成考高起点《数学》常用公式
- 格式:pdf
- 大小:147.93 KB
- 文档页数:4
成人高考高升专数学常用知识点及公式第1章集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A与集合B的交集记作A∩B,取A、B两集合的公共元素2、并集:集合A与集合B的并集记作A∪B,取A、B两集合的全部元素,取U中所有不属于A的元素3、补集:已知全集U,集合A的补集记作ACu解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙②必要条件看乙是否能推出甲A、若甲=乙但乙=甲,则甲是乙的充分必要条件(充要条件)B、若甲=乙但乙≠甲,则甲是乙的充分不必要条件C、若甲≠乙但乙=甲,则甲是乙的必要不充分条件D、若甲≠乙但乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章不等式和不等式组知识点1:不等式的性质1.不等式两边同加或减一个数,不等号方向不变2.不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”) 解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
成人高考数学公式成人高考数学公式不要标题,且文中不能有标题相同的文字1. 集合的运算:- 并集:$A\cup B = \{x|x\in A \text{或} x\in B\}$- 交集:$A\cap B = \{x|x\in A \text{且} x\in B\}$- 差集:$A-B = \{x|x\in A \text{且} x\notin B\}$- 互斥事件的概率:$P(A\cup B) = P(A) + P(B)$2. 排列与组合:- 排列数:$A_n^m = \frac{n!}{(n-m)!}$- 组合数:$C_n^m = \frac{n!}{m!(n-m)!}$3. 二次方程:- 一元二次方程:$ax^2+bx+c=0$- 解的判别式:$\Delta = b^2-4ac$- 解的公式:$x=\frac{-b\pm\sqrt{\Delta}}{2a}$4. 几何相关公式:- 长方形的面积:$S = a \times b$- 正方形的面积:$S = a^2$- 圆的面积:$S = \pi r^2$- 三角形的面积:$S = \frac{1}{2}bh$5. 平均值和标准差:- 平均值:$\bar{x} = \frac{1}{n}\sum_{i=1}^{n}x_i$- 方差:$Var(x) = \frac{1}{n}\sum_{i=1}^{n}(x_i -\bar{x})^2$- 标准差:$SD(x) = \sqrt{Var(x)}$6. 概率论:- 事件的概率:$P(A) = \frac{\text{有利结果数}}{\text{总可能结果数}}$- 加法法则:$P(A\cup B) = P(A) + P(B) - P(A\cap B)$- 乘法法则:$P(A\cap B) = P(A) \times P(B|A)$7. 三角函数:- 正弦函数:$\sin\theta = \frac{\text{对边}}{\text{斜边}}$- 余弦函数:$\cos\theta = \frac{\text{邻边}}{\text{斜边}}$- 正切函数:$\tan\theta = \frac{\sin\theta}{\cos\theta}$注意:以上只是数学公式的一小部分,具体应根据考试大纲和教材进行复习和备考。
成考复习数学公式数学公式是数学的一种表达方式,它可以简洁地表示数学概念和关系。
在成考数学复习中,数学公式是备考的核心内容之一、下面是一些常见的数学公式,供你参考:1.代数公式:- 二次方程的求根公式:$x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$ - 因式分解公式:$(a+b)^2 = a^2 + 2ab + b^2$- 二次完全平方公式:$a^2 \pm 2ab + b^2 = (a \pm b)^2$- 二项式定理:$(a+b)^n = \binom{n}{0}a^n + \binom{n}{1}a^{n-1}b^1 + \binom{n}{2}a^{n-2}b^2 + \ldots + \binom{n}{n}b^n$2.几何公式:-正方形的面积公式:$S=a^2$- 圆的面积公式:$S = \pi r^2$- 三角形的面积公式:$S = \frac{1}{2}bh$-直角三角形的勾股定理:$a^2+b^2=c^2$3.概率公式:- 事件的概率:$P(A) = \frac{\text{有利结果数}}{\text{总结果数}}$- 互斥事件的概率:$P(A \cup B) = P(A) + P(B)$- 条件概率:$P(A,B) = \frac{P(A \cap B)}{P(B)}$- 全概率公式:$P(A) = P(A,B_1)P(B_1) + P(A,B_2)P(B_2) +\ldots + P(A,B_n)P(B_n)$4.数列与级数公式:-等差数列的通项公式:$a_n=a_1+(n-1)d$-等差数列的求和公式:$S_n = \frac{n}{2}(a_1 + a_n)$-等比数列的通项公式:$a_n = a_1 \cdot q^{n-1}$-等比数列的求和公式(当 $,q,<1$):$S_n = \frac{a_1(1-q^n)}{1-q}$- 无限等比数列求和公式:$S = \frac{a}{1-q}$ (当 $,q,<1$)5.导数与积分公式:- 基本初等函数的导数公式:$(x^n)' = nx^{n-1}, (\sin x)' =\cos x, (\cos x)' = -\sin x$- 和差函数的导数:$(u \pm v)' = u' \pm v'$- 函数乘积求导:$(uv)' = u'v + uv'$- 函数商求导:$\left(\frac{u}{v}\right)' = \frac{u'v -uv'}{v^2}$- 基本不定积分公式:$\int a \, dx = ax + C, \int x^n \, dx = \frac{1}{n+1}x^{n+1} + C$。
成人高考高起点数学根本公式及重要知识点【实数的分类】【自然数】表示物体个数的1、2、3、4···等都称为自然数【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。
一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。
【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。
零的相反数是零。
【绝对值】一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。
从数轴上看,一个实数的绝对值是表示这个数的点离X点距离。
【倒数】1除以一个非零实数的商叫这个实数的倒数。
零没有倒数。
【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。
【方根】如果一个数的n次方〔n是大于1的整数〕等于a,这个数叫做a的n次方根。
【开方】求一数的方根的运算叫做开方。
【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。
【代数式】用有限次运算符号〔加、减、乘、除、乘方、开方〕把数或表示数的字母连结所得的式子,叫做代数式。
【代数式的值】用数值替代代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。
【代数式的分类】【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式【无理式】根号下含有字母的代数式叫做无理式【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式直线:〔不定义〕直线向两方无限延伸,它无端点。
射线:在直线上某一点旁的局部。
射线只有一个端点。
线段:直线上两点间的局部。
它有两个端点。
垂线:如果两条直线相交成直角,那么称这两条直线相互垂直。
其中一条叫另一条的垂线,它们的交点叫垂足。
斜线:如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。
点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。
一、函数1、函数的值域(首先要挖掘隐含的定义域)2、函数的奇偶性(首先定义域必须关于原点对称)3、函数的单调性(注:①先确定定义域;②单调性证明一定要用定义)4、函数的图象5、反函数、幂函数、指数函数、对数函数6、关于恒成立的解题方法小结二、三角函数1、概念2、图象提示:ππ98||1||98149≥⇒≤⇒≤⋅k k T 变题2:kx y cos =在]1,0[∈x 上至少有50个最小值呢提示:12149≤+T T 变题3:若换成kx y sin =呢)0(≠k例2(C87,同课本P229例4) 求︒︒︒︒70sin 50sin 30sin 10sin 的值;分析:只要求︒︒︒70sin 50sin 10sin方法一:由于︒︒︒70,50,10任两角和或差可得特殊角,故任两项用积化和差,分配后 再用积化和差,非特殊角相消;方法二:化成余弦的积︒︒︒80cos ,40cos ,20cos ,由于角成两倍,可︒︒20sin 220sin 2)(33乘;方法三:︒+︒=︒︒-︒=︒106070,106050,由公式)60sin()60sin(sin ααα+︒⋅-︒⋅= α3sin 41。
(要证明)例3(C90)求x x x x y cos sin cos sin ⋅++=的最大值。
特征:x x x x cos sin ,cos sin +的函数;方法:换元:设⎪⎩⎪⎨⎧-∈-=⇒⎭⎬⎫∈=+]2,2[21cos sin cos sin 2t t x x R x t x x 转化为二次函数;[变题]1、求)2)(cos 2(sin +-=x x y 的值域。
提示:可化为x x x x cos sin ,cos sin -的函数,设⎪⎩⎪⎨⎧-∈-=⇒⎭⎬⎫∈=-]2,2[21cos sin cos sin 2t t x x R x t x x2、求xx y 2sin2)sin(-+=π,在],0[π∈x 时的值域。
成人高考高升专数学常用知识点及公式第1章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素解析:集合的交集或并集主要以列举法或不等式的形式出现 知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。
若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。
题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件)B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第2章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。
2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。
3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。
高起点数学部分公式考点:数列等差数列与等比数列:考点:三角函数同角三角函数关系式:平方关系是:1cossin22=+αα倒数关系是:1cottan=⋅αα商数关系是:αααcossintan=,αααsincoscot=。
考点:解三角形解斜三角形:余弦定理:2a=Abccb cos222-+2b=Bacca cos222-+2c=Cabba cos222-+正弦定理:abcbaCaccaBbccbA2cos,2bcos,2acos.222222222-+=-+=-+=的余弦乘积的两倍减去这两边与他们夹角于其余两边的平方的和三角形任一边的平方等面积公式:A bcB acC ab S abc sin 21sin 21sin 21===∆斜三角形的解法特点1、由题意画出示意图2、已知角求角用内角和定理求3、已知两角和其中一角的对边时用正弦定理求4、已知三边时用余弦定理求5、已知两边和它们的夹角时用余弦定理求6、已知边、边、角时用正弦定理求R cC R b B R a A R CcB b A a 2sin ,2sin ,2sin ,2sin sin sin 2======倍。
的值为三角形外接圆半径正弦比值都相等,该比三角形各边与它对角的1. 两点的距离公式:已知),(),,(222111y x P y x P 两点,其距离:22122121)()(y y x x P P -+-=2. 中点公式:已知),(),,(222111y x P y x P 两点,线段21P P 的中点的O 的坐标为),(y x ,则:2,22121y y y x x x +=+=考点:直线直线方程的几种形式:斜截式:b kx y += (可直接读出斜率k)一般式:0=++C By Ax (直线方程最后结果尽量让A>0)点斜式:)(00x x k y y -=-,(已知斜率k 和某点坐标),(00y x 求直线方程方法)两条直线的位置关系:直线222111b x k y l b x k y l +=+=:,: 两条直线平行:21k k = 两条直线垂直:121-=⋅k k点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=1.圆:1、圆的标准方程是:222)()(r b y a x =-+-,其中:半径是r ,圆心坐标为(a ,b ), 2、圆的一般方程是: 022=++++F Ey Dx y x 转化为:(x+D 2)2+(y +E 2)2=D 2+E 2−4F42.椭圆:定义 平面内到两定点的距离的和等于常数的点的轨迹:a PF PF 221=+焦点的位置 焦点在X 轴上焦点在Y 轴上标准方程12222=+by a x 12222=+bx a y 图形性质 长轴长是a 2,短轴长是b 2,焦距21F F =2c ,222c b a +=(a 最大)顶点 A 1(-a,0),A 2(a,0) B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a)B 1(-b,0),B 2(b,0)焦点坐标 F 1(c,o) F 2(-c,o)F 1(o,c) F 2(o,-c)离心率ace =(0<e<1) 准线方程 ca x 2±=ca y 2±=3.双曲线:定义 平面内到两定点的距离的差的绝对值等于常数的点的轨迹:a PF PF 2-21=焦点的位置 焦点在X 轴上焦点在Y 轴上标准方程12222=-b y a x 12222=-bx a y yPxyPO xO图 形性质实轴长是a 2,虚轴长是b 2,焦距21F F =2c ,222b a c +=(c 最大)顶点A 1(-a,0),A 2(a,0)B 1(0,-b),B 2(0,b)A 1(0,-a),A 2(0,a)B 1(-b,0),B 2(b,0)焦点坐标 F 1(c,o) F 2(-c,o)F 1(o,c) F 2(o,-c)离心率ace =(e>1) 准线方程ca x 2±=ca y 2±=渐近线x ab y ±= x ba y ±= 1. 若直线b kx y +=与圆锥曲线交于两点A(x 1,y 1),B(x 2,y 2),则弦长为2212))(1(x x k AB -+=4.标准方程焦点的位置焦点坐标准线方程图像px y 22=x 正半轴⎪⎭⎫⎝⎛02,p 2px -=px y 22-=x 负半轴⎪⎭⎫⎝⎛-02,p 2px =py x 22=y 正半轴⎪⎭⎫ ⎝⎛20p , 2p y -=py x 22-=y 负半轴⎪⎭⎫ ⎝⎛-20p ,2py =。
成人高考高起点《理数》必考公式
2020年成人高考高起点《理数》必考公式
第一章集合和简易逻辑
一、考点:交集、并集、补集
概念:(必考)
1、由所有既属于集合A又属于集合B的元素所组成的集合,叫做集合A和集合B的交集,记作A∩B,读作“A 交B”(求公共元素)
A∩B={x|x∈A,且x∈B}
2、由所有属于集合A或属于集合B的元素所组成的集合,叫做集合A和集合B的并集,记作A∪B,读作“A 并B”(求全部元素)
A∪B={x|x∈A,或x∈B}
解析:集合的交集或并集主要以例举法或不等式的形式出现
二、考点:简易逻辑
概念:
在一个数学命题中,往往由条件A和结论B两部分构成,写成“如果A成立,那么B成立”。
1.充分条件:如果A成立,那么B成立,记作“A→B”“A推出B,B不能推出A”。
2.必要条件:如果B成立,那么A成立,记作“A←B”“B推出A,A不能推出B”。
3.充要条件:如果A→B,又有A←B,记作“A←B”“A推出B ,B推出A”。
解析:分析A和B的关系,是A推出B还是B推出A,然后进行判断。
成人高考高起专《数学》复习资料考试注意要点1)考试采用闭卷笔试形式。
全卷满分为150分,考试时间为120分钟2)考试中可以使用计算器3)考试要求分为三个等级:了解、掌握、灵活运用一、集合和简易逻辑1.集合的概念(灵活运用)子集:对于集合A和集合B,如果A中的所有元素都能在B中找到,则集合A就叫做B的子集,记作:A包含于B,A⊆B并集:由所有属于集合A或属于集合B的元素所组成的集合,记作A∪B交集:由属于A且属于B的相同元素组成的集合,记作A∩B补集:绝对补集。
一般来说,设U是一个集合,A是U的一个子集,则U中所有不属于A的元素称为A在U中的补集2.简易逻辑(灵活运用)判断真假的语句叫命题。
命题真值只能取两个值:真或假。
真对应判断正确,假对应判断错误。
如:真命题:三角形的三角之和为180度如:假命题:人会飞充分条件:如果A能推出B,B不一定能推出A,那么A就是B的充分条件。
如:A为B的子集,即属于A的一定属于B,则有元素x属于A,就一定能推出x属于B必要条件:如果B能推出A,A不一定能推出B,则B为A的必要条件充分必要条件:A能推出B,B也能推出A,则A是B的充分必要条件二、不等式和不等式组1.不等式性质一(灵活运用)1)不等式两边同加或同减一个数,不等号方向不变,若a>b,则a±c>b±c2)不等式两边同乘或同除以一个正数,方向不变3)不等式两边同乘或同除以一个负数,方向改变2.不等式的性质二(掌握)1)如果a>b>0,c>d>0,那么ac>bd2)如果a>b,ab>0,则1/a<1/b3)如果a>b>0,那么a n>b n(n>1)4)|a+b|≤|a|+|b|三、函数1.函数定义域和值域(掌握)Y=f(x)中,x的取值范围即为函数的定义域,y对应x的取值范围为值域2.函数奇偶性(掌握)偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数。
全国成人高考高起点数学公式汇总1.平方差公式 22))((b a b a b a -=-+完全平方公式 2222)(b ab a b a +±=±2.一元二次方程20(0)ax bx c a ++=≠的求根公式 aacb b x 242-±-=.3.充分条件与必要条件:B A ⇒ A 叫B 的充分条件 B A ⇐ A 叫B 的必要条件B A ⇔ A 叫B 的充分必要条件(充要条件)4.函数定义域的求法:(1)分母不能为0;(2)偶次根内大于等于0;(3)对数的真数大于0.5.函数的奇偶性:奇函数(图象关于原点对称):y=sinx 、y=tanx 、y=nx (n 为奇数) 偶函数(图象关于y 轴对称):y=c(常量函数)、y=cosx 、y=nx (n 为偶数) 奇+奇=奇、偶+偶=偶、奇+偶=非奇非偶、奇⨯奇=偶、偶⨯偶=偶、奇⨯偶=奇 6.二次函数的图象和性质:y=ax 2+bx+c(a ≠0)7. (1)指数及其性质:1nn aa-=,1n a =,mn a = 01(0)a a =≠ (2)对数:log 10a =,log 1a a =运算性质:log ()log log a a a MN M N =+,log log log a a a M M N N =-log log n a a M n M =(3)指数函数、对数函数的图象和性质8.一元二次不等式的解法:平方项系数变为正数→令02=++c bx ax 解方程→口决 口决:(根大于号大于大根小于小 、小于号夹在两根之间) 9.绝对值不等式的解法:x a x a x a x a a x a>⇔<-><⇔-<<或10.等差数列与等比数列的性质、公式:11.导数公式:0)(='c (c 为常数),)()(1+-∈='N n nxx n n12.(1)利用导数判断单调性:0)(>'='x f y ,增函数;0<'y ,减函数(2)利用导数求切线方程:求导函数→把点横坐标代入导函数求导数即为k →))((000x x x f y y -'=- (0)(0x x y x f k ='='= )(3)求极值:求定义域→令导函数=0求根→列表(3行)→判断 (4)求最值:令导函数=0求根→求函数值(包括端点)→比较大小 13.特殊角的三角函数值:三角函数值的符号:sin α:一二正三四负 cos α:一四正二三负tan α:一三正二四负14.同角三角函数的基本关系式 商数关系:sin tan cos ααα=平方关系:22sin cos 1αα+= 15.诱导公式:“函数同名称,符号看象限”16.两角和与两角差的三角函数公式: sin()sin cos cos sin αβαβαβ±=± ,cos()cos cos sin sin αβαβαβ±= ,tan tan tan()1tan tan αβαβαβ±±=二倍角公式:sin22sin cos ααα=, ααα2tan 1tan 22tan -=2222cos 2cos sin 2cos 112sin ααααα=-=-=-,17.正弦函数)sin(ϕω+=x A y 的周期公式:T=||2ωπ18.正弦定理:CcB b A a sin sin sin ==(正弦两边一对角,双角必定用正弦) 余弦定理:2222cos a b c bc A =+-,(三边必定用余弦,还有两边一夹角) B ac c a b cos 2222-+=, C ab b a c cos 2222-+=, 三角形面积公式:A bc B ac C ab S sin 21sin 21sin 21===19.向量)(),(2,21,1y x b y x a == 2121|a |y x +=,),(,112121 ),(y x a y y x x b a λλλ=±±=±b a y y x x b a ||||2121⋅⋅=+=•0 ,//21211221=+⇔⊥=⇔y y x x b a y x y x b a22122112,122,21,1||)(),(,)()(,)(点y y x x AB y y x x AB y x B y x A -+-=--=中点坐标公式:1212,22x x y y x x ++==20.直线的斜率:2121tan y y k x x α-==-点斜式:11()y y k x x -=- 斜截式:y kx b =+(b 为y 轴上的截距) 平行:1212,k k b b =≠, 垂直:k 1·k 2=-1,点到直线的距离公式:d =21.(1)圆的标准方程:222()()x a y b r -+-=(2)直线和圆的位置关系:相离d >r ,相切d=r ,相交d <r(d 为圆心到直线距离)22.椭圆(到两焦点距离之和为定长2a )23.双曲线(到两焦点距离之差的绝对值为定长2a)24.抛物线(到焦点距离与到准线距离相等)25.排列数公式:) )(1()2)(1(个连续自然数相乘开始从m n m n n n n A mn +---= n A nn =全排列数:!123)2)(1(⨯⨯--= n n nn nm n m nA A C =组合数:(10==nn n C C ) 26.概率计算公式:)()(总结果数结果数事件即A n m A P =互斥事件概率加法公式:)()()(B P A P B A P +=+ 对立事件概率计算公式:)(1)(A P A P -= 独立事件概率乘法公式:)()()(B P A P B A P •=•28.样本平均数:)(121n x x x nx +++=样本方差:])()()[(1222212x x x x x x ns n -++-+-=。