,零的算术平方根是零,可将它们概括成:非负数的算术平方根是非负数,即当a≥0时,a≥0(当a<0时,a无意义) ,用几何图形可以直观地表示算术平方根的意义如有一个面积为a (a应是非负数) 的正方形的边长a就表示a的算术平方根.变式1、计算:.264.)23(-3.9722.0.0225142±-±)()()()(2.求立方根立方根是与平方根等同的两个概念,在前面学习平方根与算术平方根概念的基础上,很容易学习,要注意: 立方的结果是唯一的;在开立方运算中,被开方数可以是正数,0,负数,开立方的结果是唯一的.例2 求下列各式的值:327、364-解析: (1)∵33=27,∴27的立方根是3,即327=3.(2)∵(-4)3=-64,∴-64的立方根是-4,即364-=-4.(3)∵(35)3=27125,∴27125的立方根是35,35. 点评: 求一个数的立方根的基本方法和基本步聚(1)明确(或易求出)所要求的数是哪一个数的立方的;(2)先指出所要求立方根的那个数是哪个数的立方;(3)根据立方根的定义,求出这个数的立方根.变式2.求下列各数的立方根:(1)512 (2)125.0- (3)3)3(- (4)833- 3.方根的估算:例3 已知3﹣的整数部分是a ,小数部分是b ,求500a 2+(2+)ab +4的值.解析:∵12,∴a =1,b =2∴500a 2+(ab +4=500×12+(×1×(2+4=500+4﹣3+4=505.点评:此题考查了二次根式的化简以及计算,同时考查了学生的估算能力,“夹逼法”是估算的一般方法,有时我们也会先估算整数部分,再用原数减去整数部分即为小数部分.变式3:小明做了以下三道计算题,请你判断一下他的结果对吗?(19.7;(2123;(3 5.1.四、课时作业·轻松练A .基础题组1.下列说法错误的是A .0的平方根是它本身B .-9没有平方根C .(-2)2的平方根是±2D .1的平方根是12.若x 是25的平方根,y x 与y 的关系是()A .x =yB . x =-yC .x =±yD .x =y 23.一个正方形的边长为a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、b a ±=D 、a b =4.144的算术平方根是 ,16的平方根是 ; 64-的立方根是5..a +1是9的平方根,那么a 的值为_______.6.求下列各式的值(1)2)2(3)(2(45) 3 7.求下列各式中的x(1)x 2-36=0 (2)0.25x 2=1(3)(x +5)3=27 (4)27(x +1)3=-1000B .提升题组8.a 是正数,如果a 的值扩大100 )A 、扩大100倍;B 、缩小100倍;C 、扩大10倍;D 、缩小10倍;9.若a <0,则aa 22等于( ) A 、21 B 、21- C 、±21 D 、0 10.若164=x ,则x = ;若813=n ,则n = .11.已知-3是2a -1的平方根,3a -b -1的立方根是2,求6a +b 的算术平方根.12.已知一个正数x 的两个平方根分别是a +4,a -2,求a 与x 的值. 中考试题初体验1.(2012 )A .4B .2C .﹣2D .2.(2013贵州黔西南州)的平方根是 ±3 .3.(2012( )A . 3B . ﹣3C . ﹣2D . 24.(2012湖北荆州)﹣(﹣2)﹣2﹣2)0= . 五、我的错题本参考答案变式练习变式1:123450.15 -233=====±==解析:()(()()226=±变式2.解析:(1)∵83=512,∴512的立方根是8 (2)∵(-0.5)3=-0.125,∴ -0.125的立方根是-0.5 (3)3)3(-的立方根是-3 (4)∵(32-)3=833-,∴833-的立方根是32-.变式3.解析:(110;(2)也是错误的,因为31001000000=,它比12345大得多;(3)是正确的,因为2525.936<<,所以96,即56<.课时作业·轻松练A.基础题组1.D解析:一个正数有两个平方根,0的平方根是0,负数没有平方根,故选D.2.C.解析:x是25的平方根,所以x=±5, y,y2=5.所以x=±y,选C.3. B解析:由题意得,a2=b,正方形的边长为a,只能是正数,所以a 是b的的算术平方根,故选B.4. 12,±2,-2,所以144的算术平方根是12;16=4,±2,所以16的平方根是±2;64-=-8,64-的立方根是=-2.5. a =2或a =-4 ±3,所以a +1=±3,所以,a =2或a =-4.6.解:(1)(2)2=42(3)(2=12(414(5)3=8.7.解:(1)∵x 2-36=0∴x 2=36 ±6∴x =±6(2) ∵0.25x 2=1∴x 2=4±2∴x =±2(3) ∵(x +5)3=27∴x +5=3∴x =-2(4) ∵27(x +1)3=-1000∴(x +1)3=100027-∴x =103--1=133- B .中档题组8.C =C .9.B .解析:∵a <0a , ∴a a 22=2a a -=12-,故选B . 10.±2;4 解析:∵(±2)4=16,∴x =±2;∵34=81,n =411.解:∵-3是2a -1的平方根,∴2a -1=32=9,a =5; 3a -b -1的立方根是2, ∴3a -b -1=23=8,a =5,b =6, ∴6a +b =6×5+6=3612.解:∵正数x 的两个平方根互为相反数,∴a +4+a -2=0,∴a =-1,∴a +4=-1+4=3,(a +4)2=32=9, ∴x =9.中考试题初体验1.解析:根据算术平方根的定义解答.∵22=4.故选B .2.解析:首先化简,再根据平方根的定义计算平方根=9,9的平方根是±3,故答案为:±3.3.解析:∵33=27.故选A.4.解析:分别根据二次根式的化简、负整数指数幂、零指数幂的知识将各部分化简,然后合并即可得出答案.原式=14﹣14﹣1=﹣1.11。
讲解详细讲解平方根和立方根的概念运算规则和注意事项解答学生提出的疑问平方根和立方根是数学中重要的概念,它们在各个学科领域都有广泛的应用。
在本文中,我们将详细讲解平方根和立方根的概念、运算规则以及需要注意的事项,以解答学生们提出的疑问。
一、平方根的概念和运算规则平方根是指一个数的平方等于该数的非负根。
即,对于任意非负数x和非负数a,若a的平方等于x,那么我们称a是x的平方根。
用符号表示,可以写作√x=a。
平方根的运算规则如下:1. 非负数的平方根是唯一的。
即,一个非负数x只有一个非负平方根。
2. 负数没有实数平方根。
平方根的定义要求平方根是非负的,因此负数没有实数平方根。
3. 平方根运算具有交换律和结合律。
即,对于任意非负数x和y,有√(x*y)=√x*√y和√(x/y)=√x/√y。
4. 平方根运算满足开方运算法则。
即,对于任意正数x和正整数n,平方根运算和幂运算可以互相转换,即√(x^n)=(√x)^n。
二、立方根的概念和运算规则立方根是指一个数的立方等于该数的非负根。
即,对于任意数值x 和非负数a,若a的立方等于x,那么我们称a是x的立方根。
用符号表示,可以写作³√x=a。
立方根的运算规则如下:1. 实数的立方根是唯一的。
即,一个实数x只有一个实立方根。
2. 负数的立方根是存在的。
与平方根不同,负数是存在实数立方根的,例如-8的立方根是-2,因为(-2)^3=-8。
3. 立方根运算具有交换律和结合律。
即,对于任意数值x和y,有³√(x*y)=³√x*³√y和³√(x/y)=³√x/³√y。
4. 立方根运算也满足开方运算法则。
即,对于任意正数x和正整数n,立方根运算和幂运算可以互相转换,即³√(x^n)=(³√x)^n。
三、注意事项在计算平方根和立方根时,需要注意以下几点:1. 平方根和立方根的符号。
平方根是指非负根,因此其结果为正数或零。
尖子生培优教材数学七年级上第四讲。
平方根与立方根讲义及答案第四讲:平方根与立方根知识导引:平方根和立方根的概念在数学中起到了十分重要的作用。
这些概念是通过逆运算来建立的,并且有多种不同的情况。
因此,理解这些概念的最好方法是从平方和立方的概念开始。
此外,还应该学会使用平方根、立方根等知识去解决一些简单的实际问题。
1.有关平方根:1) 一个正数有正负两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。
2) 算术平方根a的双重非负性:a≥0;a≥0.3) a的三层含义:开方的运算符号,表示对a进行开方运算;特征符号,表示a的算术平方根;表示一种新的数,是开不尽方的数(即无理数)的表示形式。
2.有关立方根:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
因此,任何数都有立方根。
3.实数的几种非负形式:1) a≥0(a为实数);2) a < 0,|a|≥0(a为实数)。
4.算术平方根的主要性质:1) (√a)²=a;2) a≥0,√(a²)=a;3) ab≥0,√(ab)=√a·√b(a≥0,b≥0);4) a≥0,b>0,(√a/√b)²=a/b。
典例精析:例1:填空题:1) (-3)的算术平方根是______。
2) 平方根等于它本身的数是______。
3) 和数轴上的点一一对应的数是______。
例1-1:下列说法正确的有:(填入相应的序号)。
①-8是64的平方根;②4的算术平方根是2;③任何数都有立方根;④6根2是2;⑤根是±8;⑥9=±3.例1-2:已知x+2+y-3+(z+1)²=______,求x+y+z的平方根。
例2:比较大小:1) -23与-32.2) 1/2,x,x,x(<x<1)。
例2-1:设a=3-2,b=2-3,c=3-2,则a、b、c的大小关系是( )。
A、a>b>cB、a>c>bC、c>b>aD、b>c>a例3:观察下列等式:32/22=23,33=33=43,34.可得出一般规律是______。
讲义主题: 平方根与立方根一:课前纠错与课前回顾1、作业检查与知识回顾2、错题分析讲解(1)(2)(3)···二、课程内容讲解与课堂练习题模一:平方根例1.1.1±3是9的( )A .平方根B .相反数C .绝对值D .算术平方根 例1.1.2的平方根是( ) A .2 B .±2 C . D .±例1.1.3若12-a 和5-a 是一个正数m 的两个平方根,则a =__________,m =__________.【讲透例题】题模一:平方根例1.1.1【答案】A【解析】∵(±3)2=9,∴±3是9的平方根,故选;A .例1.1.2【答案】D【解析】∵=2,∴的平方根是±.例1.1.3【答案】2;9【解析】该题考查的是平方根的性质.∵一个数的平方根互为相反数∴2150a a -+-=,解得:2a =∴()()22212219m a =-=⨯-=【讲透考点】平方根平方根的定义:如果一个数的平方等于a ,那么这个数叫做a 的平方根.平方根的表示方法:若2x a =,则x 就叫做a 的平方根.一个非负数a 的平方根可用符号表示 为“a ±”.平方根的特征:1.正数有两个平方根,且互为相反数;2.0的平方根是它本身;3.负数没有平方根.【相似题练习】随练81________.随练1.2若225a =,9b =a b +=( )A .8B .8±C .8或2-D .2或8-题模二:算术平方根例1.2.14的算术平方根是( )A .2B .-2C .±2D 2例1.2.229的算术平方根是__________.例1.2.3下列说法正确的是( )A 42B .0和1的相反数都是它本身C .将5、4、3依次重复写两遍得到的6个数的平均数是4D 2是分数例1.2.4一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是()A .a+1B .a 2+1C 2a 1+D a 1+例1.2.5 若12-x 有意义,则x 的取值范围是__________.【讲透例题】题模二:算术平方根例1.2.1【答案】A【解析】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.算术平方根的定义:一个非负数的正的平方根,即为这个数的算术平方根,由此即可求出结果. ∵2的平方为4,∴4的算术平方根为2.故选A .例1.2.2 29【解析】2929例1.2.3【答案】C【解析】A 42B 、1的相反数不是它本身,故本选项错误;C 、5、4、3依次重复写两遍得到的6个数的平均数是(5×2+4×2+3×2)÷6=4,故本选项正确;D 2是无理数,不是分数,故本选项错误. 故选C .例1.2.4【答案】B【解析】∵一个自然数的算术平方根为a ,∴这个自然数是a 2.∴和这个自然数相邻的下一个自然数是a 2+1.故选B .例1.2.5 【答案】12x ≥【解析】双重非负性可得210x -≥,解得12x ≥【讲透考点】二.算术平方根算术平方根的概念: 如果一个非负数x的平方等于a,即2x a=,那么非负数x是a的算术平方根.算术平方根的表示方法:a a a叫做被开方数.算术平方根的性质:双重非负性,在x a=0x≥,0a≥.【相似题练习】随练1.3一个数的算术平方根是2,则这个数是____.随练()28-)A.8-B.8C.8±D.8±题模三:开平方例()22-的平方根为( )A.2-B.2C.2±D.2±例1.3.2如果a是121的平方根,那么24a的算术平方根的相反数的倒数的是__________.例1.3.37例1.3.4 1.718721 1.31117.197609 4.147,那么0.0001718721-,1719760900=__________.【讲透例题】题模三:开平方例1.3.1【答案】D【解析】该题考查的是平方根的概念和根式的性质.一个正数有两个平方根.()222-=,2的平方根有两个,2所以本题的答案是D.例1.3.2 【答案】211-【解析】2212111442a ⎛⎫==± ⎪⎝⎭,24a 的算术平方根为112,112的相反数的倒数的是211-例1.3.3【答案】2和3之间 479273<<例1.3.4【答案】0.0311-,41470【解析】被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥).【讲透考点】开平方开平方的概念:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.开平方运算的性质:1.当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥).2.平方根和算术平方根与被开方数之间的关系:(1)若0a ≥,则2(a a =;(2)不管a 2(0)||(0)a a a a a a ≥⎧==⎨-<⎩注意二者之间的区别及联系. 【相似题练习】随练1.5已知实数x 、y 231220x y x y ---+=,求85x y +的平方根.随练1.6已知一个正数的平方根是3x-2和5x+6,则这个数是(___)(___).题模四:立方根例2.1.127的立方根是__________.例2.1.2338的立方根是__________. 例2.1.36427-的立方根是__________. 例2.1.49的立方根是__________.例2.1.5下列说法正确的是( )A .16的算术平方根是4-B .25的平方根是5C .1的立方根是1±D .27-的立方根是3-【讲透例题】题模四:立方根例2.1.1【答案】3【解析】3273=例2.1.2 【答案】32 【解析】332733882⎛⎫== ⎪⎝⎭ 例2.1.3 【答案】43-【解析】3644273⎛⎫-=- ⎪⎝⎭ 例2.1.4 39 39例2.1.5【答案】D【解析】该题考查的是平方根和立方根的概念.A :错误,16的算术平方根为4;B :错误,25的平方根为5±;C :错误,1的立方根为1;D :正确,所以本题的答案是D .【讲透考点】立方根立方根的定义及表示方法:如果一个数的立方等于a ,那么这个数叫做a 的立方根; 若3,x a =则x 就叫做a 的立方根,一个数a 3a ,其中“3”叫做根指数,不能省略.立方根的特点:1.任意一个数都有立方根;2.正数立方根是正值;3.负数的立方根是负值;4.0的立方根是0.【相似题练习】随练2.1如果一个实数的平方根与它的立方根相等,则这个数是( )A .0B .正整数C .0和1D .1随练2.2下列说法正确的是( )A .如果一个数的立方根是这个数的本身,那么这个数一定是零B .一个数的立方根不是正数就是负数C .负数没有立方根D .一个数的立方根与这个数同号,零的立方根是零随练2.3下列各式中,正确的是( )A .93=±B ()222-=-C 393-=-D .233-= 随练2.4()255--255±42=382-=-A .3B .2C .1D .0题模五:开立方例2.2.1求符合下列各条件中的x 的值.(1)2104x -=(2)31108x +=例2.2.2已知343的立方根是7,那么343000的立方根是__________.例2.2.3324a -343b -ab . 例2.2.42n m -+是4322m +8的立方根,求1mn +的平方根【讲透例题】题模五:开立方例2.2.1【答案】(1)12x =±(2)2-=x 【解析】该题考查的是解高次方程.(1)2104x -=214x = 14x =±12x = (2)31108x +=38x =-2x =- 例2.2.2【答案】70.【解析】70.例2.2.3【答案】16【解析】两个数互为相反数,则他们的立方根也互为相反数,∴2443230a b a b -+-=-=, ∴32a b =.例2.2.4【答案】16【解析】该题考察的是代数式求值.算术平方根:若一个正数x 的平方等于a ,即2x a =,则这个正数x 为a 的算术平方根 立方根:若一个数x 的立方等于a ,即3x a =,则这个数x 为a 的立方根.∵224=,∴2是424n m -+,即24n m -+=∵328=,∴2是833228m +228m +=∴5n =,3m =∴116mn +=【讲透考点】开立方开立方的概念:求一个数的立方根的运算.开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.开立方运算的性质:1.当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍. 233a a =,33a a =. 【相似题练习】随练2.533(4)4k k -=-,则k 的取值范围为( )A .4k ≥B .4k ≤C .4k =D .k 为任意数随练2.6 求符合下列各条件中的x 的值.(1)3343x = (2)()3364x -=-随练2.733560x y -+-=,求x y +的值.三、课后练习(写出各题的主要解答过程。
第二章平方根、算术平方根和立方根知识点汇总1. 平方根、算术平方根和立方根三者的区别与联系( 理清概念方能百战不殆)指数 2 在根号的里面。
2 ( a) 2与a2的关系( 难点)(1) 区别:①意义不同:( a) 2表示非负数 a 的算术平方根的平方;a2表示实数a的平方的算术平方根。
②取值范围不同:( a)2中的a为非负数,即a≥0;a2中的 a 为任意数。
③运算顺序不同:( a)2是先求 a 的算术平方根,再求它的算术平方根的平方;a2是先求 a 的平方,再求平方后的算术平方根。
④写法不同。
在( a) 2中,指数 2 在根号的外面;而在a2中,⑤运算结果不同:(a)2=a(a≥0) ; a =| a|=a,a≥0,-a,a<0.(2) 联系:①在运算时,都有平方和开平方的运算。
②两式运算的结果都是非负数,即 ≥0. ③仅当 a ≥0时,有 ( a )2= a 2 。
3. 立方根的化简公式: 3 a 3 =a ;(3 a )3=a ; 3 a =- 3 a( a ) 2≥ 0, a 21..选择2014·南京) 8 的平方根是( A . 4B .±42. (2014 。
东营 ) 的平方根是( A .±3 B .3 3. 2014?连云港) 计算 A . ﹣3 B . 4.(2014。
厦门) 4 的算术平方根是( A . 16 B .5.下列计算中,正确的是( 典型题精选)C .的结果是(±9 C . C . D .D .9﹣9 D . ﹣2 D . ±2 3 2 6 A.a · a =a B. ( π -3.14 )o =1 C. (13)1) 2C .( ab ) 3 D. 93 6.(2014 年湖北荆门 )下列运算正确的是 A .3﹣1=﹣3 B . =±3 7. 下列说法错误的是( ) A .5是 25 的算术平方根 C .(-4)2 的平方根是- 4 8.如果 x 是 0.01的算术平方根,则 A . 0.000 1 C .0.1 9.下 列说法中,正确的是( ) A. 一个有理数的平 方根有两个,B. 一个有理数的 立方根,不是正数就是负数C.负数没有立方根D.如果一个数的立方根是这个数本身,那么这个数一定是- 10. 下列各式中,无意义的是( ) x =( B . D . 36 =a b D .a 6 2 ÷a =a A. 32 B .1 是 1 的一个平方根D .0 的平方根与算术平方根都是 )±0.000 1±0.1 它们互为相反数 1, 0,1 B. 3 ( 3)3 C. ( 3)2 D. 10 3 绝对值与算术平方根的非负性)11. 若 a,b 为实数,且满足 |a -2|+ b 2 =0,则 b -a 的值为( )A .2B .0C .- 2D .以上都不对平方与算术平方根的非负性)12.(2014·福州) 若(m-1)2+ n 2 =0,则 m + n 的值是( A .- 1 B . 0 C .1 13. 有一个数值转换器,原理如图所示:当输入的D .2x 错误!未找到引用源。