北京中考数学试卷和参考答案
- 格式:doc
- 大小:1.44 MB
- 文档页数:23
2022北京中考真题数学第一部分选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面几何体中,是圆锥的为()A. B. C. D.2.截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学计数法表示应为()A.1026.288310⨯B.112.6288310⨯C.122.6288310⨯ D.120.26288310⨯3.如图,利用工具测量角,则1∠的大小为()A.30°B.60°C.120°D.150°4.实数a b ,在数轴上的对应点的位置如图所示,下列结论中正确的是()A. 2a -<B.1b <C.a b >D.a b->5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14 B.13C.12D.346.若关于x 的一元二次方程20x x m ++=有两个相等的实数根,则实数m 的值为()A.4- B.14-C.14D.47.图中的图形为轴对称图形,该图形的对称轴的条数为()A.1B.2C.3D.58.下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ;③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x ,其中,变量y 与变量x 之间的函数关系可以利用如图所示的图象表示的是()A.①②B.①③C.②③D.①②③第二部分非选择题二、填空题(共16分,每题2分)9.在实数范围内有意义,则实数x 的取值范围是___________.10.分解因式:2xy x -=______.11.方程215x x=+的解为___________.12.在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)13.某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为________双.14.如图,在ABC ∆中,AD 平分,.BAC DE AB ∠⊥若2,1,AC DE ==则ACD S ∆=____.15.如图,在矩形ABCD 中,若13,5,4AF AB AC FC ===,则AE 的长为_______.16.甲工厂将生产的I 号、II 号两种产品共打包成5个不同的包裹,编号分别为A ,B ,C ,D ,E ,每个包裹的重量及包裹中I 号、II 号产品的重量如下:包裹编号I 号产品重量/吨II 号产品重量/吨包裹的重量/吨A 516B 325C 235D 437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的I 号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案________(写出要装运包裹的编号);(2)如果装运的I 号产品不少于9吨,且不多于11吨,同时装运的II号产品最多,写出满足条件的装运方案________(写出要装运包裹的编号).三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:0(1)4sin 45 3.π-+--18.解不等式组:274,4.2x x xx +>-⎧⎪⎨+<⎪⎩19.已知2220x x +-=,求代数式2(2)(1)x x x +++的值.20.下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明.三角形内角和定理:三角形三个内角和等于180°,已知:如图,ABC ∆,求证:180.A B C ∠+∠+∠=方法一证明:如图,过点A 作.DE BC ∥方法二证明:如图,过点C 作.CD AB ∥21.如图,在ABCD 中,AC BD ,交于点O ,点E F ,在AC 上,AE CF =.(1)求证:四边形EBFD 是平行四边形;(2)若,BAC DAC ∠=∠求证:四边形EBFD 是菱形.22.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(4,3),(2,0)-,且与y 轴交于点A .(1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a .甲、乙两位同学得分的折线图:b .丙同学得分:10,10,10,9,9,8,3,9,8,10c .甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m 的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).24.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD (1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.25.单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台,运动员起跳后的飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:m )与水平距离x (单位:m )近似满足函数关系2()(0)y a x h k a =-+<.某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下:水平距离x /m 02581114竖直高度y /m20.0021.4022.7523.2022.7521.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系2()(0);y a x h k a =-+<(2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系20.04(9)23.24.y x =--+记该运动员第一次训练的着陆点的水平距离为d 1,第二次训练的着陆点的水平距离为2d ,则1d ______2d (填“>”“=”或“<”).26.在平面直角坐标系xOy 中,点(1,),(3,)m n 在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为.x t =(1)当2,c m n ==时,求抛物线与y 轴交点的坐标及t 的值;(2)点00(,)(1)x m x ≠在抛物线上,若,m n c <<求t 的取值范围及0x 的取值范围.27.在ABC 中,90ACB ∠= ,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC =(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥;(2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.28.在平面直角坐标系xOy 中,已知点(,),.M a b N 对于点P 给出如下定义:将点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',点P'关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点(1,1),M 点N 在线段OM 的延长线上,若点(2,0),P -点Q 为点P 的“对应点”.①在图中画出点Q ;②连接,PQ 交线段ON 于点.T 求证:1;2NT OM =(2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P 为O 外一点,点Q 为点P 的“对应点”,连接.PQ 当点M 在O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)答案1、【答案】B解:A 选项为圆柱,不合题意;B 选项为圆锥,符合题意;C 选项为三棱柱,不合题意;D 选项为球,不合题意;2、【答案】B解:将262883000000保留1位整数是2.62883,小数点向左移动了11位,∴262883000000112.6288310=⨯,3、【答案】A解:量角器测量的度数为30°,由对顶角相等可得,130∠=︒.4、【答案】D解:点a 在-2的右边,故a >-2,故A 选项错误;点b 在1的右边,故b >1,故B 选项错误;b 在a 的右边,故b >a ,故C 选项错误;由数轴得:-2<a <-1.5,则1.5<-a <2,1<b <1.5,则a b ->,故D 选项正确,5、【答案】A 解:画树状图得:∵共有4种等可能的结果,第一次摸到红球,第二次摸到绿球有1种情况,∴第一次摸到红球,第二次摸到绿球的概率为14,6、【答案】C∵一元二次方程20x x m ++=有两个相等的实数根,∴∆=0,∴2140m -=,解得14m =,故C 正确.解∶如图,一共有5条对称轴.8、【答案】A解:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 随行驶时间x 的增大而减小,故①可以利用该图象表示;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 随放水时间x 的增大而减小,故②可以利用该图象表示;③设绳子的长为L ,一边长x ,则另一边长为12L x -,则矩形的面积为:21122y L x x x Lx ⎛⎫=-⋅=-+⎪⎝⎭,故③不可以利用该图象表示;故可以利用该图象表示的有:①②,9、【答案】x ≥8解:由题意得:x -8≥0,解得:x ≥8.10、【答案】()()11x y y +-2xy x -()21x y =-()()11x y y =+-故答案为:()()11x y y +-.11、【答案】x =5解:215x x=+方程的两边同乘x (x +5),得:2x =x +5,解得:x =5,经检验:把x =5代入x (x +5)=50≠0.故原方程的解为:x =5解:∵k >0,∴在每个象限内,y 随x 的增大而减小,25 <,∴1y >2y .故答案为:>.13、【答案】120解:根据题意得:39码的鞋销售量为12双,销售量最高,∴该商场进鞋号需求最多的滑冰鞋的数量为1240012040⨯=双.故答案为:12014、【答案】1解:如图,作DF AC ⊥于点F ,∵AD 平分BAC ∠,DE AB ⊥,DF AC ⊥,∴1DF DE ==,∴1121122ACD S AC DF ∆=⋅=⨯⨯=.故答案为:1.15、【答案】1解:在矩形ABCD 中:AD BC ∥,90ABC ∠=︒,∴14AE AF BC FC ==,4BC ===,∴144AE =,∴1AE =,故答案为:1.16、【答案】(1):ABC(或ABE 或AD 或ACD 或BCD)(2):ABE 或BCD解:(1)根据题意,选择ABC 时,装运的I 号产品重量为:53210++=(吨),总重6551619.5++=<(吨),符合要求;选择ABE 时,装运的I 号产品重量为:53311++=(吨),总重6581919.5++=<(吨),符合要求;选择AD 时,装运的I 号产品重量为:549+=(吨),总重671319.5+=<(吨),符合要求;选择ACD 时,装运的I 号产品重量为:52411++=(吨),总重6571819.5++=<(吨),符合要求;选择BCD 时,装运的I 号产品重量为:3249++=(吨),总重5571719.5++=<(吨),符合要求;选择DCE 时,装运的I 号产品重量为:4239++=(吨),总重7582019.5++=>(吨),不符合要求;选择BDE 时,装运的I 号产品重量为:34310++=(吨),总重5782019.5++=>(吨),不符合要求;综上,满足条件的装运方案有ABC 或ABE 或AD 或ACD 或BCD.故答案为:ABC(或ABE 或AD 或ACD 或BCD).(2)选择ABC 时,装运的II 号产品重量为:1236++=(吨);选择ABE 时,装运的II 号产品重量为:1258++=(吨);选择AD 时,装运的II 号产品重量为:134+=(吨);选择ACD 时,装运的II 号产品重量为:1337++=(吨);选择BCD 时,装运的II 号产品重量为:2338++=(吨);故答案为:ABE 或BCD.17、【答案】4解:0(1)4sin 45 3.π-+--2=1432+⨯-+=4.18、【答案】14x <<解:274 4 2x x x x +>-⎧⎪⎨+<⎪⎩①②解不等式①得1x >,解不等式②得4x <,故所给不等式组的解集为:14x <<.19、【答案】5解:∵2220x x +-=,∴222x x +=,∴2(2)(1)x x x +++22221x x x x =++++2241x x =++()2221x x =++221=⨯+5=20、【答案】答案见解析选择方法一,过点A 作//DE BC ,依据平行线的性质,即可得到B BAD ∠=∠,C EAC ∠=∠,再根据平角的定义,即可得到三角形的内角和为180︒.证明:过点A 作//DE BC ,则B BAD ∠=∠,C EAC ∠=∠.(两直线平行,内错角相等)点D ,A ,E 在同一条直线上,180DAB BAC C ∴∠+∠+∠=︒.(平角的定义)180B BAC C ∴∠+∠+∠=︒.即三角形的内角和为180︒.21、【答案】(1)见解析(2)见解析(1):证明:∵四边形ABCD 为平行四边形,∴AO CO =,BO DO =,∵AE CF =,∴AO AE CO CF -=-,即EO FO =,∴四边形EBFD 是平行四边形.(2):∵四边形ABCD 为平行四边形,∴AB CD ,∴DCA BAC ∠=∠,∵,BAC DAC ∠=∠∴DCA DAC ∠=∠,∴DA DC =,∴四边形ABCD 为菱形,∴AC BD ⊥,即EF BD ⊥,∵四边形EBFD 是平行四边形,∴四边形EBFD 是菱形.22、【答案】(1)112y x =+,(0,1)(2)1n ≥(1):解:将(4,3),(2,0)-代入函数解析式得,3=402k b k b +⎧⎨=-+⎩,解得121k b ⎧=⎪⎨⎪=⎩,∴函数的解析式为:112y x =+,当0x =时,得1y =,∴点A 的坐标为(0,1).(2):由题意得,112x n x +>+,即22x n >-,又由0x >,得220n -≤,解得1n ≥,∴n 的取值范围为1n ≥.23、【答案】(1)8.6(2)甲(3)乙(1):解:丙的平均数:101010998398108.610+++++++++=,则8.6m =.(2):2222212(8.68)4(8.69)2(8.67)2(8.610) 1.0410S ⎡⎤=⨯-+⨯-+⨯-+⨯-=⎣⎦甲,222214(8.67)4(8.610)2(8.69) 1.8410S ⎡⎤=⨯-+⨯-+⨯-=⎣⎦乙,22S S < 甲乙,∴甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.(3):由题意得,去掉一个最高分和一个最低分后的平均分为:甲:889799910=8.6258+++++++,乙:77799101010=9.758+++++++,丙:10109989810=9.1258+++++++,∵去掉一个最高分和一个最低分后乙的平均分最高,因此最优秀的是乙,故答案为:乙.24、【答案】(1)答案见解析(2)答案见解析(1):证明:设AB交CD于点H,连接OC,由题可知,OC OD∴=,90OHC OHD∠=∠=︒,OH OH=,()Rt COH Rt DOH HL∴∆≅∆,COH DOH∴∠=∠,BC BD∴=,COB BOD∴∠=∠,2COB A∠=∠,2BOD A∴∠=∠;(2):证明:连接AD ,OA OD = ,OAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠,∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠,180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒ ,30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒,223060COB CAO ∴∠=∠=⨯︒=︒,AB Q 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,//OC DE ∴,CE BE ⊥Q ,CE OC ∴⊥,∴直线CE 为O 的切线.25、【答案】(1)23.20m;()20.05823.20y x =--+(2)<(1):解:根据表格中的数据可知,抛物线的顶点坐标为:()8,23.20,∴8h =,23.20k =,即该运动员竖直高度的最大值为23.20m,根据表格中的数据可知,当0x =时,20.00y =,代入()2823.20y a x =-+得:()220.000823.20a =-+,解得:0.05a =-,∴函数关系关系式为:()20.05823.20y x =--+.(2):设着陆点的纵坐标为t ,则第一次训练时,()20.05823.20t x =--+,解得:8x =+或8x =-,∴根据图象可知,第一次训练时着陆点的水平距离18d =+,第二次训练时,()20.04923.24t x =--+,解得:9x =+9x =∴根据图象可知,第二次训练时着陆点的水平距离29d =,∵()()2023.202523.24t t --<,,∴12d d <.故答案为:<.26、【答案】(1)(0,2);t=2(2)t 的取值范围为322t <<;0x 的取值范围为023x <<(1):解:当2c =时,22y ax bx =++,∴当x =0时,y =2,∴抛物线与y 轴交点的坐标为(0,2);∵m n =,∴点(1,),(3,)m n 关于对称轴为x t =对称,∴1322t +==;(2):解:当x =0时,y =c ,∴抛物线与y 轴交点坐标为(0,c ),∴抛物线与y 轴交点关于对称轴x t =的对称点坐标为(2t ,c ),∵0a >,∴当x t ≤时,y 随x 的增大而减小,当x t >时,y 随x 的增大而增大,当点(1,)m ,点(3,)n ,(2t ,c )均在对称轴的右侧时,1t <,∵,m n c <<1<3,∴2t >3,即32t >(不合题意,舍去),当点(1,)m 在对称轴的左侧,点(3,)n ,(2t ,c )均在对称轴的右侧时,点0(,)x m 在对称轴的右侧,13t <<,此时点(3,)n 到对称轴x t =的距离大于点(1,)m 到对称轴x t =的距离,∴13t t -<-,解得:2t <,∵,m n c <<1<3,∴2t >3,即32t >,∴322t <<,∵0(,)x m ,(1,)m ,对称轴为x t =,∴012x t +=,∴013222x +<<,解得:023x <<,∴t 的取值范围为322t <<,0x 的取值范围为023x <<.27、【答案】(1)见解析(2)CD CH =;证明见解析(1):证明:在FCE 和BCD 中,CE CD FCE BCD CF CB =⎧⎪∠=∠⎨⎪=⎩,∴()SAS FCE BCD ≅ ,∴∠CFE=∠CBD∴EF BD ∥,∵AF EF ⊥,∴BD AF ⊥.(2):解:补全后的图形如图所示,CD CH =,证明如下:延长BC 到点M ,使CM =CB ,连接EM ,AM ,∵90ACB ∠= ,CM =CB ,∴AC 垂直平分BM ,∴AB AM =,在MEC 和BDC 中,CM CB MCE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS MEC BDC ≅ ,∴ME=BD,∠CME=∠CBD∵222AB AE BD =+,∴222AM AE ME =+,∴90AEM ∠=︒,∵∠CME=∠CBD∴BH EM ∥,∴∠BHE=∠AEM=90°即∠DHE=90°∵12CE CD DE ==,∴12CH DE =,∴CD CH =.28、【答案】(1)见解析(2)42t -(1):解:①点Q 如下图所示.∵点(1,1)M ,∴点(2,0)P -向右平移1个单位长度,再向上平移1个单位长度,得到点P',∴()'1,1P -,∵点P'关于点N 的对称点为Q ,()2,2N ,∴点Q 的横坐标为:()2215⨯--=,纵坐标为:2213⨯-=,∴点()5,3Q ,在坐标系内找出该点即可;②证明:如图延长ON 至点()3,3A ,连接AQ ,∵//AQ OP ,∴AQT OPT ∠=∠,在ΔAQT 与ΔOPT ∠中,AQT OPT ATQ OTP AQ OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()ΔΔAQT OPT AAS ≅,∴12TA TO OA ==,∵()3,3A ,(1,1)M ,(2,2)N ,∴223332OA =+=,22112OM +=22222ON =+=,∴13222TO OA ==,∴322222NT ON OT =-==,∴12NT OM =;(2):解:如图所示,连接PO 并延长至S ,使OP OS =,延长SQ 至T ,使ST OM =,∵(,)M a b ,点P 向右(0)a ≥或向左(0)a <平移a 个单位长度,再向上(0)b ≥或向下(0)b <平移b 个单位长度,得到点P',∴'1PP OM ==,∵点P'关于点N 的对称点为Q ,∴'NP NQ =,又∵OP OS =,∴OM ∥ST ,∴NM 为Δ'P QT 的中位线,∴//NM QT ,1=2NM QT ,∵1NM OM ON t =-=-,∴222TQ NM t ==-,∴()12221SQ ST TQ t t =-=--=-,在ΔPQS 中,PS QS PQ PS QS -<<+,结合题意,max PQ PS QS =+,min PQ PS QS =-,∴()()max min 242PQ PQ PS QS PS QS QS t -=+--==-,即PQ 长的最大值与最小值的差为42t -.。
2022年北京市中考数学真题一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下面几何体中,是圆锥的为( )A. B.C. D.2. 截至2021年12月31日,长江干流六座梯级水电站全年累计发电量达2628.83亿千瓦时,相当于减排二氧化碳约2.2亿吨.将262883000000用科学记数法表示应为( )A. 26.2883×1010B. 2.62883×1011C. 2.62883×1012D. 0.262883×10123. 如图,利用工具测量角,则∠1的大小为( )A. 30°B. 60°C. 120°D. 150°4. 实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是( )A. a<−2B. b<1C. a>bD. −a>b5. 不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是( )A. 14B. 13C. 12D. 346. 若关于x的一元二次方程x2+x+m=0有两个相等的实数根,则实数m的值为( )A. −4B. −14C. 14D. 47. 图中的图形为轴对称图形,该图形的对称轴的条数为( )A. 1B. 2C. 3D. 58. 下面的三个问题中都有两个变量:①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x,其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(本大题共8小题,共24.0分)9. 若√x−8在实数范围内有意义,则实数x的取值范围是.10. 分解因式:xy2−x=.11. 方程2x+5=1x的解为.12. 在平面直角坐标系xOy中,若点A(2,y1),B(5,y2)在反比例函数y=kx(k>0)的图象上,则y1y2(填“>”“=”或“<”).13. 某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号353637383940414243销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为双.14. 如图,在ΔABC中,AD平分∠BAC,DE⊥AB.若AC=2,DE=1,则SΔACD =.15. 如图,在矩形ABCD中,若AB=3,AC=5,AFFC =14,则AE的长为.16. 甲工厂将生产的I号、II号两种产品共打包成5个不同的包裹,编号分别为A,B,C,D,E,每个包裹的重量及包裹中I号、II号产品的重量如下:包裹编号I号产品重量/吨II号产品重量/吨包裹的重量/吨A516B325C235D437E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的I号产品不少于9吨,且不多于11吨,写出一中满足条件的装运方案(写出要装运包裹的编号);(2)如果装运的I号产品不少于9吨,且不多于11吨,同时装运的II号产品最多,写出满足条件的装运方案(写出要装运包裹的编号).三、计算题(本大题共2小题,共12.0分)17. 计算:(π−1)0+4sin45∘−√8+|−3|.18. 解不等式组:{2+x>7−4x, x<4+x2.四、解答题(本大题共10小题,共80.0分。
北京中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 1B. x = 2C. x = 3D. x = 4答案:C2. 一个圆的直径是10厘米,那么它的半径是多少?A. 5厘米B. 10厘米C. 15厘米D. 20厘米答案:A3. 计算下列算式的结果:(2x - 3)(x + 4) = ?A. 2x^2 + 5x - 12B. 2x^2 - 5x - 12C. 2x^2 + 5x + 12D. 2x^2 - 5x + 12答案:A4. 如果一个角的补角是它的两倍,那么这个角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:B5. 一个数的平方是25,那么这个数是多少?A. 5B. -5C. 5或-5D. 0答案:C6. 计算下列算式的结果:(3x^2 - 2x + 1) + (2x^2 - 5x + 3) = ?A. 5x^2 - 7x + 4B. 5x^2 - 3x + 4C. 5x^2 - 7x + 2D. 5x^2 - 3x + 2答案:A7. 一个三角形的三个内角分别是α、β和γ,已知α + β = 120°,那么γ的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:D8. 计算下列算式的结果:(3x - 2)^2 = ?A. 9x^2 - 12x + 4B. 9x^2 + 12x + 4C. 9x^2 - 12x - 4D. 9x^2 + 12x - 4答案:A9. 一个数的立方是-8,那么这个数是多少?A. -2B. 2C. -2或2D. 0答案:A10. 一个等腰三角形的底角是45°,那么顶角的度数是多少?A. 45°B. 60°C. 75°D. 90°答案:D二、填空题(每题4分,共20分)1. 一个数的绝对值是5,那么这个数可以是______。
北京市中考数学试卷及答案(完整版)(文档可以直接使用,也可根据实际需要修改使用,可编辑欢迎下载)2021年北京市高级中等学校招生考试数学试卷 解析满分120分,考试时间120分钟一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个..是符合题意的。
1. 在《关于促进城市南部地区加快发展第二阶段行动计划(2021-2021)》中,北京市提出了总计约3 960亿元的投资计划。
将3 960用科学计数法表示应为 A. 39.6×102 B. 3.96×103 C. 3.96×104 D. 3.96×104 答案:B解析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3 960=3.96×103 2. 43-的倒数是 A. 34 B. 43 C. 43- D. 34-答案:D解析:(0)a a ≠的倒数为1a ,所以,43-的倒数是34- 3. 在一个不透明的口袋中装有5个完全相同的小球,把它们分别标号为1,2,3,4,5,从中随机摸出一个小球,其标号大于2的概率为 A.51 B. 52 C. 53 D. 54答案:C解析:大于2的有3、4、5,共3个,故所求概率为534. 如图,直线a ,b 被直线c 所截,a ∥b ,∠1=∠2,若∠3=40°,则∠4等于A. 40°B. 50°C. 70°D. 80° 答案:C解析:∠1=∠2=12(180°-40°)=70°,由两直线平行,内错相等,得 ∠4=70°。
5. 如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上。
若测得BE=20m,EC=10m,CD=20m,则河的宽度AB等于A. 60mB. 40mC. 30mD. 20m答案:B解析:由△EAB∽△EDC,得:CE CDBE AB=,即102020AB=,解得:AB=406. 下列图形中,是中心对称图形但不是轴对称图形的是答案:A解析:B既是轴对称图形,又是中心对称图形;C只是轴对称图形;D既不是轴对称图形也不是中心对称图形,只有A符合。
2024年北京市海淀区清华附中中考数学统练试卷一、选择题(共8小题)1.如图是某几何体的三视图,该几何体是()A.圆柱B.球C.三棱柱D.长方体2.故宫又称紫禁城,位于北京中轴线的中心,占地面积高达720000平方米,在世界宫殿建筑群中面积最大.请将720000用科学记数法表示应为()A.0.72×105B.7.2×105C.7.2×104D.72×1033.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a>﹣2B.|a|>b C.a+b>0D.b﹣a<04.将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF 等于()A.75°B.90°C.105°D.115°5.如果x2+2x﹣2=0,那么代数式x(x+2)+(x+1)2的值是()A.﹣5B.5C.3D.﹣36.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.a<﹣2B.b<1C.a>b D.﹣a>b7.如图,平行四边形ABCD中,E为DC的中点,AC与BE交于点F.则△EFC与△BF A 的面积比为()A.1:B.1:2C.1:4D.1:88.某函数的图象如图所示,当0≤x≤a时,在该函数图象上可找到n个不同的点(x1,y1),(x2,y2),…,(x n,y n),使得,则n的取值不可能为()A.3B.4C.5D.6二、填空题9.若代数式有意义,则实数x的取值范围是.10.分解因式:4a2﹣28ab=.11.把“不相等的角不是对顶角”改写成“如果…,那么…”的形式是.12.数据组:28,37,32,37,35的中位数是.13.如图,正六边形ABCDEF的边长为2,以顶点A为圆心,AB的长为半径画圆,则图中阴影部分的面积为.14.如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C,若△OBC的面积为6,则k=.15.小林、小芳和小亮三人玩飞镖游戏,各投5支飞镖,规定在同一圆环内得分相同,中靶和得分情况如图,则小亮的得分是.16.小夏同学从家到学校有A ,B 两条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时频数公交车线25≤t ≤3030<t ≤3535<t ≤4040<t ≤45合计A 59151166124500B4357149251500据此估计,早高峰期间,乘坐B 线路“用时不超过35分钟”的概率为;若要在40分钟之内到达学校,应尽量选择乘坐(填A或B )线路.三、解答题:(共68分)17.计算:.18.解不等式组:.19.下面是晓彤在证明“平行四边形的对角相等”这个性质定理时使用的三种添加辅助线的方法,请你选择其中一种,完成证明.平行四边形性质定理:平行四边形的对角相等.已知:如图,▱ABCD .求证:∠BAD =∠BCD ,∠ABC =∠ADC .方法一:证明:如图,连接AC .方法二:证明:如图,延长BC 至点E .方法三:证明:如图,连接AC 、BD ,AC 与BD 交于点O .20.关于x 的方程x 2﹣2x +2m ﹣1=0有实数根,且m 为正整数,求m 的值及此时方程的根.21.如图,在菱形ABCD中,O为AC,BD的交点,P,M,N分别为CD,OD,OC的中点.(1)求证:四边形OMPN是矩形;(2)连接AP,若AB=4,∠BAD=60°,求AP的长.22.已知一次函数y=kx+b的图象经过(1,2),(3,﹣4)两点且与y轴交于A点.(1)求函数解析式及点A的坐标;(2)当x<1时,对于x的每一个值,函数y=mx的值都小于函数y=kx+b的值,求m 的取值范围.23.某水果店销售某种水果,由历年市场行情可知,从第1月至第12月,这种水果每千克售价y1(元)与销售时间第x月之间存在如图1(一条线段)所示的变化趋势,每千克成本y2(元)与销售时间第x月之间存在如图2(一段抛物线)所示的变化趋势.(1)分别求函数y1和y2的表达式;(2)销售这种水果,第几月每千克所获得利润最大?最大利润是多少?24.抛物线y=ax2+bx+3经过点A、B、C,已知A(﹣1,0),B(3,0).(1)求抛物线的解析式;(2)如图1,P为线段BC上一点,过点P作y轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;(3)如图2,在(2)的条件下,延长DP交x轴于点F,M(m,0)是x轴上一动点,N是线段DF上一点,当△BDC的面积最大时,若∠MNC=90°,请直接写出实数m的取值范围.25.如图,AB是⊙O的直径,弦CD⊥AB于点E,过点D作DH⊥CB交CB的延长线于点H,点F是DH延长线上一点,CF=CD.(1)求证:CF是⊙O的切线;(2)若,求⊙O半径的长.26.在平面直角坐标系xOy中,抛物线y=ax2﹣2x+c(a≠0)与y轴交于点A,将点A向右平移4个单位长度,得到点B.(1)若c=4,点C(﹣2,4)在抛物线上,求抛物线的解析式及对称轴;(2)若抛物线与线段AB恰有一个公共点,结合函数图象,求a的取值范围.27.如图,在平面直角坐标系中,点A在x轴的正半轴上,点B的坐标(0,﹣2),过原点的直线OC与直线AB交于C,∠COA=∠OCA=∠OBA=30°,AB=4.(1)点C坐标为,OC=,△BOC的面积为,=;(2)点C关于x轴的对称点C′的坐标为;(3)过O点作OE⊥OC交AB于E点,则△OAE的形状为,请说明理由;(4)在坐标平面内是否存在点F使△AOF和△AOB全等,若存在,请直接写出F坐标;若不存在,请说明理由.28.已知:四边形ABCD为⊙O的内接四边形,BD、AC相交于点E,AB=AC.(1)如图1,求证:2∠ADB+∠CDB=180°;(2)如图2,过点C作CF⊥AB于点F,交BD于点G,当∠DBC=45°时,求证:CE =CG;(3)如图3,在(2)的条件下,连接AO并延长交BD于点H,当AE=CE=3时,求CD的长.2024年北京市海淀区清华附中中考数学统练试卷参考答案与试题解析(3月份)一、选择题(共8小题)1.【分析】根据一个空间几何体的主视图和左视图都是宽度相等的长方形,可判断该几何体是柱体,进而根据俯视图的形状,可判断柱体侧面形状,得到答案.【解答】解:由几何体的主视图和左视图都是宽度相等的长方形,故该几何体是一个柱体,又∵俯视图是一个圆,故该几何体是一个圆柱.故选:A.【点评】本题考查的知识点是三视图,如果有两个视图为三角形,该几何体一定是锥,如果有两个矩形,该几何体一定柱,其底面由第三个视图的形状决定.2.【分析】把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法,由此即可得到答案.【解答】解:将720000用科学记数法表示应为7.2×105.故选:B.【点评】本题考查科学记数法,关键是掌握用科学记数法表示较大数的方法.3.【分析】根据数轴确定a,b的大小与符号,然后根据实数的运算法则计算即可.【解答】解:由数轴可知,a<﹣2,故A结论错误,不符合题意;a<﹣2,0<b<1,|a|>b,故B结论正确,符合题意;a<0,b>0,|a|>|b|,a+b<0,故C结论错误,不符合题意;a<0,b>0,b﹣a=b+(﹣a)>0,故D结论错误,不符合题意.故选:B.【点评】本题考查的是实数与数轴,解题的关键是关键数轴确定a,b的符号与绝对值的大小.4.【分析】依据AB∥EF,即可得∠FCA=∠A=30°,由∠F=∠E=45°,利用三角形外角性质,即可得到∠AOF=∠FCA+∠F=30°+45°=75°.【解答】解:∵BA∥EF,∠A=30°,∴∠FCA=∠A=30°.∵∠F=∠E=45°,∴∠AOF=∠FCA+∠F=30°+45°=75°.故选:A.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.【分析】根据单项式乘多项式的运算法则、完全平方公式、合并同类项法则把原式化简,整体代入计算,得到答案.【解答】解:x(x+2)+(x+1)2=x2+2x+x2+2x+1=2x2+4x+1,∵x2+2x﹣2=0,∴x2+2x=2,则原式=2(x2+2x)+1=2×2+1=5,故选:B.【点评】本题考查的是整式的化简求值,掌握完全平方公式、单项式乘多项式的运算法则是解题的关键.6.【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【解答】解:根据图形可以得到:﹣2<a<0<1<b<2;所以:A、B、C都是错误的;故选:D.【点评】本题考查了数轴与实数的关系,理解并正确运用是解题的关键.7.【分析】利用平行四边形的性质得出AB∥DC,AB=DC,再利用相似三角形的判定与性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴△CEF∽△ABF,∴=,∵E为DC的中点,∴==,∴=.故选:C.【点评】此题主要考查了相似三角形的判定与性质以及平行四边形的性质,得出△CEF ∽△ABF是解题关键.8.【分析】设=k,则在该函数图象上n个不同的点(x1,y1),(x2,y2),…,(x n,y n)也都在函数y=kx的图象上,根据正比例函数y=kx的图象与如图所示的图象的交点的个数即可得出答案.【解答】解:设=k,则在该函数图象上n个不同的点(x1,y1),(x2,y2),…,(x n,y n)也都在函数y=kx 的图象上,即:正比例函数y=kx的图象与如图所示的图象的交点,由图象可知,正比例函数y=kx的图象与如图所示的图象的交点可能有1个或2个或3个或4个或5个.故选:D.【点评】本题主要考查了函数图象,数形结合是解题的关键.二、填空题9.【分析】根据分式有意义,分母不等于0列式计算即可得解.【解答】解:由题意得,x+1≠0,解得x≠﹣1.故答案为:x≠﹣1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10.【分析】原式提取公因式即可.【解答】解:原式=4a(a﹣7b).故答案为:4a(a﹣7b).【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.11.【分析】分析命题的题设和结论,写成“如果…那…”的形式即可.【解答】解:命题“不相等的角不是对顶角”的题设是两个角不相等,结论为这两个角不是对顶角.改写成“如果…那…”的形式为:如果两个角不相等,那么这两个角不是对顶角.故答案为:如果两个角不相等,那么这两个角不是对顶角.【点评】本题考查了命题即相关知识,掌握命题的形式是解决本题的关键.12.【分析】先把这组数据从小到大排列,再找出最中间的数即可得出答案.【解答】解:把这组数据从小到大排列为:28,32,35,37,37,最中间的数是35,则中位数是35.故答案为:35.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.13.【分析】利用扇形的面积公式求解即可.【解答】解:由题意,∠FAB=120°,AF=AB=2,==,∴S阴故答案为:.【点评】本题考查正多边形与圆,扇形的面积等知识,解题的关键是记住扇形的面积S =.14.【分析】过D点作x轴的垂线交x轴于E点,可得到四边形DBAE,和三角形OBC的面积相等,通过面积转化,可求出k的值.【解答】解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OAC的面积相等.∴△OBC的面积和四边形DEAB的面积相等且为6.设D点的横坐标为x,纵坐标就为,∵D为OB的中点.∴EA=x,AB=,∴四边形DEAB的面积可表示为:(+)x=6k=4.故答案为:4.【点评】本题考查反比例函数的综合运用,关键是知道反比例函数图象上的点和坐标轴构成的三角形面积的特点以及根据面积转化求出k的值.15.【分析】设掷中外环区、内区一次的得分分别为x,y分,根据等量关系列出方程组,再解方程组即可.【解答】解:设掷中外环区、内区一次的得分分别为x,y分,依题意得:,解这个方程组得:,则小亮的得分是2x+3y=6+15=2(1分).故答案为21;【点评】此题主要考查了二元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,列出方程组.16.【分析】用乘坐B线路“用时不超过35分钟”的班次数量除以总数量即可得出答案;先结合表中数据得出两线路40分钟之内到达学校的概率,从而得出答案.【解答】解:由表知,早高峰期间,乘坐B线路“用时不超过35分钟”的概率为=,∵A线路40分钟之内到达学校的概率为=0.752,B线路40分钟之内到达学校的概率为=0.498,∴若要在40分钟之内到达学校,应尽量选择乘坐A线路,故答案为:,A.【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.三、解答题:(共68分)17.【分析】原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用绝对值的代数意义化简,第四项利用负整数指数幂法则计算.【解答】解:原式=,=,=9.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.【分析】先分别求出两个不等式的解集,再找出它们的公共部分.【解答】解:解不等式4(x+1)≤7x+10,得:x≥﹣2,解不等式,得:x<5,则不等式组的解集为:﹣2≤x<5.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.【分析】根据平行四边形的性质和全等三角形的判定和性质解答即可.【解答】证明:选择方法一:如图,连接AC,∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,AB∥CD,∴∠DAC=∠BCA,∠BAC=∠DCA,∴∠BAC=∠DAC,在△ADC与△BCA中,,∴△ADC≌△BCA(SAS),∴∠B=∠D,即平行四边形的对角相等.【点评】此题考查平行四边形的性质,关键是根据平行四边形的对边相等且平行.20.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴原方程可化为x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.【点评】此题主要考查了根的判别式,正确得出m的值是解题关键.21.【分析】(1)由三角形中位线定理得PM∥OC,PN∥OD,得四边形OMPN是平行四边形,再由菱形的性质得AC⊥BD,则∠MON=90°,即可得出结论;(2)证△ABD是等边三角形,得AD=BD=AB=4,得OD=2,再由勾股定理得OA=2,则AN=OA+ON=3,然后由矩形的性质得NP=OM=1,∠PNA=90°,即可解决问题.【解答】(1)证明:∵P,M,N分别为CD,OD,OC的中点,∴PM、PN是△OCD的中位线,∴PM∥OC,PN∥OD,∴四边形OMPN是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠MON=90°,∴平行四边形OMPN是矩形;(2)解:如图,∵四边形ABCD是菱形,∴AB=AD,OA=OC,OB=OD,AC⊥BD,∵∠BAD=60°,∴△ABD是等边三角形,∴AD=BD=AB=4,∴OD=BD=2,在Rt△OAD中,由勾股定理得:OA===2,∴OC=2,∵M,N分别为OD,OC的中点,∴OM=OD=1,ON=OC=,∴AN=OA+ON=3,由(1)可知,四边形OMPN是矩形,∴NP=OM=1,∠PNA=90°,∴AP===2.【点评】本题考查了矩形的判定与性质、菱形的性质、平行四边形的判定与性质、等边三角形的判定与性质、勾股定理等知识.熟练掌握矩形的判定与性质是解题的关键.22.【分析】(1)把2个已知点的坐标分别代入y=kx+b中得到关于k、b的方程组,再解方程组求出k、b,从而得到以此函数解析式,然后计算自变量为0对应的函数值得到点A 的坐标;(2)根据题意,当m≥0,x=1时,函数y=mx的函数值比y=﹣3x+5的函数值小,所以m≤﹣3+5;当m<0时,函数y=mx的图象与函数y=kx+b的图象的交点只能在第四象限或平行,所以﹣3≤m<0.【解答】解:(1)把(1,2),(3,﹣4)分别代入y=kx+b得,解得,∴一次函数解析式为y=﹣3x+5,当x=0时,y=﹣3x+5=5,∴A点坐标为(0,5);(2)∵x<1时,对于x的每一个值,函数y=mx的值都小于函数y=﹣3x+5的值,当m≥0时,x=1时,m≤﹣3+5,即m≤2,当m<0时,函数y=mx的图象与函数y=kx+b的图象的交点只能在第四象限或平行,则﹣3≤m<0,∴m的取值范围为﹣3≤m≤2.【点评】本题考查了待定系数法求一次函数解析式:求一次函数y=kx+b,则需要两组x,y的值.也考查了一次函数图象与系数的关系.23.【分析】(1)设y1=kx+b(k≠0),y2=a(x﹣5)2+8,用待定系数法求解即可;(2)设第x月每千克所获得的利润为w(元),由题意得w关于x的二次函数,根据二次函数的性质可得答案.【解答】解:(1)由题意设y1=kx+b(k≠0),y2=a(x﹣5)2+8,将(6,10),(9,9)代入y1=kx+b,得:,解得,∴y1=﹣x+12;将(11,14)代入y2=a(x﹣5)2+8,得:14=a(11﹣5)2+8,解得a=,∴y2=(x﹣5)2+8,函数y1和y2的表达式分别为y1=﹣x+12,y2=(x﹣5)2+8;(2)设第x月每千克所获得的利润为w(元),由题意得:w=﹣x+12﹣[(x﹣5)2+8]=﹣(x﹣4)2+2.5,=2.5.∴当x=4时,w有最大值,w最大∴销售这种水果,第4个月每千克所获得利润最大,最大利润是2.5元.【点评】本题考查了一次函数和二次函数在销售问题中的应用,数形结合、理清题中的数量关系、熟练掌握待定系数法和二次函数的性质是解题的关键.24.【分析】(1)由y=ax2+bx+3经过点A(﹣1,0),B(3,0),利用待定系数法即可求得此抛物线的解析式;(2)首先令x=0,求得点C的坐标,然后设直线BC的解析式为y=kx+b′,由待定系数法求得直线BC的解析式为y=﹣x+3,再设P(a,3﹣a),即可得D(a,﹣a2+2a+3),=S△PDC+S△PDB,得到S△BDC=﹣(a﹣)2+,利用二次求出PD的长,由S△BDC函数的性质,即可求得当△BDC的面积最大时,点P的坐标;(3)将x=代入抛物线解析式y=﹣x2+2x+3求出点P的纵坐标,过点C作CG⊥DF,然后分①点N在DG上时,点N与点D重合时,点M的横坐标最大,然后根据勾股定理得出CD2+DM2=CM2,列出关于m的方程,解方程求出m的最大值;②点N在线段GF上时,设GN=x,然后表示出NF,根据同角的余角相等求出∠NCG=∠MNF,然后证明△NCG和△MNF相似,根据相似三角形对应边成比例列出比例式用x表示出MF,再根据二次函数的最值问题求出y的最大值,然后求出MO,从而得到点M的坐标,求出m的最小值.【解答】解:(1)由题意得:,解得:,故抛物线解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,即C(0,3).设直线BC的解析式为y=kx+b′,则,解得:,故直线BC的解析式为y=﹣x+3.设P(a,3﹣a),则D(a,﹣a2+2a+3),∴PD=(﹣a2+2a+3)﹣(3﹣a)=﹣a2+3a,=S△PDC+S△PDB=PD•a+PD•(3﹣a)=PD•3=(﹣a2+3a)=﹣(a ∴S△BDC﹣)2+,∴当a=时,△BDC的面积最大,此时P(,);(3)将x=代入y=﹣x2+2x+3,得y=﹣()2+2×+3=,∴点D的坐标为(,).过点C作CG⊥DF,则CG=.①点N在DG上时,点N与点D重合时,点M的横坐标最大.∵∠MNC=90°,∴CD2+DM2=CM2,∵C(0,3),D(,),M(m,0),∴(﹣0)2+(﹣3)2+(m﹣)2+(0﹣)2=(m﹣0)2+(0﹣3)2,解得m=.∴点M的坐标为(,0),即m的最大值为;②点N在线段GF上时,设GN=x,则NF=3﹣x,∵∠MNC=90°,∴∠CNG+∠MNF=90°,又∵∠CNG+∠NCG=90°,∴∠NCG=∠MNF,又∵∠NGC=∠MFN=90°,∴Rt△NCG∽△MNF,∴=,即=,整理得,MF=﹣x2+2x=﹣(x﹣)2+,∴当x=时(N与P重合),MF有最大值,此时M与O重合,∴M的坐标为(0,0),∴m的最小值为0,故实数m的变化范围为0≤m≤.【点评】此题考查了待定系数法求函数的解析式、三角形的面积、相似三角形的判定与性质、二次函数的最值、勾股定理等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.25.【分析】(1)连接OC,则∠OCB=∠OBC,由CD⊥AB于点E,得∠BEC=90°,由CH⊥DF,CF=CD,得∠FCH=∠DCH,则∠OCF=∠FCH+∠OCB=∠DCH+∠OBC =90°,即可证明CF是⊙O的切线;(2)由垂径定理得CE=DE,而CD=CF=8,所以CE=CD=4,由=tan∠DCB=,则BE=CE=2,根据勾股定理得(OC﹣2)2+42=OC2,即可求得OC=5,则⊙O半径的长是5.【解答】(1)证明:连接OC,则OB=OC,∴∠OCB=∠OBC,∵CD⊥AB于点E,∴∠BEC=90°,∵DH⊥CB交CB的延长线于点H,点F是DH延长线上一点,∴CH⊥DF,∵CF=CD,∴∠FCH=∠DCH,∴∠OCF=∠FCH+∠OCB=∠DCH+∠OBC=90°,∵OC是⊙O的半径,且CF⊥OC,∴CF是⊙O的切线.(2)解:∵AB⊥CD,∴∠OEC=∠BEC=90°,CE=DE,∵CD=CF=8,∴CE=CD=×8=4,∵=tan∠DCB=,∴BE=CE=×4=2,∵OE2+CE2=OC2,OE=OB﹣2=OC﹣2,∴(OC﹣2)2+42=OC2,解得OC=5,∴⊙O半径的长是5.【点评】此题重点考查切线的性质、垂径定理、圆周角定理、等腰三角形的“三线合一”、勾股定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.26.【分析】(1)利用待定系数法求得抛物线的解析式后,利用对称轴公式即可求得抛物线的对称轴;(2)分a>0、a<0两种情况,结合函数图象,分别求解即可.【解答】解:(1)若c=4,则抛物线为y=ax2﹣2x+4(a≠0),∵点C(﹣2,4)在抛物线上,∴4=4a+4+4,∴a=﹣1,∴抛物线为y=﹣x2﹣2x+4,∴抛物线的对称轴为直线x=﹣=﹣1;(2)当a>0时,如图1.∴抛物线的对称轴为直线x=﹣=>0,∵将点A向右平移4个单位长度,得到点B,抛物线与线段AB恰有一个公共点,∴>2,∴0<a<;(ⅱ)当a<0时,如图2.∴抛物线的对称轴为直线x=﹣=<0,∴抛物线与线段AB只有一个公共点A,∴a<0,综上所述,a的取值范围是:0<a<或a<0.【点评】本题考查的是二次函数图象与系数的关系,待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,分类讨论、数形结合是解题的关键.27.【分析】(1)先由∠OBA=30°、AB=4得到OA的长,即可得到点A的坐标,过点C 作CD⊥x轴于点D,然后结合∠COA=∠OCA=30°求得AC的长,进而得到AD、CD 的长,即可得到点C的坐标;然后得到OC的长;由点B的坐标得到OB的长,进而得到△BOC的面积;由点A、点B、点C的坐标求得△OAC和△OAB的面积,再求得的值;(2)直接由点C的坐标求得点C'的坐标;(3)由OE⊥OC得到∠COE=90°,然后由∠COA=30°求得∠AOE=60°,再由∠OBA=30°求得∠OAE=60°,即可得到∠AOE=∠OAB=60°,从而得到△OAE是等边三角形;(4)分情况讨论:①△AOB≌△AOF;②△AOB≌OAF,然后作出对应的图形求得点F 的坐标.【解答】解:(1)∵点B(0,﹣2),∴OB=2,∵AB=4,∠OBA=30°,∠AOB=90°,∴OA=2,即A(2,0),∵∠AOC=∠ACO=30°,∴AC=OA=2,∠OAB=60°,过点C作CD⊥x轴于点D,则∠CAD=60°,∠ADC=90°,∴∠ACD=30°,∴AD=1,CD=,∴OD=OA+AD=2+1=3,∴C(3,),===3,∴OC=2,S△BOC==,S△OAB==2,∴S△AOC∴=,故答案为:(3,),2,3,.(2)∵C(3,),点C与点C'关于x轴对称,∴C'(3,﹣),故答案为:(3,﹣);(3)∵OE⊥OC,∴∠COE=90°,∵∠COA=30°,∴∠AOE=60°,∵∠OAE=60°,∴∠AOE=∠OAB=60°,∴△OAE是等边三角形,故答案为:等边三角形;(4)在坐标平面内存在点F使△AOF和△AOB全等;理由如下:①如图1,当△AOB≌△AOF时,OB=OF,∵OB=2,∴OF=2,∴F1(0,2),F2(0,﹣2),②如图2,当△AOB≌OAF时,AF=OB,∴AF=2,∴F3(2,2),F4(2,﹣2),综上所述,存在F1(0,2),F2(0,﹣2),F3(2,2),F4(2,﹣2),使得△OAB与△OAF全等.【点评】本题考查了含30°角的直角三角形三边关系、等腰三角形、等边三角形的判定、全等三角形的判定与性质,解题的关键是通过含30°角的直角三角形三边关系求得相关线段的长度.28.【分析】(1)根据圆周角定理,将2∠ADB+∠CDB转化为△ABC的内角和即可;(2)过点C作CN⊥DB交BD于点N,交⊙O于点M,利用ASA证明△CEN≌△CGN,从而证明结论;(3)连接AP,OE,CH,延长AO交BC于Q,过O作OM⊥AB于M,先证AQ⊥BC,再证EH=GH,在DE上取EP=EH,则四边形APCH为▱APCH,求得PE=HE=,由△CDE∽△BAE,即可求得CD的值.【解答】(1)证明:∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD为⊙O的内接四边形,∴∠ADC+∠ABC=180°,∵∠ADB=∠ACB,∴∠ADB=∠ABC,∵∠ADC=∠CDB+∠ADB,∴∠ADC+∠ABC=∠CDB+∠ADB+∠ADB=∠CDB+2∠ADB=180°,∴2∠ADB+∠CDB=180°;(2)证明:过点C作CN⊥DB交BD于点N,交⊙O于点M,如图1,∵∠DBC=45°,∴∠MCB=180°﹣∠CNB﹣∠DBC=45°,∴∠MCB=∠DBC=45°,∴,∵AB=AC,∴,∴,∴∠ACM=∠DBA,∵∠CNG=∠GFB,∠NGC=∠FGB,∴∠NCG=180°﹣∠CNG﹣∠NGC=180°﹣∠GFB﹣∠FGB=∠GBF=∠ECN,在△CEN与△CGN中,,∴△CEN≌△CGN(ASA),∴CE=CG;(3)解:如图2,在DE上取EP=EH,连接AP,OE,CH,延长AO交BC于Q,过O 作OM⊥AB于M,∵E为AC的中点,∴OE⊥AC,∵AB=AC,∴OE=OM,∴AQ平分∠CAB,∴AQ⊥BC,∵CQ=BQ,点H在AQ上,∴CH=BH,∵∠DBC=45°,∴∠HCB=∠DBC=45°,∴∠CHB=180°﹣∠HCB﹣∠DBC=90°,∴CH⊥BD,∵CE=CG,∴EH=GH,∵在DE上取EP=EH,则四边形APCH为▱APCH,∴AP∥CH,AP=CH,∠APH=90°,∵∠AHP=∠BHQ=45°,设PE=x,∴AP=PH=2PE=2x,AH=PH=2x,∵AH2﹣PH2=AE2﹣PE2,∴8x2﹣4x2=32﹣x2,3解得:x=,∴PE=HE=,∴AP=PH=CH=BH=,BE=,∴AH=PH=,∴HQ=BH=,在Rt△ABQ中,BQ=HQ=,AQ=+=,∴AB==6,∵弦AC与BD相交于E,∴△CDE∽△BAE,∴=,∴CD===2;方法二:作DL⊥AC,如图4,∵∠DLA=90°,∠DBC=45°,∴△DLA是等膘直角三角形,∴DL=AL,∵CF⊥AB,∠DBA+∠FGB=90°,CE=CG,∴∠FGB=∠CGE=∠CEG=∠DEL,∴∠DBA=∠ACE=∠EDL,∵△DLE∽△DCL,设DL为x,则CL=6﹣x,∴=,解得:x=2,∴CL=4,∴CD==2.【点评】本题考查圆的综合应用,掌握圆的相关性质,全等三角形的判定与性质,平行四边形的判定与性质,等腰直角三角形判定与性质,相似三角形的判定与性质,勾股定理等知识,作辅助线构造全等三角形是解题的关键。
2024年北京市中考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了中心对称图形与轴对称图形,根据轴对称图形和中心对称图形的定义进行逐一判断即可,如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;把一个图形绕着某一个点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.掌握中心对称图形与轴对称图形的判断是解题的关键.【详解】解:A 、是中心对称图形,但不是轴对称图形,故不符合题意;B 、既是轴对称图形,也是中心对称图形,故符合题意;C 、不是轴对称图形,也不是中心对称图形,故不符合题意;D 、是轴对称图形,但不是中心对称图形,故不符合题意;故选:B .2.如图,直线AB 和CD 相交于点O ,OE OC ⊥,若58AOC ∠=︒,则EOB ∠的大小为( )A .29︒B .32︒C .45︒D .58︒【答案】B【分析】本题考查了垂直的定义,平角的定义,熟练掌握知识点,是解题的关键.根据OE OC ⊥得到90COE ∠=︒,再由平角180AOB ∠=︒即可求解.【详解】解:∵OE OC ⊥,∴90COE ∠=︒,∵180AOC COE BOE ∠+∠+∠=︒,58AOC ∠=︒,∴180905832EOB ∠=︒-︒-=︒,故选:B .3.实数a ,b 在数轴上的对应点的位置如图所示,下列结论中正确的是( )A .1b >-B .2b >C .0a b +>D .0ab >4.若关于x 的一元二次方程240x x c -+=有两个相等的实数根,则实数c 的值为( )A .16-B .4-C .4D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =-=--⨯⨯=即可.本题考查了根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c -+=,1,4,a b c c ==-=,∴()22Δ44410b ac c =-=--⨯⨯=,∴416c =,解得4c =.故选C .5.不透明的袋子中装有一个红色小球和一个白色小球,除颜色外两个小球无其他差别.从中随机取出一个小球后,放回并摇匀,再从中随机取出一个小球,则两次都取到白色小球的概率为( )A .34B .12C .13D .14共有4种等可能的结果,其中两次都取到白色小球的结果有∴两次都取到白色小球的概率为故选:D .6.为助力数字经济发展,北京积极推进多个公共算力中心的建设.北京数字经济算力中心日前已部署上架和调试的设备的算力为17410⨯Flops (Flops 是计算机系统算力的一种度量单位),整体投产后,累计实现的算力将是日前已部署上架和调试的设备的算力的5倍,达到m Flops ,则m 的值为( )A .16810⨯B .17210⨯C .17510⨯D .18210⨯【答案】D【分析】用移动小数点的方法确定a 值,根据整数位数减一原则确定n 值,最后写成10n a ⨯的形式即可.本题考查了科学记数法表示大数,熟练掌握把小数点点在左边第一个非零数字的后面确定a ,运用整数位数减去1确定n 值是解题的关键.【详解】17184105210m =⨯⨯=⨯,故选D .7.下面是“作一个角使其等于AOB ∠”的尺规作图方法.(1)如图,以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;(2)作射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';以点C '为圆心,CD长为半径画弧,两弧交于点D ¢;(3)过点D ¢作射线O B '',则A O B AOB '''∠=∠.上述方法通过判定C O D COD '''△≌△得到A O B AOB '''∠=∠,其中判定C O D COD '''△≌△的依据是( )A .三边分别相等的两个三角形全等B .两边及其夹角分别相等的两个三角形全等C .两角及其夹边分别相等的两个三角形全等D .两角分别相等且其中一组等角的对边相等的两个三角形全等【答案】A【分析】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,解答即可.本题考查了作一个角等于已知角的基本作图,熟练掌握作图的依据是边边边原理是解题的关键.【详解】根据基本作图中,同圆半径相等,判定三角形全等的依据是边边边原理,故选A.8.如图,在菱形ABCD 中,60BAD ∠=︒,O 为对角线的交点.将菱形ABCD 绕点O 逆时针旋转90︒得到菱形A B C D '''',两个菱形的公共点为E ,F ,G ,H .对八边形BFB GDHD E ''给出下面四个结论:①该八边形各边长都相等;②该八边形各内角都相等;③点O 到该八边形各顶点的距离都相等;④点O 到该八边形各边所在直线的距离都相等。
2022年北京市中考试卷一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面几何体中,是圆锥的为()A.B.C.D.2.将262883000000用科学记数法表示应为()A.1026.288310⨯B.112.6288310⨯C.122.6288310⨯D.120.26288310⨯3.如图,利用工具测量角,则1∠的大小为()A.30︒B.60︒C.120︒D.150︒4.实数a,b在数轴上的对应点的位置如图所示,下列结论中正确的是()A.2a<-B.1b<C.a b>D.a b->5.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别.从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.346.若关于x的一元二次方程20x x m++=有两个相等的实数根,则实数m的值为()A.4-B.14-C.14D.47.图中的图形为轴对称图形,该图形的对称轴的条数为()A .1B .2C .3D .58.下面的三个问题中都有两个变量:①汽车从A 地匀速行驶到B 地,汽车的剩余路程y 与行驶时间x ; ②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y 与放水时间x ; ③用长度一定的绳子围成一个矩形,矩形的面积y 与一边长x .其中,变量y 与变量x 之间的函数关系可以用如图所示的图象表示的是( )A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)98x -x 的取值范围是 . 10.分解因式:2xy x -= . 11.方程215x x=+的解为 . 12.在平面直角坐标系xOy 中,若点1(2,)A y ,2(5,)B y 在反比例函数(0)ky k x=>的图象上,则1y 2y (填“>”“ =”或“<” ).13.某商场准备进400双滑冰鞋,了解了某段时间内销售的40双滑冰鞋的鞋号,数据如下:鞋号 35 36 37 38 39 40 41 42 43 销售量/双2455126321根据以上数据,估计该商场进鞋号需求最多的滑冰鞋的数量为 双.14.如图,在ABC ∆中,AD 平分BAC ∠,DE AB ⊥.若2AC =,1DE =,则ACD S ∆= .15.如图,在矩形ABCD 中,若3AB =,5AC =,14AF FC =,则AE 的长为 .16.甲工厂将生产的Ⅰ号、Ⅱ号两种产品共打包成5个不同的包裹,编号分别为A ,B ,C ,D ,E ,每个包裹的重量及包裹中Ⅰ号、Ⅱ号产品的重量如下: 包裹编号 Ⅰ号产品重量/吨 Ⅱ号产品重量/吨 包裹的重量/吨A 5 1 6 B3 2 5 C2 3 5 D 4 3 7 E358甲工厂准备用一辆载重不超过19.5吨的货车将部分包裹一次运送到乙工厂.(1)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,写出一种满足条件的装运方案 (写出要装运包裹的编号);(2)如果装运的Ⅰ号产品不少于9吨,且不多于11吨,同时装运的Ⅱ号产品最多,写出满足条件的装运方案 (写出要装运包裹的编号).三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分) 17.计算:0(1)4sin 458|3|π-+︒--. 18.解不等式组:274,42x x xx +>-⎧⎪⎨+<⋅⎪⎩.19.已知2220x x +-=,求代数式2(2)(1)x x x +++的值.20.下面是证明三角形内角和定理的两种添加辅助线的方法,选择其中一种,完成证明. 三角形内角和定理:三角形三个内角的和等于180︒. 已知:如图,ABC ∆,求证:180A B C ∠+∠+∠=︒. 方法一证明:如图,过点A 作//DE BC .方法二证明:如图,过点C 作//CD AB .21.如图,在ABCD 中,AC ,BD 交于点O ,点E ,F 在AC 上,AE CF =. (1)求证:四边形EBFD 是平行四边形;(2)若BAC DAC ∠=∠,求证:四边形EBFD 是菱形.22.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象过点(4,3),(2,0)-,且与y 轴交于点A . (1)求该函数的解析式及点A 的坐标;(2)当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值,直接写出n 的取值范围.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析.下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:在甲、乙两位同学中,评委对的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是(填“甲”“乙”或“丙”).24.如图,AB是O的直径,CD是O的一条弦,AB CD⊥,连接AC,OD.(1)求证:2∠=∠;BOD A(2)连接DB,过点C作CE DB⊥,交DB的延长线于点E,延长DO,交AC于点F.若F为AC的中点,求证:直线CE为O的切线.25.单板滑雪大跳台是北京冬奥会比赛项目之一,举办场地为首钢滑雪大跳台.运动员起跳后的飞行路线可以看作是抛物线的一部分.建立如图所示的平面直角坐标系,从起跳到着陆的过程中,运动员的竖直高度y (单位:)m 与水平距离x (单位:)m 近似满足函数关系2()(0)y a x h k a =-+<.某运动员进行了两次训练.(1)第一次训练时,该运动员的水平距离x 与竖直高度y 的几组数据如下: 水平距离/x m0 2 5 8 11 14竖直高度/y m20.00 21.40 22.75 23.20 22.75 21.40根据上述数据,直接写出该运动员竖直高度的最大值,并求出满足的函数关系2()(0)y a x h k a =-+<; (2)第二次训练时,该运动员的竖直高度y 与水平距离x 近似满足函数关系20.04(9)23.24y x =--+.记该运动员第一次训练的着陆点的水平距离为1d ,第二次训练的着陆点的水平距离为2d ,则1d 2d (填“>”“ =”或“<” ).26.在平面直角坐标系xOy 中,点(1,)m ,(3,)n 在抛物线2(0)y ax bx c a =++>上,设抛物线的对称轴为直线x t =.(1)当2c =,m n =时,求抛物线与y 轴交点的坐标及t 的值;(2)点0(x ,0)(1)m x ≠在抛物线上.若m n c <<,求t 的取值范围及0x 的取值范围.27.在ABC ∆中,90ACB ∠=︒,D 为ABC ∆内一点,连接BD ,DC ,延长DC 到点E ,使得CE DC =. (1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF .若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2.若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.28.在平面直角坐标系xOy 中,已知点(,)M a b ,N .对于点P 给出如下定义:将点P 向右(0)a 或向左(0)a <平移||a 个单位长度,再向上(0)b 或向下(0)b <平移||b 个单位长度,得到点P ',点P '关于点N 的对称点为Q ,称点Q 为点P 的“对应点”. (1)如图,点(1,1)M ,点N 在线段OM 的延长线上.若点(2,0)P -,点Q 为点P 的“对应点”. ①在图中画出点Q ;②连接PQ ,交线段ON 于点T ,求证:12NT OM =;(2)O 的半径为1,M 是O 上一点,点N 在线段OM 上,且1(1)2ON t t =<<,若P 为O 外一点,点Q 为点P 的“对应点”,连接PQ .当点M 在O 上运动时,直接写出PQ 长的最大值与最小值的差(用含t 的式子表示).答案与解析一、选择题(共16分,每题2分)1.解:A是圆柱;B是圆锥;C是三棱锥,也叫四面体;D是球体,简称球;故选:B.2.解:11262883000000 2.6288310=⨯.故选:B.3.解:根据对顶角相等的性质,可得:130∠=︒,故选:A.4.解:根据图形可以得到:2012a b-<<<<<;所以:A、B、C都是错误的;故选:D.5.解:列表如下:所有等可能的情况有4种,其中第一次摸到红球、第二次摸到绿球的有1种情况,所以第一次摸到红球、第二次摸到绿球的概率为14,故选:A.6.解:根据题意得△2140m=-=,解得14m=.故选:C.7.解:如图所示,该图形有5条对称轴,故选:D .8.解:汽车从A 地匀速行驶到B 地,根据汽车的剩余路程y 随行驶时间x 的增加而减小,故①符合题意; 将水箱中的水匀速放出,直至放完,根据水箱中的剩余水量y 随放水时间x 的增大而减小,故②符合题意; 用长度一定的绳子围成一个矩形,周长一定时,矩形面积是长x 的二次函数,故③不符合题意; 所以变量y 与变量x 之间的函数关系可以用如图所示的图象表示的是①②. 故选:A .二、填空题(共16分,每题2分) 9.解:8x -在实数范围内有意义,80x ∴-,解得:8x . 故答案为:8x . 10.解:2xy x -,2(1)x y =-, (1)(1)x y y =-+.故答案为:(1)(1)x y y -+. 11.解:去分母得:25x x =+, 解得:5x =,检验:把5x =代入得:(5)0x x +≠,∴分式方程的解为5x =.故答案为:5x =. 12.解:0k >,∴反比例函数(0)ky k x=>的图象在一、三象限, 520>>,∴点1(2,)A y ,2(5,)B y 在第一象限,y 随x 的增大而减小,12y y ∴>,故答案为:>.13.解:根据统计表可得,39号的鞋卖的最多, 则估计该商场进鞋号需求最多的滑冰鞋的数量为1240012040⨯=(双). 故答案为:120.14.解:过D 点作DH AC ⊥于H ,如图,AD 平分BAC ∠,DE AB ⊥,DH AC ⊥, 1DE DH ∴==,12112ACD S ∆∴=⨯⨯=.故答案为:1.15.解:四边形ABCD 是矩形, 90ABC ∴∠=︒,//AD BC , 3AB =,5AC =,2222534BC AC AB ∴=--=, //AD BC ,EAF BCF ∴∠=∠,AEF CBF ∠=∠, EAF BCF ∴∆∆∽,14AF FC =, ∴14AE AF BC FC ==, ∴144AE =, 1AE ∴=,故答案为:1.16.解:(1)选择ABC 时,装运的I 号产品重量为:53210++=(吨),总重6551619.5++=<(吨),符合要求;选择ABE 时,装运的I 号产品重量为:53311++=(吨),总重6581919.5++=<(吨),符合要求; 选择AD 时,装运的1号产品重量为:549+=(吨),总重671319.5+=< (吨),符合要求; 选择ACD 时,装运的I 号产品重量为:52411++=(吨),总重6571819.5++=<(吨),符合要求; 选择BCD 时,装运的1号产品重量为:3249++=(吨),总重5571719.5++=<(吨),符合要求; 选择DCE 时,装运的I 号产品重量为:4239++=(吨),总重7582019.5++=>(吨),不符合要求; 选择BDE 时,装运的I 号产品重量为:34310++=(吨),总重5782019.5++=>(吨),不符合要求; 选择ACE 时,装运的I 号产品重量为53311++=(吨),总重65819++=(吨),符合要求, 综上,满足条件的装运方案有ABC 或ABE 或AD 或ACD 或BCD 或ACE .故答案为:ABC (或ABE 或AD 或ACD 或BCD 或)ACE ;(2)选择ABC 时,装运的Ⅱ号产品重量为:1236++=(吨);选择ABE 时,装运的Ⅱ号产品重量为:1258++=(吨);选择AD 时,装运的Ⅱ号产品重量为:134+= (吨);选择ACD 时,装运的Ⅱ号产品重量为:1337++= (吨);选择BCD 时,装运的Ⅱ号产品重量为:2338++= (吨);选择ACE 时,Ⅰ产品重量:52310++= 且91011;Ⅱ产品重量:1359++=,故答案为:ACE .三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)17.解:原式143=+-13=+ 4=.18.解:由274x x +>-,得:1x >, 由42x x +<,得:4x <, 则不等式组的解集为14x <<.19.解:2(2)(1)x x x +++22221x x x x =++++2241x x =++,2220x x +-=,222x x ∴+=,∴当222x x +=时,原式22(2)1x x =++221=⨯+41=+5=.20.证明:方法一://DE BC ,B BAD ∴∠=∠,C CAE ∠=∠,180BAD BAC CAE ∠+∠+∠=︒,180B BAC C ∴∠+∠+∠=︒;方法二://CD AB ,A ACD ∴∠=∠,180B BCD ∠+∠=︒,180B ACB A ∴∠+∠+∠=︒.21.证明:(1)在ABCD 中,OA OC =,OB OD =,AE CF =.OE OF ∴=,∴四边形EBFD 是平行四边形;(2)四边形ABCD 是平行四边形,//AB DC ∴,BAC DCA ∴∠=∠,BAC DAC ∠=∠,DCA DAC ∴∠=∠,DA DC ∴=,∴平行四边形ABCD 为菱形,DB EF ∴⊥,∴平行四边形EBFD 是菱形.22.解:(1)把(4,3),(2,0)-分别代入y kx b =+得4320k b k b +=⎧⎨-+=⎩, 解得121k b ⎧=⎪⎨⎪=⎩,∴函数解析式为112y x =+, 当0x =时,1112y x =+=, A ∴点坐标为(0,1);(2)当1n 时,当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值.23.解:(1)1(10101099839810)8.610m =⨯+++++++++=; (2)甲同学的方差2_S 甲,乙同学的方差2_S 乙,2_S 甲,∴评委对甲同学演唱的评价更一致.故答案为:甲;(3)甲同学的最后得分为1(7829410)8.6258⨯+⨯+⨯+=; 乙同学的最后得分为1(3792103)8.6258⨯⨯+⨯+⨯=; 丙同学的最后得分为1(8293103)9.1258⨯⨯+⨯+⨯=, ∴在甲、乙、丙三位同学中,表现最优秀的是丙.故答案为:丙.24.证明:(1)如图,连接AD ,AB 是O 的直径,AB CD ⊥,∴BC BD =,CAB BAD ∴∠=∠,2BOD BAD ∠=∠,2BOD A ∴∠=∠;(2)如图,连接OC,F为AC的中点,∴⊥,DF AC∴=,AD CD∴∠=∠,ADF CDF=,BC BD∴∠=∠,CAB DABOA OD=,∴∠=∠,OAD ODA∴∠=∠,CDF CABOC OD=,∴∠=∠,CDF OCD∴∠=∠,OCD CAB=,BC BC∴∠=∠,CAB CDE∴∠=∠,CDE OCD∠=︒,90E∴∠+∠=︒,CDE DCE90∴∠+∠=︒,OCD DCE90即OC CE⊥,OC为半径,∴直线CE为O的切线.25.解:(1)根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20),k=,∴=,23.208h即该运动员竖直高度的最大值为23.20m ,根据表格中的数据可知,当0x =时,20.00y =,代入2(8)23.20y a x =-+得: 220.00(08)23.20a =-+,解得:0.05a =-,∴函数关系式为:20.05(8)23.20y x =--+;(2)设着陆点的纵坐标为t ,则第一次训练时,20.05(8)23.20t x =--+,解得:8x =或8x =,∴根据图象可知,第一次训练时着陆点的水平距离18d =+ 第二次训练时,20.04(9)23.24t x =--+,解得:9x =+或9x =,∴根据图象可知,第二次训练时着陆点的水平距离29d =, 20(23.20)25(23.24)t t -<-,∴<12d d ∴<,故答案为:<.26.解:(1)将点(1,)m ,(3,)n 代入抛物线解析式,∴93m a b c n a b c =++⎧⎨=++⎩, m n =,93a b c a b c ∴++=++,整理得,4b a =-,∴抛物线的对称轴为直线4222b a x a a-=-=-=; 2t ∴=,2c =,∴抛物线与y 轴交点的坐标为(0,2).(2)m n c <<,93a b c a b c c ∴++<++<,解得43a b a -<<-,34a b a ∴<-<, ∴34222a b a a a a <-<,即322t <<. 当32t =时,02x =; 当2t =时,03x =.0x ∴的取值范围023x <<.27.(1)证明:在BCD ∆和FCE ∆中,BC CF BCD FCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()BCD FCE SAS ∴∆≅∆,DBC EFC ∴∠=∠,//BD EF ∴,AF EF ⊥,BD AF ∴⊥;(2)解:由题意补全图形如下:CD CH =.证明:延长BC 到F ,使CF BC =,连接AF ,EF ,AC BF ⊥,BC CF =,AB AF ∴=,由(1)可知//BD EF ,BD EF =,222AB AE BD =+,222AF AE EF ∴=+,90AEF ∴∠=︒,AE EF ∴⊥,BD AE ∴⊥,90DHE ∴∠=︒,又CD CE =,CH CD CE ∴==.28.解:(1)①由题意知,(21,01)P '-++,(1,1)P '∴-,如图,点Q 即为所求;②连接PP ',45P PO MOx '∠=∠=︒,//PP ON '∴,P N QN '=,PT QT ∴=,12NT PP '∴=, PP OM '=,12NT OM ∴=; (2)如图,连接PO ,并延长至S ,使OP OS =,延长SQ 到T ,使ST OM =,由题意知,//PP OM ',PP OM '=,P N NQ '=,2TQ MN ∴=,1MN OM ON t =-=-,22TQ t ∴=-,1(22)21SQ ST TQ t t ∴=-=--=-,PS QS PQ PS QS -+,PQ ∴的最小值为PS QS -,PQ 的最大值为PS QS +,PQ ∴长的最大值与最小值的差为()()242PS QS PS QS QS t +--==-.。
2022年北京市中考数学试卷参考答案与试题解析一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.B.2.B.3.A.4.D.5.A.6.C.7.D.8.A.二、填空题(共16分,每题2分)x.9.810.(1)(1)-+.x y y11.5x=.12.>.13.120.14.1.15.1.16.解:(1)ABC(或ABE或AD或ACD或BCD或)ACE;(2)ACE.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.【解答】解:原式143=+-=+13=.418.【解答】解:由274x>,x x+>-,得:1由42x x +<,得:4x <, 则不等式组的解集为14x <<.19.【解答】解:2(2)(1)x x x +++22221x x x x =++++2241x x =++,2220x x +-=,222x x ∴+=,∴当222x x +=时,原式22(2)1x x =++221=⨯+41=+5=.20.【解答】证明:方法一://DE BC ,B BAD ∴∠=∠,C CAE ∠=∠,180BAD BAC CAE ∠+∠+∠=︒,180B BAC C ∴∠+∠+∠=︒;方法二://CD AB ,A ACD ∴∠=∠,180B BCD ∠+∠=︒,180B ACB A ∴∠+∠+∠=︒.21.【解答】证明:(1)在ABCD 中,OA OC =,OB OD =,AE CF =.OE OF ∴=,∴四边形EBFD 是平行四边形;(2)四边形ABCD 是平行四边形,//AB DC ∴,BAC DCA ∴∠=∠,BAC DAC ∠=∠,DCA DAC ∴∠=∠,DA DC ∴=,∴平行四边形ABCD 为菱形,DB EF ∴⊥,∴平行四边形EBFD 是菱形.22.【解答】解:(1)把(4,3),(2,0)-分别代入y kx b =+得4320k b k b +=⎧⎨-+=⎩, 解得121k b ⎧=⎪⎨⎪=⎩,∴函数解析式为112y x =+, 当0x =时,1112y x =+=, A ∴点坐标为(0,1);(2)当1n 时,当0x >时,对于x 的每一个值,函数y x n =+的值大于函数(0)y kx b k =+≠的值.23. 【解答】解:(1)1(10101099839810)8.610m =⨯+++++++++=;(2)甲同学的方差2_S 甲,乙同学的方差2_S 乙, 2_S 甲,∴评委对甲同学演唱的评价更一致.故答案为:甲;(3)甲同学的最后得分为1(7829410)8.6258⨯+⨯+⨯+=; 乙同学的最后得分为1(3792103)8.6258⨯⨯+⨯+⨯=; 丙同学的最后得分为1(8293103)9.1258⨯⨯+⨯+⨯=, ∴在甲、乙、丙三位同学中,表现最优秀的是丙.故答案为:丙.24.【解答】证明:(1)如图,连接AD ,AB是O的直径,AB CD⊥,=,∴BC BD∴∠=∠,CAB BAD∠=∠,BOD BAD2BOD A∴∠=∠;2(2)如图,连接OC,F为AC的中点,∴⊥,DF AC∴=,AD CD∴∠=∠,ADF CDF=,BC BD∴∠=∠,CAB DAB=,OA OD∴∠=∠,OAD ODA∴∠=∠,CDF CAB=,OC OD∴∠=∠,CDF OCDOCD CAB ∴∠=∠,BC BC =,CAB CDE ∴∠=∠,CDE OCD ∴∠=∠,90E ∠=︒,90CDE DCE ∴∠+∠=︒,90OCD DCE ∴∠+∠=︒,即OC CE ⊥, OC 为半径,∴直线CE 为O 的切线.25. 【解答】解:(1)根据表格中的数据可知,抛物线的顶点坐标为:(8,23.20), 8h ∴=,23.20k =,即该运动员竖直高度的最大值为23.20m ,根据表格中的数据可知,当0x =时,20.00y =,代入2(8)23.20y a x =-+得: 220.00(08)23.20a =-+,解得:0.05a =-,∴函数关系式为:20.05(8)23.20y x =--+;(2)设着陆点的纵坐标为t ,则第一次训练时,20.05(8)23.20t x =--+,解得:8x =或8x =,∴根据图象可知,第一次训练时着陆点的水平距离18d =+ 第二次训练时,20.04(9)23.24t x =--+,解得:9x =+或9x =,∴根据图象可知,第二次训练时着陆点的水平距离29d =, 20(23.20)25(23.24)t t -<-,∴<12d d ∴<,故答案为:<.26. 【解答】解:(1)将点(1,)m ,(3,)n 代入抛物线解析式, ∴93m a b c n a b c =++⎧⎨=++⎩, m n =,93a b c a b c ∴++=++,整理得,4b a =-,∴抛物线的对称轴为直线4222b a x a a-=-=-=; 2t ∴=,2c =,∴抛物线与y 轴交点的坐标为(0,2).(2)m n c <<,93a b c a b c c ∴++<++<,解得43a b a -<<-,34a b a ∴<-<, ∴34222a b a a a a <-<,即322t <<. 当32t =时,02x =; 当2t =时,03x =.0x ∴的取值范围023x <<.27.【解答】(1)证明:在BCD ∆和FCE ∆中,BC CF BCD FCE CD CE =⎧⎪∠=∠⎨⎪=⎩,()BCD FCE SAS ∴∆≅∆,DBC EFC ∴∠=∠,//BD EF ∴,AF EF ⊥,BD AF ∴⊥;(2)解:由题意补全图形如下:=.CD CH证明:延长BC到F,使CF BC=,连接AF,EF,⊥,BC CFAC BF=,∴=,AB AF由(1)可知//=,BD EF,BD EF222=+,AB AE BD222∴=+,AF AE EF∴∠=︒,AEF90∴⊥,AE EF∴⊥,BD AE∴∠=︒,DHE90又CD CE=,∴==.CH CD CE28.【解答】解:(1)①由题意知,(21,01)P'-++,∴-,(1,1)P'如图,点Q即为所求;②连接PP',45P PO MOx '∠=∠=︒,//PP ON '∴,P N QN '=,PT QT ∴=, 12NT PP '∴=, PP OM '=,12NT OM ∴=; (2)如图,连接PO ,并延长至S ,使OP OS =,延长SQ 到T ,使ST OM =,由题意知,//PP OM ',PP OM '=,P N NQ '=,2TQ MN ∴=,1MN OM ON t =-=-,22TQ t ∴=-,1(22)21SQ ST TQ t t ∴=-=--=-,在PQS ∆中,PS QS PS QS -<+,PQ ∴的最小值为PS QS -,PQ 的最大值为PS QS +,PQ ∴长的最大值与最小值的差为()()242PS QS PS QS QS t +--==-.。
2023年北京市初中学业水平考试时间:120分钟 满分:100分第一部分 选择题一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 截至2023年6月11日17时,全国冬小麦收获2.39亿亩,进度过七成半.将239 000 000用科学记数法表示应为( )A. 23.9×107B. 2.39×108C. 2.39×109D. 0.239×1092. 下列图形中,既是轴对称图形又是中心对称图形的是( )3. 如图,∠AOC =∠BOD =90°,∠AOD =126°,则∠BOC 的大小为( )第3题图A. 36°B. 44°C. 54°D. 63°4. 已知a -1>0,则下列结论正确的是( )A. -1<-a <a <1B. -a <-1<1<aC. -a <-1<a <1D. -1<-a <1<a 5. 若关于x 的一元二次方程 x 2-3x +m =0有两个相等的实数根,则实数m 的值为( ) A. -9 B. -94 C. 94 D. 96. 正十二边形的外角和为( ) A. 30° B. 150° C. 360° D. 1 800°7. 先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( ) A. 14 B. 13 C. 12 D. 348. 如图,点 A ,B ,C 在同一条直线上,点B 在点A ,C 之间,点D ,E 在直线AC 同侧,AB <BC ,∠A =∠C =90°,△EAB ≌△BCD ,连接 DE .设 AB =a ,BC =b ,DE =c ,给出下面三个结论:第8题图①a +b <c ; ②a +b >a 2+b 2; ③2(a +b )>c .上述结论中,所有正确结论的序号是( ) A. ①② B. ①③ C. ②③ D. ①②③第二部分 非选择题二、填空题(共16分,每题2分)9. 若代数式5x -2有意义,则实数x 的取值范围是________.10. 分解因式:x 2y -y 3=________. 11. 方程35x +1=12x的解为________. 12. 在平面直角坐标系xOy 中,若函数y =kx (k ≠0)的图象经过点A (-3,2)和B (m ,-2),则m 的值为________.13. 某厂生产了1 000只灯泡.为了解这1 000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:根据以上数据,估计这1 000只灯泡中使用寿命不小于2 200小时的灯泡的数量为________ 只. 14. 如图,直线AD ,BC 交于点O ,AB ∥EF ∥CD.若 AO =2,OF =1,FD =2,则BEEC的值为________.第14题图15. 如图,OA 是⊙O 的半径,BC 是⊙O 的弦,OA ⊥BC 于点D ,AE 是 ⊙O 的切线,AE 交OC 的延长线于点E .若∠AOC =45°,BC =2,则线段AE 的长为________.第15题图16. 学校组织学生参加木艺艺术品加工劳动实践活动.已知某木艺艺术品加工完成共需A ,B ,C ,D ,E ,F ,G 七道工序,加工要求如下:①工序C ,D 须在工序A 完成后进行,工序E 须在工序B ,D 都完成后进行,工序F 须在工序C ,D 都完成后进行;②一道工序只能由一名学生完成,此工序完成后该学生才能进行其他工序; ③各道工序所需时间如下表所示:在不考虑其他因素的前提下,若由一名学生单独完成此木艺艺术品的加工,则需要________分钟;若由两名学生合作完成此木艺艺术品的加工,则最少需要________分钟.三、解答题(共68分,第17-19题,每题5分,第20-21题,每题6分,第22-23题,每题5分,第24题6分,第25题5分,第26题6分,第27-28题,每题7分) 解答应写出文字说明、演算步骤或证明过程. 17. 计算:4sin60°+(13)-1+|-2|-12.18. 解不等式组:⎩⎪⎨⎪⎧x >x +235x -3<5+x .19. 已知x +2y -1=0,求代数式2x +4yx 2+4xy +4y 2的值.20. 如图,在▱ABCD 中,点E ,F 分别在 BC ,AD 上,BE =DF ,AC =EF .第20题图(1)求证:四边形AECF 是矩形;(2)若AE =BE ,AB =2,tan ∠ACB =12,求BC 的长.21. (新考法 真实问题情境) 对联是中华传统文化的瑰宝.对联装裱后,如图所示,上、下空白处分别称为天头和地头,左、右空白处统称为边.一般情况下,天头长与地头长的比是6∶4,左、右边的宽相等,均为天头长与地头长的和的110. 某人要装裱一幅对联,对联的长为100 cm ,宽为27 cm.若要求装裱后的长是装裱后的宽的4倍,求边的宽和天头长.(书法作品选自《启功法书》)第21题图22. 在平面直角坐标系xOy 中,函数y =kx +b (k ≠0)的图象经过点 A (0,1)和B (1,2),与过点(0,4)且平行于x 轴的直线交于点C.(1)求该函数的解析式及点C 的坐标;(2)当x <3时,对于x 的每一个值,函数 y =23x +n 的值大于函数 y =kx +b (k ≠0)的值且小于4,直接写出 n的值.23. 某校舞蹈队共16名学生,测量并获取了所有学生的身高(单位:cm),数据整理如下: a .16名学生的身高:161,162,162,164,165,165,165,166, 166,167,168,168,170,172,172,175b .16名学生的身高的平均数、中位数、众数:(1)写出表中 m ,n 的值;(2)对于不同组的学生,如果一组学生的身高的方差越小,则认为该组舞台呈现效果越好.据此推断:在下列两组学生中,舞台呈现效果更好的是 ________ (填“甲组”或“乙组”);(3)该舞蹈队要选五名学生参加比赛.已确定三名学生参赛,他们的身高分别为168,168,172,他们的身高的方差为329.在选另外两名学生时,首先要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的方差小于329,其次要求所选的两名学生与已确定的三名学生所组成的五名学生的身高的平均数尽可能大,则选出的另外两名学生的身高分别为________和________.24. 如图,圆内接四边形ABCD的对角线AC,BD交于点E,BD平分∠ABC,∠BAC=∠AD B.第24题图(1)求证DB平分∠ADC,并求∠BAD的大小;(2)过点C作CF∥AD交AB的延长线于点F.若AC=AD,BF=2,求此圆半径的长.25. (新考法新函数图象探究题) 某小组研究了清洗某种含污物品的节约用水策略.部分内容如下.每次清洗1个单位质量的该种含污物品,清洗前的清洁度均为0.800,要求清洗后的清洁度为0.990. 方案一:采用一次清洗的方式.方案二:采用两次清洗的方式.结果:结合实验数据,利用所画的函数图象可以推断,当第一次用水量约为根据以上实验数据和结果,解决下列问题:(1)当采用两次清洗的方式并使总用水量最小时,与采用一次清洗的方式相比,可节水约________ 个单位质量(结果保留小数点后一位);(2)当采用两次清洗的方式时,若第一次用水量为6个单位质量,总用水量为7.5个单位质量,则清洗后的清洁度C________ 0.990(填“>”“=”或“<”).26. 在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)是抛物线y=ax2+bx+c(a>0)上任意两点.设抛物线的对称轴为x=t.(1)若对于x1=1,x2=2,有y1=y2,求t的值;(2)若对于0<x1<1,1<x2<2,都有y1<y2,求t的取值范围.27. 在△ABC中,∠B=∠C=α(0°<α<45°),AM⊥BC于点M,D是线段MC上的动点(不与点M,C重合),将线段DM绕点D顺时针旋转2α得到线段DE.(1)如图①,当点E在线段AC上时,求证:D是MC的中点;(2)如图②,若在线段BM上存在点F(不与点B,M重合)满足DF=DC,连接AE,EF,直接写出∠AEF的大小,并证明.第27题图28. (新考法 新定义现场学习型) 在平面直角坐标系xOy 中,⊙O 的半径为1.对于⊙O 的弦AB 和⊙O 外一点C 给出如下定义:若直线CA ,CB 中一条经过点O ,另一条是⊙O 的切线,则称点 C 是弦AB 的“关联点”.(1)如图,点A (-1,0),B 1(-22,22),B 2(22,-22).第28题图①在点 C 1(-1,1),C 2(-2,0),C 3(0,2)中,弦AB 1的“关联点”是________; ②若点 C 是弦AB 2的“关联点”,直接写出OC 的长;(2)已知点 M (0,3),N (655,0).对于线段MN 上一点S ,存在⊙O 的弦PQ ,使得点S 是弦PQ 的“关联点”.记PQ 的长为t ,当点 S 在线段 MN 上运动时,直接写出t 的取值范围.2023年北京市初中学业水平考试解析快速对答案详解详析一、选择题 1. B2. A 【解析】A .既是轴对称图形,又是中心对称图形;B .是中心对称图形,不是轴对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.3. C 【解析】∵∠AOC =∠BOD =90°,∠AOD =126°,∴∠AOB =∠AOD -∠BOD =36°,∴∠BOC =∠AOC -∠AOB =54°.4. B 【解析】∵a -1>0,∴a >1,∴-a <-1,∴-a <-1<1<a .5. C 【解析】∵x 2-3x +m =0有两个相等的实数根,∴b 2-4ac =(-3)2-4m =0,∴m =94.6. C 【解析】多边形的外角和为360°.7. A 【解析】画树状图如解图,由树状图可知,共有4种等可能的结果,其中第一次正面向上,第二次反面向上的结果有1种,∴P (第一次正面向上,第二次反面向上)=14.第7题解图(易错警示) 注意设问中结果的顺序性,区分“第一次正面向上、第二次反面向上”与“一次正面向上、一次反面向上”的不同,当心错选概率为12.8. D 【解析】如解图,过点E 作EF ⊥CD ,交CD 延长线于点F ,∵∠A =∠C =90°,四边形ACFE 是矩形,∴EF =AC =a +b ,∵在Rt △EDF 中,EF <DE ,∴a +b <c ,①正确;∵△EAB ≌△BCD ,∴AE =BC =b ,∴BE =AB 2+AE 2=a 2+b 2,∵在Rt △ABE 中,AB +AE >BE ,∴a +b >a 2+b 2,②正确;∵△EAB ≌△BCD ,∴BE =BD ,∠AEB =∠CBD .∵∠A =∠C =90°,∴∠AEB +∠ABE =90°,∴∠CBD +∠ABE =90°,∴∠EBD =90°,∴△EBD 是等腰直角三角形,∴BE =22c .∵在△ABE 中,AB +AE >BE ,∴a +b >22c ,∴2(a +b )>c ,③正确.第8题解图二、填空题9. x ≠2 【解析】分式5x -2有意义,则分母x -2≠0,∴x ≠2.10. y (x +y )(x -y ) 【解析】x 2y -y 3=y (x 2-y 2)=y (x +y )(x -y ).11. x =1 【解析】去分母,得6x =5x +1,移项、合并同类项,得x =1.检验:当x =1时,2x (5x +1)≠0,∴x =1是原分式方程的解.12. 3 【解析】∵函数y =kx (k ≠0)的图象经过点A (-3,2),B (m ,-2),∴将A (-3,2),B (m ,-2)代入y=kx (k ≠0),得k =-6=-2m ,∴m =3. 13. 460 【解析】1 000×17+650=460.14. 32 【解析】∵AB ∥EF ∥CD ,∴BE EC =AF FD =AO +OF FD ,∵AO =2,OF =1,FD =2,∴BE EC =2+12=32.15. 2 【解析】∵OA 是⊙O 的半径,OA ⊥BC ,BC =2,∴CD =12BC =1.∵∠AOC =45°,∴∠OCD =90°-∠AOC =45°,∴OD =CD =1,CO =OD 2+CD 2=2,∴OA = 2.∵AE 是⊙O 的切线,∴∠OAE =90°,∴∠E =90°-∠AOC =45°,∴AE =OA = 2.16. 53;28 【解析】由一名学生完成,则需要9+9+7+9+7+10+2=53分钟;由两名学生合作完成,要使所用时间最少,则可同时进行两道工序,根据工序的先后顺序,可知工序A ,B ,C ,D 应靠前完成,工序E ,F 应靠后完成,工序G 先后均可,又∵工序C ,D 须在工序A 完成后进行,∴工序A ,B 可先同时进行,9分钟后同时完成,工序A ,B 完成后可进行的工序为C ,D ,G ,所需时间分别为7分钟、9分钟、2分钟,∴可安排一名学生完成工序D ,与此同时另一名学生完成工序C ,G ,9分钟后同时完成,剩余工序E ,F 两名学生同时进行,各完成一个,工序E 需要7分钟,工序F 需要10分钟,则10分钟后所有工序完成,∴最少需要9+9+10=28分钟. 三、解答题17. 解:原式=4×32+3+2-2 3=23+3+2-2 3 =5. (5分)18. 解:解不等式x >x +23,得x >1,解不等式5x -3<5+x ,得x <2, ∴该不等式组的解集为1<x <2.(5分) 19. 解:原式=2(x +2y )(x +2y )2=2x +2y ,(3分)∵x +2y -1=0, ∴x +2y =1, ∴原式=21=2.(5分)20. (1)证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC .∵点E ,F 分别在BC ,AD 上,BE =DF , ∴AF =CE ,AF ∥CE , ∴四边形AECF 是平行四边形. 又∵AC =EF ,∴四边形AECF 是矩形;(3分) (2)解:∵四边形AECF 是矩形, ∴∠AEB =∠AEC =90°, ∴AE 2+BE 2=AB 2. ∵AE =BE ,AB =2, ∴2AE 2=4, ∴AE =BE = 2. ∵tan ∠ACB =AE CE =12,∴CE =22,∴BC =BE +CE =2+22=3 2.(6分)21. 解:设该对联装裱后天头长为6x cm ,则地头长为4x cm ,左、右边的宽为 110(6x +4x )=x cm. 根据题意列方程,得100+6x +4x =4(27+2x ),(3分) 解得x =4, ∴6x =24.答:边的宽为4 cm ,天头长为24 cm.(6分)22. 解:(1)将A (0,1)和B (1,2)代入y =kx +b (k ≠0),得⎩⎪⎨⎪⎧b =1k +b =2, 解得⎩⎪⎨⎪⎧k =1b =1,∴该函数的解析式为y =x +1, 将y =4代入y =x +1,得x =3, ∴点C 的坐标为(3,4);(3分) (2)n 的值为2.(5分)(解法提示) 当y =23x +n 经过点C (3,4)时满足条件,将(3,4)代入y =23x +n ,得23×3+n =4,解得n =2.23. 解:(1)m =166,n =165;(2分)(解法提示) 共16名学生,中位数为身高按从小到大的顺序排序后第8,9名学生身高的平均数,∴m =166+1662=166.16名学生的身高数据中,165出现了3次,出现的次数最多,∴n =165. (2)甲组;(3分) (3)170,172.(5分)24. (1)证明:∵BD 平分∠ABC , ∴∠ABD =∠CBD , ∴AD =CD . ∵BC ︵=BC ︵, ∴∠BAC =∠BDC . ∵∠BAC =∠ADB , ∴∠BDC =∠ADB ,∴DB 平分∠ADC ,DE ⊥AC ,∴∠ADB +∠DAE =90°, ∴∠BAC +∠DAE =90°, ∴∠BAD =90°;(3分) (一题多解) ∵BC ︵=BC ︵, ∴∠BAC =∠BDC . ∵∠BAC =∠ADB , ∴∠BDC =∠ADB , ∴DB 平分∠ADC . ∵BD 平分∠ABC , ∴∠ABD =∠CBD . ∵∠ABC +∠ADC =180°,∴∠ABD +∠ADB =12(∠ABC +∠ADC )=90°,∴∠BAD =90°;(3分)(2)解:∵AC =AD ,且由(1)得AD =CD , ∴△ACD 是等边三角形, ∴∠ADC =60°,∴∠BDC =12∠ADC =30°,∠ABC =180°-∠ADC =120°,∴∠CBF =60°.∵∠BAD =90°, ∴BD 是此圆的直径, ∴∠BCD =90°. ∵CF ∥AD ,∴∠F =180°-∠BAD =90°, ∴∠BCF =90°-∠CBF =30°. ∵BF =2, ∴BC =2BF =4, ∴BD =2BC =8, 即此圆的直径是8,∴此圆的半径是4.(6分) 25. (1)11.3;(3分) (2)<.(5分)26. 解:(1)∵x 1=1,x 2=2,y 1=y 2, ∴抛物线对称轴为直线x =t =x 1+x 22=1+22=32, ∴t =32;(2分)(2)在点M (x 1,y 1),点N (x 2,y 2)中, ∵0<x 1<1,1<x 2<2, ∴x 1<x 2. ∵a >0,∴抛物线开口向上. 又∵抛物线为轴对称图形,∴当y 1<y 2,则点M 到对称轴的距离小于点N 到对称轴的距离得|t -x 1|<|x 2-t |,两边平方,得t 2-2x 1t +x 21<t 2-2x 2t +x 22, 整理得x 21-x 22-2x 1t +2x 2t <0(x 1-x 2)(x 1+x 2)-2t (x 1-x 2)<0 (x 1-x 2)(x 1+x 2-2t )<0. ∵x 1<x 2,∴x 1+x 2-2t >0,x 1+x 2>2t ,t <x 1+x 22,由不等式及不等式关系0<x 1<1,1<x 2<2, 将两式相加,得1<x 1+x 2<3, ∴12<x 1+x 22<32, ∴t ≤12.(6分)(一题多解) ∵a >0, ∴抛物线开口向上. 又∵抛物线为轴对称图形,∴当y 1<y 2,则点M 到对称轴的距离小于点N 到对称轴的距离. ∵0<x 1<1,1<x 2<2,∴x 1<x 2,如解图①,当t <x 1<x 2,则点M 和点N 都在对称轴的右侧,符合题意,此时t ≤0;第26题解图①如解图②,当x 1<x 2<t ,则点M 和点N 都在对称轴的左侧,不符合题意,此时t ≥2;第26题解图②当x 1<t <x 2,则点M 和点N 分别位于对称轴的两侧,此时0<t <2.(i )如解图③,当t =1时,不能保证点M 到对称轴的距离小于点N 到对称轴的距离,不符合题意;第26题解图③(ii )当1<t <32时,不能保证点M 到对称轴的距离小于点N 到对称轴的距离,不符合题意;(iii )如解图④当32≤t <2时,点M 到对称轴的距离大于点N 到对称轴的距离,不符合题意;第26题解图④(iiii )当12<t <1时,不能保证点M 到对称轴的距离小于点N 到对称轴的距离,不符合题意;(iiiii )如解图⑤,当0<t ≤12时,点M 到对称轴的距离小于点N 到对称轴的距离,符合题意.第26题解图⑤∴综上所述,t 的取值范围为t ≤12.(6分)27. (1)证明:由题意得,∠MDE =2α,MD =DE , ∵∠MDE =∠C +∠DEC ,∠C =α, ∴∠DEC =2α-α=α=∠C , ∴DC =DE , ∴MD =DC ,即D 是MC 的中点;(3分) (2)解:∠AEF =90°.证明:如解图,连接AF ,延长FE 至点Q ,使得FE =EQ ,连接AQ ,CQ ,第27题解图∵FD =DC ,FE =EQ , ∴DE 是△FCQ 的中位线, ∴DE ∥CQ ,DE =12CQ ,∴∠FDE =∠DCQ =∠DCA +∠ACQ . ∵∠B =∠DCA =α,∠FDE =2α=2∠B , ∴∠ACQ =∠DCA =α, ∴∠B =∠ACQ ,由题意得,BF =BC -FC =2MC -2CD =2(MC -CD )=2MD . ∵DM =DE ,∴2DM =2DE =2×12CQ =CQ ,在△ABF 和△ACQ 中, ⎩⎪⎨⎪⎧AB =AC ∠B =∠ACQ BF =CQ, ∴△ABF ≌△ACQ (SAS), ∴AF =AQ . 又∵FE =EQ , ∴AE ⊥FQ , ∴∠AEF =90°.(7分) 28. 解:(1)①C 1,C 2;(2分)(解法提示) 如解图①,连接C 1A ,连接C 1B 1并延长,∵C 1(-1,1),B 1(-22,22),∴B 1,C 1在直线y =-x 上.∵O (0,0)∴直线B 1C 1经过点O .∵A (-1,0),∴OA ⊥AC 1,∴AC 1是⊙O 的切线,∴C 1是弦AB 1的“关联点”;如解图②,连接C 2B 1,连接C 2A 并延长,∵C 2(-2,0),A (-1,0),∴直线C 2A 经过圆心O , 连接OB 1.∵B 1(-22,22),∴OB 1=1,B 1C 2=1,OC 2=2,∴OB 21+B 1C 22=OC 22,∴OB 1⊥B 1C 2,∴B 1C 2是⊙O 的切线,∴C 2是弦AB 1的“关联点”.第28题解图②2;(4分)(解法提示) 如解图③,当CA 是⊙O 的切线时,过点A 作OA 的垂线,交直线OB 2于点C 1,∴点C 在点C 1处时满足条件,OC 1=12+12=2;当CB 2是⊙O 的切线时,过点B 2作OB 2的垂线,交直线AO 于点C ,∵∠OB 2C =90°,∠COB 2=∠AOC 1=45°,∴B 2C =OB 2=1,∴OC =12+12=2;综上所述,若C 是弦AB 2的“关联点”,则OC = 2.第28题解图③(2)263≤t ≤3或1≤t ≤233.(7分)(解法提示) 如解图④,过点O 作OH ⊥MN 于点H , ∵OM =3,ON =655,∴MN =OM 2+ON 2=955, ∴sin ∠OMN =ON MN =23,∴sin ∠OMN =OH OM =23,∴OH =2.∵S 是MN 上的点,第28题解图④∴2≤OS ≤3,∴可将问题转化为点S 是⊙O 上弦PQ 的“关联点”,且2≤OS ≤3,求PQ 长的取值范围.如解图⑤,直线OS 交⊙O 于点P 1,P 2,E ,F 是直线OS 上的点,且OE =2,OF =3,则点S 在EF 上运动,过点S 作⊙O 的切线SQ ,切点为Q ,连接P 1Q ,P 2Q ,即为所求的弦PQ .第28题解图⑤∵SQ 是⊙O 的切线, ∴∠OQS =90°,∴∠QOS =90°-∠QSP ,∠QOP 1=90°+∠QSP .分析易得,当点S 从E 向F 运动时,∠QSP 变小, ∴当点S 从E 向F 运动时,∠QOS 变大,∠QOP 1变小, ∴当点S 从E 向F 运动时,P 2Q 变大,P 1Q 变小,∴当点S 在点E 处时,P 2Q 取得最小值,P 1Q 取得最大值,当点S 在点F 处时,P 2Q 取得最大值,P 1Q 取得最小值.如解图⑥,当点S 在点E 处时,过点Q 作QD ⊥OS 于点D ,第28题解图⑥∵∠QOD =∠SOQ ,∠ODQ =∠OQS , ∴△ODQ ∽△OQS , ∴OD OQ =OQ OS =DQ QS. ∵OQ =1,OS =2,∴QS =3,∴OD 1=12=DQ3,∴OD =12,DQ =32,∴P 1D =32,P 2D =12,∴P 1Q =P 1D 2+QD 2=3,P 2Q =P 2D 2+QD 2=1; 如解图⑦,当点S 在点F 处时,过点Q 作QK ⊥OS 于点K , 同理可得,△OKQ ∽△OQS , ∴OK OQ =OQ OS =KQ QS. ∵OQ =1,OS =3,∴QS =22,∴OK 1=13=KQ22,∴OK =13,KQ =223,∴P 1K =43,P 2K =23,∴P 1Q =P 1K 2+QK 2=263,P 2Q =P 2K 2+QK 2=233.∴263≤P 1Q ≤3,1≤P 2Q ≤233,∴当弦PQ 为P 1Q 时,263≤t ≤3; 当弦PQ 为P 2Q 时,1≤t ≤233第28题解图⑦。
2016年北京市高级中等学校招生考试数学试卷学校姓名准考证号考生须知1.本试卷共8页,共三道大题,29道小题,满分120分。
考试时间120分钟。
2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。
3.试题答案一律填涂在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束后,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只.有.一个。
1. 如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为(A) 45°(B) 55°(C) 125°(D) 135°2. 神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28 000公里。
将28 000用科学计数法表示应为(A)(B) 28(C)(D)3. 实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(A) a(B)(C)(D)4. 内角和为540的多边形是5. 右图是某个几何体的三视图,该几何体是(A)圆锥(B)三棱锥(C)圆柱(D)三棱柱6. 如果,那么代数的值是(A) 2 (B)-2 (C)(D)7. 甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是A B C D8. 在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是(A) 3月份(B) 4月份(C) 5月份(D) 6月份第8题图第9题图9. 如图,直线,在某平面直角坐标系中,x轴m,y轴n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为(A)(B)(C)(D)10. 为了节约水资源,某市准备按照居民家庭年用水量实行阶梯水价,水价分档递增。
计划使第一档、第二档和第三档的水价分别覆盖全市居民家庭的80%,15%和5%。
为合理确定各档之间的界限,随机抽查了该市5万户居民家庭上一年的年用水量(单位:),绘制了统计图,如图所示,下面有四个推断:①年用水量不超过180的该市居民家庭按第一档水价交费②年用水量超过240的该市居民家庭按第三档水价交费③该市居民家庭年用水量的中位数在150-180之间④该市居民家庭年用水量的平均数不超过180(A)①③(B)①④(C)②③(D)②④二、填空题(本题共18分,每小题3分)11. 如果分式有意义,那么x的取值范围是。
12.右图中的四边形均为矩形,根据图形,写出一个正确的等式:。
13. 林业部门要考察某种幼树在一定条件下的移植成活率,下表是这种幼树在移植过程中的一组统计数据:移植的棵数n 1 000 1 500 2 500 4 0008 000150002000030000成活的棵数m 865 1 356 2 220 3 5007 056131701758026430成活的频率估计该种幼树在此条件下移植成活的概率为。
14. 如图,小军、小珠之间的距离为,他们在同一盏路灯下的影长分别为,,已知小军、小珠的身高分别为,,则路灯的高为 m。
15. 百子回归图是由1,2,3…,100无重复排列而成的正方形数表,它是一部数化的澳门简史,如:中央四位“19 99 12 20”标示澳门回归日期,最后一行中间两位“23 50”标示澳门面积,……,同时它也是十阶幻方,其每行10个数之和、每列10个数之和、每条对角线10个数之和均相等,则这个和为。
16. 下面是“经过已知直线外一点作这条直线的垂线”的尺规作图过程。
请回答:该作图的依据是。
三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明、演算步骤或证明过程。
17. 计算:.18. 解不等式组:19. 如图,四边形ABCD是平行四边形,AE平分,交DC的延长线于点E.求证:DA=DE20. 关于x的一元二次方程+(2m有两个不想等的实数根。
(1)求m的取值范围;(2)写出一个满足条件的m的值,并求此时方程的根。
21. 如图,在平面直角坐标系xOy中,过点A(-6,0)的直线与直线;y=2x相交于点B(m,4)。
(1)求直线的表达式;(2)过动点P(n,0)且垂于x轴的直线与的交点分别为C,D,当点C位于点D上方时,写出n的取值范围。
22. 调查作业:了解你所住小区家庭5月份用气量情况。
小天、小东和小芸三位同学住在同一小区,该小区共有300户家庭,每户家庭人数在2-5之间,这300户家庭的平均人数均为.小天、小东、小芸各自对该小区家庭5月份用气量情况进行了抽样调查,将收集的数据进行了整理,绘制的统计表分别为表1、表2和表3.表1 抽样调查小区4户家庭5月份用气量统计表(单位:)家庭人数2345用气量14192126表2 抽样调查小区15户家庭5月份用气量统计表(单位:)家庭人数222333333333334用气量10111513141515171718181818222表3 抽样调查小区15户家庭5月份用气量统计表(单位:)家庭人数222333333444455用气量1012131417171819222226312831根据以上材料回答问题:小天、小东和小芸三人中,哪一位同学抽样调查的数据能较好地反映出该小区家庭5月份用气量情况,并简要说明其他两位同学抽样调查地不足之处。
23. 如图,在四边形ABCD中,,AC=AD,M,N分别为AC,AD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2),AC平分,AC=2,求BN的长。
24. 阅读下列材料:北京市正围绕“政治中心、文化中心、国际交往中心、科技创新中心“的定位,深入实施”人文北京、科技北京、绿色北京”的发展战略。
“十二五”期间,北京市文化创意产业展现了良好的发展基础和巨大的发展潜力,已经成为首都经济增长的支柱产业。
2011年,北京市文化创意产业实现增加值亿元,占地区生产总值的%。
2012年,北京市文化创意产业继续呈现平稳发展态势,实现产业增加值亿元,占地区生产总值的%,是第三产业中仅次于金融业、批发和零售业的第三大支柱产业。
2013年,北京市文化产业实现增加值亿元,比上年增长%。
文化创意产业作为北京市支柱产业已经排到了第二位。
2014年,北京市文化创意产业实现增加值亿元,占地区生产总值的%,创历史新高。
2015年,北京市文化创意产业发展总体平稳,实现产业增加值亿元,占地区生产总值的%。
(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)用折线图将2011-2015年北京市文化创意产业实现增加值表示出来,并在图中标明相应数据;(2)根据绘制的折线图中提供的信息,预估 2016年北京市文化创意产业实现增加值约亿元,你的预估理由。
25. 如图,AB为于点D,过点D作的切线,交BA的延长线于点E.(1) 求证:AC DE:(2) 连接CD,若OA=AE=a,写出求四边形ACDE面积的思路。
26. 已知y是x的函数,自变量x的取值范围,下表是y与x的几组对应值x…123579…y……小腾根据学校函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究。
下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点。
根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:。
27. 在平面直角坐标系xOy中,抛物线与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点。
①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围。
28. 在等边中,(1)如图1, P,Q是BC边上两点,AP=AQ,,求的度数;(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的的对称点为M,连接AM,PM.①依题意将图2补全;②小茹通过观察、实验提出猜想:在点P、Q运动的过程中,始终有PA=PM。
小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:要证明PA=PM,只需证是等边三角形。
想法2:在BA上取一点N,使得BN=BP,要证PA=PM,只需证想法3: 将线段BP绕点 B顺时针旋转60,得到线段BK,要证PA=PM,只需证PA=CK,PM=C K…….请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可)29. 在平面直角坐标系xOy中,点P的坐标为(点Q的坐标为(),且,某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”。
下图为点P,Q 的“相关矩形”的示意图。
(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1)求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)的半径为,点M的坐标为(m,3)。
若在上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围。
2016年北京市高级中等学校招生考试数学试卷参考答案一、单项选择题(每题3分,共30分)题号12345答案B C D C D 题号678910答案A D B A B二、填空题(每小题3分,共18分)11.12.13. (使用平均数和中位数附近的数都可以)14. 315. 50516. 到线段两端距离相等的点在线段的垂直平分线上(A、B都在PQ 的垂直平分线上);两点确定一条直线(AB垂直PQ)(其他正确依据也可以)三、解答题(第17~26题,每小题5分,第27题7分,第28题7分,第29题8分,共72分)17. 解:原式。
18. 解:。
19. 证明:.20. 解:(1)原方程有两个不相等实数根解得。
(2),原方程为,即。
(m取其他值也可以)21. 解:(1)点B在直线l2上,设l1的表达式为,由A、B两点均在直线l1上得到,,解得,则l1的表达式为。
(2)。
22. 解:小芸,小天调查的人数太少;小东抽样的调查数据中,家庭人数的平均值为,远远偏离了平均人数的,所以他的数据抽样有明显问题;小芸抽样的调查数据中,家庭人数的平均值为,说明小芸抽样数据质量较好,因此小芸的抽样调查的数据能较好的反映出该小区家庭5月份用气量情况。
23. (1)证明:在中,M、N分别是AC、CD的中点在中,M是AC的中点又。
(2)解:且AC平分由(1)知,而由(1)知,。
24. (1)略;(2)3440(预估值在3376~3563之间都可以),近三年平均增长率作为预测2016年数据的依据(只要给出符合预测数据的合理的预测方法即可)25. (1)证明:ED与相切于D F为弦AC的中点(2)解:①四边形DFAE为直角梯形,上底为AF,下底为DE,高为DF,有条件比较容易在直角三角形DOE中计算出DE长为,DF=a/2,AF=,所以可以求出四边形DFAE的面积为;②在三角形CDF中,,且DF=a/2, FC=AF=,进而可以求解在三角形CDF的面积为;③四边形ACDE就是由四边形DFAE和三角形CDF 组成的,进而可以得到四边形ACDE的面积就等于他们的面积和,为(本题也可以通过证明四边形ACDE为平行四边形,进而通过平行四边形面积公式求解,主要思路合理即可)。