复变函数试题及答案
- 格式:doc
- 大小:218.50 KB
- 文档页数:5
复变函数考试试题及参考答案下面是十道复变函数考试试题(一)的参考试题及答案:1.计算下列复数的幂函数:$z=1+i$,$n=3$。
答案:$(1+i)^3=-2+2i$。
2.计算下列复数的幂函数:$z=-2+i$,$n=4$。
答案:$(-2+i)^4=7-24i$。
3.求解方程:$z^2+4z+5=0$。
答案:可以使用求根公式求解,$(z+2)^2+1=0$,得到两个解:$z_1=-2+i$和$z_2=-2-i$。
4. 计算下列复数的极坐标形式:$z = 3e^{i \pi/6}$。
答案:$z = 3\cos(\pi/6) + 3i\sin(\pi/6) = \frac{3}{2} + \frac{3\sqrt{3}}{2}i$。
5.计算下列复数的共轭复数:$z=2-i$。
答案:$z^*=2+i$。
6. 将下列复数表示为共轭形式:$z = 4e^{i \pi/3}$。
答案:$z = 4\cos(\pi/3) + 4i\sin(\pi/3) = 4(\frac{1}{2} + \frac{\sqrt{3}}{2}i) = 2 + 2\sqrt{3}i$。
7.计算下列复数的实部和虚部:$z=3+2i$。
答案:实部为3,虚部为28.计算下列复数的模长:$z=-4+3i$。
答案:$,z, = \sqrt{(-4)^2 + 3^2} = \sqrt{16 + 9} = \sqrt{25} = 5$。
9.求复数的幂函数:$z=-1-i$,$n=2$。
答案:$(-1-i)^2=1-2i-1=-2i$。
10. 求复数的幂函数:$z = \sqrt{3} + i$, $n = 3$。
答案:$(\sqrt{3} + i)^3 = -2\sqrt{3} + 2i$。
复变函数与积分变换试题(一)一、填空(3分×10)1.的模 ,幅角 。
)31ln(i --2.-8i 的三个单根分别为: ,,。
3.Ln z 在 的区域内连续。
4.的解极域为:。
z z f =)(5.的导数。
xyi y x z f 2)(22+-==')(z f 6.。
=⎥⎦⎤⎢⎣⎡0,sin Re 3z z s 7.指数函数的映照特点是:。
8.幂函数的映照特点是:。
9.若=F [f (t )],则= F 。
)(ωF )(t f )][(1ω-f 10.若f (t )满足拉氏积分存在条件,则L [f (t )]=。
二、(10分)已知,求函数使函数为解析函222121),(y x y x v +-=),(y x u ),(),()(y x iv y x u z f +=数,且f (0)=0。
三、(10分)应用留数的相关定理计算⎰=--2||6)3)(1(z z z z dz四、计算积分(5分×2)1.⎰=-2||)1(z z z dz2. C :绕点i 一周正向任意简单闭曲线。
⎰-c i z z3)(cos 五、(10分)求函数在以下各圆环内的罗朗展式。
)(1)(i z z z f -=1.1||0<-<i z 2.+∞<-<||1i z 六、证明以下命题:(5分×2)(1)与构成一对傅氏变换对。
)(0t t -δo iwt e -(2))(2ωπδ=⎰∞+∞-ω-dt e t i 七、(10分)应用拉氏变换求方程组满足x (0)=y (0)=z (0)=0的解y (t )。
⎪⎩⎪⎨⎧='+=+'+='++'0401z y z y x z y x 八、(10分)就书中内容,函数在某区域内解析的具体判别方法有哪几种。
复变函数与积分变换试题答案(一)一、1., 2.-i 2i -i22942ln π+ππk arctg 22ln 32+-333.Z 不取原点和负实轴 4. 空集5.2z 6.07.将常形域映为角形域8.角形域映为角形域9.10.⎰∞+∞-ωωπωωd e F i )(21⎰∞+-0)(dte tf st 二、解:∵∴(5分)yu x x v ∂∂-=-=∂∂xuy y v ∂∂==∂∂c xy u +=cxy y x i z f ++⎪⎭⎫ ⎝⎛+-=222121)(∵f (0)=0c =0(3分)∴(2分)222222)2(2)(2)(z ixyi y x i y x i xy z f -=+--=--=三、解:原式=(2分)⎥⎦⎤⎢⎣⎡--∑=k k z z z z s i ,)3)(1(1Re 2621π01=z 12=z (2分)⎥⎦⎤⎢⎣⎡---=∑=k k z z z z s i ,)3)(1(1Re 2643π33=z ∞=4z 2312(3,)3)(1(1Re 66⨯=⎥⎦⎤⎢⎣⎡--分)z z z s =0⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋅--=⎥⎦⎤⎢⎣⎡∞--0,1)31)(11(11Re 2,)3)(1(1Re 266z z z z s z z z s 分)(∴原式=(2分) =23126⨯⨯i πi 63π-四、1.解:原式(3分)z 1=0z 2=1⎥⎦⎤⎢⎣⎡-π=∑=k k z z z s i ,)1(1Re 221=0(2分)]11[2+-=i π2.解:原式=iz z i=''=s co !22πi z z i =-π=)(cos i i cos π-=1ich π-五、1.解:ni z z f ∑∞⎪⎫⎛--⋅=⋅⋅=⋅=1111111111)(分)(分)(分)((2分)11)(--∞=-=∑n n n i z in nn i z i )(1-=∑∞-=2.解:⎪⎭⎫⎝⎛-+⋅-=-+⋅-=i z i i z i z i i z z f 11)(11)(1)(11)(2分)(分)((1分)(2分)nn i z i i z ∑∞=⎪⎭⎫ ⎝⎛---=02)(120)(11+∞=-=∑n n n i z i 20)(--∞=-=∑n n n i z i 六、1.解:∵(3分)∴结论成立0)(0t i e t t ti t i e dt e t t ωωωδ-==--∞+∞-=-⎰(2)解:∵(2分)1)(2210==ωπδπ=ωω-ω-∞+∞-⎰t i t i e dw e ∴与1构成傅氏对)(2w πδ∴(2分))(2ωπδω=-∞+∞-⎰dt e t i 七、解:∵(3分)⎪⎪⎩⎪⎪⎨⎧=+=++=++)3(0)(4)()2(0)()()()1(1)()()(s sZ s Y s Z s sY s X S s sZ s Y s sX S (2)-(1):∴(3分)⎪⎭⎫ ⎝⎛-⋅-=s s s Y 111)(2⎪⎭⎫ ⎝⎛++--=--=1111211112s s s s s s ∴cht e e t Y t t -=--=-121211)(八、解:①定义;②C-R 充要条件Th ;③v 为u 的共扼函数10分复变函数与积分变换试题(二)一、填空(3分×10)1.函数f (z )在区域D 内可导是f (z )在D 内解析的()条件。
---《复变函数》考试试题(一)一、判断题( 20 分):1. 若 f(z) 在 z 0 的某个邻域内可导,则函数f(z) 在 z 0 解析 .2. 有界整函数必在整个复平面为常数.3. 若{ z n }收敛,则{Re z n } 与{Im z n }都收敛 .4. 若 f(z) 在区域 D 内解析,且f '( z),则f ( z) C(常数) 5. 若函数 f(z) 在 z 0 处解析,则它在该点的某个邻域内可以展开为幂级数6. 若 z 0 是 f ( z)的 m 阶零点,则 z 0 是 1/f (z)的 m 阶极点 .lim f ( z)7. 若 zz 0存在且有限,则 z 0 是函数 f(z) 的可去奇点 .( ) ( ) ( ). ( ).( )()()8. 若函数 f(z) 在是区域 D 内的单叶函数,则f ' (z) 0( zD ).()9. 若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线Cf z dz.( )C( )10. 若函数 f(z) 在区域 D 内的某个圆内恒等于常数,则 f(z)在区域 D 内恒等于常数 . ()二. 填空题( 20 分)1、|z z 0 |dz__________. ( n 为自然数)1 ( z z )n2.sin 2zcos 2z_________.3. 函数sin z的周期为 ___________.f (z)z 2 11,则f ( z)的孤立奇点有 __________.4.设5. 幂级数nz n 的收敛半径为 __________.n 06. 若函数 f(z) 在整个平面上处处解析,则称它是__________.lim z nlimz 1z 2 ...z n7. 若 n,则 nn______________.Res(e z8.n,0)________,其中 n 为自然数 .z---9.sin z的孤立奇点为 ________ .z若z 0 是 f (z)lim f (z)___10. 的极点,则z z.三. 计算题( 40 分):f (z)11. 设(z 1)( z 2) ,求 f ( z) 在 D { z : 0 | z | 1} 内的罗朗展式 .1dz.|z| 1cos z2.3. 设f ( z)3 271d{ z :| z | 3} ,试求 f ' (1 i ).Cz,其中 Cz 1w1 的实部与虚部 .4.求复数z四 . 证明题 .(20 分 )1. 函数f (z)在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2. 试证 : f ( z) z(1 z) 在割去线段 0Re z 1 的 z 平面内能分出两个单值解析分支,并求出支割线0 Re z 1上岸取正值的那支在 z 1的值 .《复变函数》考试试题(一)参考答案一. 判断题1.× 2.√ 3.√ 4.√5.√6.√ 7.×8.×9.× 10.×二.填空题2 in1 2.1 ;3. 2k , ( k z) ;4.z i ; 5.11.n;16. 整函数;7. ; 1 ; 9. 0; 10..8.(n 1)!三.计算题 .1. 解因为 0 z 1, 所以 0 z 1f ( z)1 1 1 z zn1 ( z )n.( z 1)(z 2) 1 z 2(1 )n 02 n 0 22---2.解因为z21Re s f (z)lim lim,cosz sin z1 z z z222Re s f (z)lim z2lim1 1 . cosz sin zz z z2 22所以1dz2i(Re s f (z)Re s f (z)0. z2 cosz z2z23.解令 ()3271,则它在 z 平面解析,由柯西公式有在z 3内,f (z)c ()dz2i(z) . z所以 f (1i )2i( z) z 1 i2i (136i )2(613i ) .4.解令 z a bi ,则w z 11212( a1bi )12( a1)2b2. z 1z 1222b22b( a 1) b( a 1)(a 1)z12(a1)z12bb2 .故 Re( z1)1( a1)2b2,Im(z1)(a1)2四. 证明题 .1.证明设在 D 内 f (z) C .令 f ( z) u iv ,2u2v2c2.则 f ( z)两边分别对 x, y 求偏导数,得uu x vv x0(1) uu y vv y0(2)因为函数在 D 内解析,所以 u x v y ,u y v x.代入 (2)则上述方程组变为uu x vv x0 .消去 u x得,(u2v2 )v x0 .vu x uv x01)若 u2v20 ,则 f (z)0 为常数.2)若 v x0,由方程(1) (2) 及C.R.方程有u x0,u y0 , v y0 .所以 u c1, v c2. ( c1 ,c2为常数).---所以 f ( z) c 1 ic 2 为常数 .2. 证明 f ( z)z(1 z) 的支点为 z 0,1 . 于是割去线段 0 Re z 1 的 z 平面内变点就不可能单绕 0 或 1 转一周 , 故能分出两个单值解析分支 .由于当 z 从支割线上岸一点出发 ,连续变动到 z0,1 时 , 只有 z 的幅角增加. 所以f ( z)z(1 z) 的幅角共增加. 由已知所取分支在支割线上岸取正值 , 于是可认为该分2z1的幅角为, 故 f ( 1)i2i .支在上岸之幅角为 0,因而此分支在2e22《复变函数》考试试题(二)一. 判断题 . (20 分)1. 若函数 f ( z)u( x, y) iv ( x, y) 在 D 内连续,则 u(x,y)与 v(x,y)都在 D 内连续 .( ) 2. cos z 与 sin z 在复平面内有界 .()3.若函数 f(z)在 z 解析,则 f(z)在 z 连续 .()0 04. 有界整函数必为常数 .一定不存在 .()5. 如 0是函数f(z)的本性奇点,则 lim f ( z) ()zz z 06. 若函数 f(z)在 z 0 可导,则 f(z)在 z 0 解析 .()7.若 f(z)在区域 D 内解析 , 则对 D 内任一简单闭曲线 Cf (z)dz0 .C( ) 8. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .() 9. 若 f(z)在区域 D 内解析,则 |f(z)|也在 D 内解析 .()10. 存在一个在零点解析的函数1 ) 0 1 1 1,2,... .f(z) 使 f (且 f ( ) ,nn 1 2n 2n( )二 . 填空题 . (20 分)1. 设 zi ,则 | z | __,arg z__, z __2.设 f (z) ( x 22xy) i(1 sin( x 2y 2 ), z x iy C ,则 limf ( z) ________.z 1i3.|z z 0| 1(zdz_________.z )n( n 为自然数)---4.幂级数 nz n的收敛半径为__________ .n05.若 z0是 f(z)的 m 阶零点且 m>0,则 z0是f '( z)的 _____零点 .6.函数 e z的周期为 __________.7.方程 2z5z33z 8 0 在单位圆内的零点个数为________.8.设 f ( z)1,则 f (z) 的孤立奇点有_________.21z9.函数 f ( z) | z | 的不解析点之集为________.10. Res(z41,1) ____ . z三. 计算题 . (40 分)1.求函数sin( 2z3)的幂级数展开式 .2.在复平面上取上半虚轴作割线 . 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点 z i 处的值.i3.计算积分: I| z | dz,积分路径为(1)单位圆( | z | 1)i的右半圆 .sin z dzz 2(z) 24.求2.四. 证明题 . (20 分)1. 设函数 f(z)在区域 D 内解析,试证: f(z)在 D 内为常数的充要条件是 f (z) 在D内解析 .2.试用儒歇定理证明代数基本定理 .《复变函数》考试试题(二)参考答案一.判断题 .1.√2.×3.√4.√ 5.× 6.×7.×8.√9.× 10.× .二.填空题---1.1 ,, i ;2. 3(1sin 2)i ;3.2 i n14. 1;5. m 1 . 0n;216.2k i ,( k z) .7. 0;8. i;9.R ;10. 0.三.计算题1.解 sin(2 z3 )( 1)n (2 z3 )2 n 1(1)n 22n 1 z6n3.n 0(2 n1)!n 0(2n1)!2.解令 z re i.2 ki则 f ( z)z re2,(k0,1).又因为在正实轴去正实值,所以k0 .所以 f (i)ie 4.3.单位圆的右半圆周为z e i,ide i e i 所以 zdz22i22 4.解.2 2 2i .即 u, v 满足 C.R.,且u x , v y , u y ,v x连续 , 故f ( z)在D内解析 .( 充分性 ) 令f ( z)u iv, 则 f ( z)u iv ,因为 f ( z) 与 f ( z) 在D内解析,所以u x v y , u y v x,且 u x ( v) y v y , u y( v x )v x.比较等式两边得u x v y u y v x0 .从而在 D 内 u, v 均为常数,故f ( z)在 D 内为常数.2. 即要证“任一n次方程a0 z n a1z n1a n 1z a n0(a00) 有且只有n 个根”.证明令 f (z)a0 z n a1z n 1a n1za n0 ,取 R max a1a n,1 ,当 za0在 C : z R 上时,有(z)a1 R n 1an 1R a n( a1a n )R n 1a0R n.f ( z) .由儒歇定理知在圆z R 内,方程 a0 z n a1z n 1a n 1z a n0与 a0 z n0有相---同个数的根 . 而 a 0 z n 0 在 z R 内有一个 n 重根 z 0 . 因此 n 次方程在 z R 内有 n 个根 .《复变函数》考试试题(三)一 . 判断题 . (20 分).1. cos z 与 sin z 的周期均为 2k .( )2. 若 f ( z) 在 z 0 处满足柯西 - 黎曼条件 , 则 f ( z) 在 z 0 解析 . ( )3. 若函数 f ( z) 在 z 0 处解析,则 f ( z) 在 z 0 连续 . ( )4. 若数列 { z n } 收敛,则 {Re z n } 与 {Im z n } 都收敛 .( )5.若函数 f ( z) 是区域 D 内解析且在 D 内的某个圆内恒为常数,则数 f ( z) 在区域 D 内为常数 . ( )6. 若函数 f ( z) 在 z 0 解析,则 f ( z) 在 z 0 的某个邻域内可导 . ()7.如果函数 f ( z) 在 D{ z :| z | 1} 上解析 , 且 | f (z) | 1(| z | 1) , 则| f ( z) | 1(| z | 1) .( )8.若函数 f ( z) 在 z 0处解析,则它在该点的某个邻域内可以展开为幂级数.( ) 9. 若 z 0 是 f ( z) 的 m 阶零点 , 则 z 0 是 1/ f ( z) 的 m 阶极点 . ( )10.若z 0 是 f (z)的可去奇点,则 Res( f ( z), z 0 ) 0. ( )二 . 填空题 . (20 分)1. 设 f ( z)1 ,则 f ( z) 的定义域为 ___________.2 z 12. 函数 e z 的周期为 _________.3. 若 z nn 2 i (1 1) n ,则 lim z n__________.1 nnn4. sin 2 z cos 2 z___________.dz5.|z z 0 | 1(z z )n( n 为自然数)_________.6. 幂级数nx n 的收敛半径为 __________.n设 f (z) 1f z 的孤立奇点有z 2 1,则7.( ) __________.ez---9.若 z 是 f (z)的极点,则 lim f (z) ___ .z z 0z10.Res(en ,0) ____ .z三 . 计算题 . (40 分)11. 将函数 f ( z) z 2e z 在圆环域 0 z内展为 Laurent 级数 .2. 试求幂级数n!z n的收敛半径 .n nn3. 算下列积分:e zdz,其中 C是| z |1.Cz 2 (z29)4. 求 z92z6z 28z 2 0 在| z|<1内根的个数 .四 . 证明题 . (20 分)1.函数 f (z) 在区域 D 内解析 . 证明:如果 | f ( z) |在 D 内为常数,那么它在D 内为常数 .2.设 f (z) 是一整函数,并且假定存在着一个正整数 n ,以及两个正数 R 及 M ,使得当 | z|R 时| f ( z) |M | z |n,证明 f (z) 是一个至多 n 次的多项式或一常数。
复变函数期末试题及答案一、选择题(每题5分,共20分)1. 若复数 \( z = a + bi \)(其中 \( a, b \) 为实数),则\( \bar{z} \) 表示()A. \( a - bi \)B. \( -a + bi \)C. \( -a - bi \)D. \( a + bi \)答案:A2. 对于复变函数 \( f(z) = u(x, y) + iv(x, y) \),以下说法正确的是()A. \( u \) 和 \( v \) 都是调和函数B. \( u \) 和 \( v \) 都是解析函数C. \( u \) 和 \( v \) 都是连续函数D. \( u \) 和 \( v \) 都是可微函数答案:A3. 若 \( f(z) \) 在 \( z_0 \) 处可导,则下列说法中正确的是()A. \( f(z) \) 在 \( z_0 \) 处解析B. \( f(z) \) 在 \( z_0 \) 处连续C. \( f(z) \) 在 \( z_0 \) 处可微D. \( f(z) \) 在 \( z_0 \) 处的导数为0答案:C4. 已知 \( f(z) \) 是解析函数,且 \( f(z) \) 在 \( z_0 \) 处有孤立奇点,则 \( f(z) \) 在 \( z_0 \) 处的留数是()A. 0B. \( \infty \)C. 1D. \( -1 \)答案:A二、填空题(每题5分,共20分)1. 若 \( z = x + yi \),且 \( |z| = 2 \),则 \( x^2 + y^2 = \_\_\_\_\_ \)。
答案:42. 设 \( f(z) = z^2 \),则 \( f(2 + 3i) = \_\_\_\_\_ \)。
答案:-5 + 12i3. 若 \( f(z) \) 在 \( z_0 \) 处解析,则 \( f(z) \) 在 \( z_0 \) 处的导数 \( f'(z_0) \) 等于 \_\_\_\_\_。
完整版)复变函数测试题及答案复变函数测验题第一章复数与复变函数一、选择题1.当 $z=\frac{1+i}{1-i}$ 时,$z+z+z$ 的值等于()A) $i$ (B) $-i$ (C) $1$ (D) $-1$2.设复数 $z$ 满足 $\operatorname{arc}(z+2)=\frac{\pi}{3}$,$\operatorname{arc}(z-2)=\frac{5\pi}{6}$,那么 $z$ 等于()A) $-1+3i$ (B) $-3+i$ (C) $-\frac{2}{3}+\frac{2\sqrt{3}}{3}i$ (D) $\frac{1}{3}+2\sqrt{3}i$3.复数 $z=\tan\theta-i\left(\frac{1}{2}\right)$,$0<\theta<\pi$,则 $[0<\theta<\frac{\pi}{2}$ 时,$z$ 的三角表示式是()A) $\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (B)$\sec\theta[\cos\theta+i\sin\theta]$ (C) $-\sec\theta[\cos(\pi+\theta)+i\sin(\pi+\theta)]$ (D) $-\sec\theta[\cos\theta+i\sin\theta]$4.若 $z$ 为非零复数,则 $z^2-\bar{z}^2$ 与$2\operatorname{Re}(z)$ 的关系是()A) $z^2-\bar{z}^2\geq 2\operatorname{Re}(z)$ (B) $z^2-\bar{z}^2=2\operatorname{Re}(z)$ (C) $z^2-\bar{z}^2\leq2\operatorname{Re}(z)$ (D) 不能比较大小5.设 $x,y$ 为实数,$z_1=x+1+\mathrm{i}y,z_2=x-1+\mathrm{i}y$ 且有 $z_1+z_2=12$,则动点 $(x,y)$ 的轨迹是()A) 圆 (B) 椭圆 (C) 双曲线 (D) 抛物线6.一个向量顺时针旋转 $\frac{\pi}{3}$,向右平移 $3$ 个单位,再向下平移 $1$ 个单位后对应的复数为 $1-3\mathrm{i}$,则原向量对应的复数是()A) $2$ (B) $1+3\mathrm{i}$ (C) $3-\mathrm{i}$ (D)$3+\mathrm{i}$7.使得 $z=\bar{z}$ 成立的复数 $z$ 是()A) 不存在的 (B) 唯一的 (C) 纯虚数 (D) 实数8.设 $z$ 为复数,则方程 $z+\bar{z}=2+\mathrm{i}$ 的解是()A) $-\frac{3}{3}+\mathrm{i}$ (B) $-\mathrm{i}$ (C)$\mathrm{i}$ (D) $-\mathrm{i}+4$9.满足不等式$|z+i|\leq 2$ 的所有点$z$ 构成的集合是()A) 有界区域 (B) 无界区域 (C) 有界闭区域 (D) 无界闭区域10.方程 $z+2-3\mathrm{i}=2$ 所代表的曲线是()A) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周 (B) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (C) 中心为 $-2+3\mathrm{i}$,半径为 $2$ 的圆周 (D) 中心为 $2-3\mathrm{i}$,半径为 $2$ 的圆周11.下列方程所表示的曲线中,不是圆周的为()A) $\frac{z-1}{z+2}=2$ (B) $z+3-\bar{z}-3=4$ (C) $|z-a|=1$ ($a0$)12.设 $f(z)=1-z$,$z_1=2+3\mathrm{i}$,$z_2=5-\mathrm{i}$,则 $f(z_1-z_2)$ 等于()A) $-2-2\mathrm{i}$ (B) $-2+2\mathrm{i}$ (C)$2+2\mathrm{i}$ (D) $2-2\mathrm{i}$1.设 $f(z)=1$,$f'(z)=1+i$,则 $\lim_{z\to 0}\frac{f(z)-1}{z}=$ $f(z)$ 在区域 $D$ 内解析,且 $u+v$ 是实常数,则$f(z)$ 在 $D$ 内是常数。
《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 的某个圆恒等于常数,则f(z)在区域D 恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 的罗朗展式.2..cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D 为常数.2. 试证: ()f z 0Re 1z ≤≤的z 平面能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 连续,则u (x,y )与v (x,y )都在D 连续.( )2. cos z 与sin z 在复平面有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 解析,则|f (z )|也在D 解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 解析,试证:f (z )在D 为常数的充要条件是)(z f 在D 解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 解析且在D 的某个圆恒为常数,则数f (z )在区域D 为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z 的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
《复变函数》考试试题(一)一、 判断题(20分):1、若f(z)在z 0的某个邻域内可导,则函数f(z)在z 0解析、 ( )2、有界整函数必在整个复平面为常数、 ( )3、若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛、 ( )4、若f(z)在区域D 内解析,且0)('≡z f ,则C z f ≡)((常数)、 ( )5、若函数f(z)在z 0处解析,则它在该点的某个邻域内可以展开为幂级数、 ( )6、若z 0就是)(z f 的m 阶零点,则z 0就是1/)(z f 的m 阶极点、 ( )7、若)(lim 0z f z z →存在且有限,则z 0就是函数f(z)的可去奇点、 ( )8、若函数f(z)在就是区域D 内的单叶函数,则)(0)('D z z f ∈∀≠、 ( ) 9、 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C0)(=⎰Cdz z f 、( )10、若函数f(z)在区域D 内的某个圆内恒等于常数,则f(z)在区域D 内恒等于常数、( ) 二、填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________、(n 为自然数)2、=+z z 22cos sin _________、 3、函数z sin 的周期为___________、4、设11)(2+=z z f ,则)(z f 的孤立奇点有__________、5、幂级数nn nz∞=∑的收敛半径为__________、6、若函数f(z)在整个平面上处处解析,则称它就是__________、7、若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________、8、=)0,(Re n zz e s ________,其中n 为自然数、9、 zz sin 的孤立奇点为________ 、10、若0z 就是)(z f 的极点,则___)(lim 0=→z f z z 、三、计算题(40分):1、 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 内的罗朗展式、2、 .cos 11||⎰=z dz z3、 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4、 求复数11+-=z z w 的实部与虚部、四、 证明题、(20分) 1、 函数)(z f 在区域D 内解析、 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数、 2、 试证: ()f z =0Re 1z ≤≤的z 平面内能分出两个单值解析分支,并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值、 《复变函数》考试试题(一)参考答案一. 判断题1.×2.√ 3.√ 4.√ 5.√ 6.√ 7.×8.×9.×10.× 二.填空题 1、 2101i n n π=⎧⎨≠⎩ ; 2、 1; 3、 2k π,()k z ∈; 4、 z i =±; 5、 16、 整函数;7、 ξ;8、 1(1)!n -; 9、 0; 10、 ∞、三.计算题、1、 解 因为01,z << 所以01z <<111()(1)(2)12(1)2f z z z z z ==-----001()22nn n n z z ∞∞===-∑∑、 2、 解 因为22212Re ()limlim 1cos sin z z z z s f z z z ππππ→→=+===--, 22212Re ()limlim 1cos sin z z z z s f z z zππππ→-→-=--===-、 所以22212(Re ()Re ()0cos z z z dz i s f z s f z z πππ==-==+=⎰、 3、 解 令2()371ϕλλλ=++, 则它在z 平面解析, 由柯西公式有在3z <内, ()()2()c f z dz i z z ϕλπϕλ==-⎰、所以1(1)2()2(136)2(613)z i f i i z i i i πϕππ=+''+==+=-+、 4、 解 令z a bi =+, 则 222222122(1)2(1)211111(1)(1)(1)z a bi a bw z z a b a b a b -+-+==-=-=-+++++++++、 故 2212(1)Re()11(1)z a z a b -+=-+++, 2212Im()1(1)z bz a b-=+++、 四、 证明题、1、 证明 设在D 内()f z C =、令2222(),()f z u iv f z u v c =+=+=则、两边分别对,x y 求偏导数, 得 0(1)0(2)x x yy uu vv uu vv +=⎧⎨+=⎩因为函数在D 内解析, 所以,x y y x u v u v ==-、 代入 (2) 则上述方程组变为00x x x x uu vv vu uv +=⎧⎨-=⎩、 消去x u 得, 22()0x u v v +=、 1) 若220u v +=, 则 ()0f z = 为常数、2) 若0x v =, 由方程 (1) (2) 及 ..C R -方程有0,x u = 0y u =, 0y v =、 所以12,u c v c ==、 (12,c c 为常数)、 所以12()f z c ic =+为常数、2、证明()f z =0,1z =、 于就是割去线段0Re 1z ≤≤的z 平面内变点就不可能单绕0或1转一周, 故能分出两个单值解析分支、由于当z 从支割线上岸一点出发,连续变动到0,1z = 时, 只有z 的幅角增加π、 所以()f z =2π、 由已知所取分支在支割线上岸取正值, 于就是可认为该分支在上岸之幅角为0, 因而此分支在1z =-的幅角为2π,故2(1)i f e π-==、《复变函数》考试试题(二)一. 判断题、(20分)1、 若函数),(),()(y x iv y x u z f +=在D 内连续,则u (x,y )与v (x,y )都在D 内连续、 ( )2、 cos z 与sin z 在复平面内有界、 ( )3、 若函数f (z )在z 0解析,则f (z )在z 0连续、 ( )4、 有界整函数必为常数、 ( )5、 如z 0就是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在、 ( )6、 若函数f (z )在z 0可导,则f (z )在z 0解析、 ( )7、 若f (z )在区域D 内解析, 则对D 内任一简单闭曲线C 0)(=⎰Cdz z f 、( )8、 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛、 ( ) 9、 若f (z )在区域D 内解析,则|f (z )|也在D 内解析、 ( )10、 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f 、( )二、 填空题、 (20分)1、 设i z -=,则____,arg __,||===z z z2、设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________、3、=-⎰=-1||00)(z z n z z dz_________、(n 为自然数)4、 幂级数0n n nz ∞=∑的收敛半径为__________ 、5、 若z 0就是f (z )的m 阶零点且m >0,则z 0就是)('z f 的_____零点、6、 函数e z 的周期为__________、7、 方程083235=++-z z z 在单位圆内的零点个数为________、 8、 设211)(zz f +=,则)(z f 的孤立奇点有_________、 9、 函数||)(z z f =的不解析点之集为________、10、 ____)1,1(Res 4=-zz 、 三、 计算题、 (40分)1、 求函数)2sin(3z 的幂级数展开式、2、 在复平面上取上半虚轴作割线、 试在所得的区域内取定函数z在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值、3、 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆、4、 求dzz zz ⎰=-22)2(sin π、四、 证明题、 (20分)1、 设函数f (z )在区域D 内解析,试证:f (z )在D 内为常数的充要条件就是)(z f 在D 内解析、2、 试用儒歇定理证明代数基本定理、《复变函数》考试试题(二)参考答案一. 判断题、1.√ 2.×3.√ 4.√ 5.×6.×7.×8.√ 9.×10.×、 二、 填空题1、1,2π-, i ; 2、 3(1sin 2)i +-; 3、2101i n n π=⎧⎨≠⎩; 4、 1; 5、 1m -、 6、 2k i π,()k z ∈、 7、 0; 8、 i ±; 9、 R ; 10、 0、 三、 计算题1、 解 3212163300(1)(2)(1)2sin(2)(21)!(21)!n n n n n n n z z z n n +++∞∞==--==++∑∑、2、 解 令i z re θ=、则22(),(0,1)k if z k θπ+===、又因为在正实轴去正实值,所以0k =、所以4()if i eπ=、3、 单位圆的右半圆周为i z e θ=, 22ππθ-≤≤、所以22222ii i iz dz de ei ππθθππ---===⎰⎰、4、 解dz z zz ⎰=-22)2(sin π2)(sin 2ππ='=z z i 2cos 2ππ==z zi =0、四、 证明题、1、 证明 (必要性) 令12()f z c ic =+,则12()f z c ic =-、 (12,c c 为实常数)、 令12(,),(,)u x y c v x y c ==-、 则0x y y x u v u v ====、 即,u v 满足..C R -, 且,,,x y y x u v u v 连续, 故()f z 在D 内解析、 (充分性) 令()f z u iv =+, 则 ()f z u iv =-, 因为()f z 与()f z 在D 内解析, 所以,x y y x u v u v ==-, 且(),()x y y y x x u v v u v v =-=-=--=-、比较等式两边得 0x y y x u v u v ====、 从而在D 内,u v 均为常数,故()f z 在D 内为常数、2、 即要证“任一 n 次方程 101100(0)n n n n a z a z a z a a --++⋅⋅⋅++=≠ 有且只有 n 个根”、证明 令1011()0nn n n f z a z a z a z a --=++⋅⋅⋅++=, 取10max ,1n a a R a ⎧⎫+⋅⋅⋅+⎪⎪>⎨⎬⎪⎪⎩⎭, 当z 在:C z R =上时, 有 111110()()n n nn n n z a R a R a a a R a R ϕ---≤+⋅⋅⋅++<+⋅⋅⋅+<、()f z =、由儒歇定理知在圆 z R < 内, 方程10110n n n n a z a z a z a --++⋅⋅⋅++= 与 00na z = 有相 同个数的根、 而 00na z = 在 z R < 内有一个 n 重根 0z =、 因此n 次方程在z R <内有n 个根、《复变函数》考试试题(三)一、 判断题、 (20分)、1、 cos z 与sin z 的周期均为πk2、 ( ) 2、 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析、 ( )3、 若函数f (z )在z 0处解析,则f (z )在z 0连续、 ( )4、 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛、 ( )5、 若函数f (z )就是区域D 内解析且在D 内的某个圆内恒为常数,则数f (z )在区域D 内为常数、 ( )6、 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域内可导、 ( )7、 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f 、 ( )8、 若函数f (z )在z 0处解析,则它在该点的某个邻域内可以展开为幂级数、( )9、 若z 0就是)(z f 的m 阶零点, 则z 0就是1/)(z f 的m 阶极点、 ( ) 10、 若z 就是)(z f 的可去奇点,则)),((Res 0=z z f 、( )二、 填空题、 (20分)1、 设11)(2+=z z f ,则f (z )的定义域为___________、2、 函数e z的周期为_________、3、 若n n n i n n z )11(12++-+=,则=∞→n z n lim __________、4、 =+z z 22cos sin ___________、5、 =-⎰=-1||00)(z z n z z dz_________、(n 为自然数) 6、 幂级数∑∞=0n n nx 的收敛半径为__________、7、 设11)(2+=z z f ,则f (z )的孤立奇点有__________、8、 设1-=ze ,则___=z 、9、 若0z 就是)(z f 的极点,则___)(lim 0=→z f z z 、10、 ____)0,(Res =n zze 、三、 计算题、 (40分)1、 将函数12()zf z z e =在圆环域0z <<∞内展为Laurent 级数、2、 试求幂级数nn n z nn ∑+∞=!的收敛半径、3、 算下列积分:⎰-C z z z ze )9(d 22,其中C 就是1||=z 、4、 求0282269=--+-z z z z在|z |<1内根的个数、四、 证明题、 (20分) 1、 函数)(z f 在区域D 内解析、 证明:如果|)(|z f 在D 内为常数,那么它在D 内为常数、 2、 设)(z f 就是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 就是一个至多n 次的多项式或一常数。
复变函数自考试题及答案一、选择题(每题2分,共10分)1. 在复变函数中,下列哪一项不是复数的基本概念?A. 复数域B. 共轭复数C. 复数的模D. 复数的导数答案:D2. 复变函数中的柯西-黎曼方程是指什么?A. 函数的实部和虚部满足的方程B. 函数的导数满足的方程C. 函数的积分满足的方程D. 函数的级数展开满足的方程答案:A3. 下列哪一项不是解析函数的特征?A. 在定义域内处处可导B. 在定义域内连续C. 导数在定义域内连续D. 柯西-黎曼方程成立答案:B4. 复变函数的级数展开中,幂级数的收敛半径是什么?A. 函数的模的最大值B. 函数的实部的最大值C. 函数的虚部的最大值D. 函数的模的倒数答案:D5. 复变函数的积分路径必须是?A. 直线B. 曲线C. 可以是任意形状的连续路径D. 必须闭合的路径答案:C二、填空题(每题3分,共15分)6. 复数 \( z = a + bi \)(其中 \( a, b \in \mathbb{R} \))的共轭复数是 \( \_\_\_\_\_\_\_\)。
答案:\( a - bi \)7. 如果 \( f(z) \) 是解析函数,那么 \( f(z) \) 的导数 \( f'(z) \) 满足________。
答案:柯西-黎曼方程8. 复变函数 \( f(z) = u(x, y) + iv(x, y) \) 的实部 \( u(x, y) \) 和虚部 \( v(x, y) \) 必须满足________。
答案:偏导数的连续性9. 复变函数的级数展开中的幂级数 \( \sum_{n=0}^{\infty} a_n (z- z_0)^n \) 在 \( |z - z_0| < R \) 内收敛,其中 \( R \) 是收敛半径,且 \( R \) 满足________。
答案:Cauchy-Hadamard公式10. 复变函数的积分 \( \oint_C f(z)dz \) 表示沿着闭合路径 \( C \) 的积分,根据柯西积分定理,如果 \( f(z) \) 在闭合路径 \( C \) 内解析,则 \( \oint_C f(z)dz = \_\_\_\_\_\_\_\)。
复变函数期末试题及答案一、选择题1. 下列哪个不是复变函数的定义?A. 函数表达式包含复数部分和常数部分。
B. 函数的定义域为复数集合。
C. 函数表达式只包含实数。
D. 复变函数可以进行加法、减法、乘法和除法运算。
答案:C2. 设函数 f(z) = z^2 - 2z。
那么 f(z) 在 z = 1 处的导数是多少?A. 0B. -1C. 2D. 4答案:B3. 设函数 f(z) = sin(z)。
则它的周期是多少?A. 2πB. πC. 2D. 1答案:A二、填空题1. 复数的共轭是指实数部分相等,虚数部分______的两个复数。
答案:相反2. 设 z = a + bi 是一个复数,其中 a 和 b 分别表示实部和虚部。
那么实部 a = ______,虚部 b = ______。
答案:a,b三、计算题1. 计算复数 z = 2 + 3i 和 w = -1 - 4i 的和 z + w。
解答:z + w = (2 + 3i) + (-1 - 4i)= 1 - i答案:1 - i2. 计算复数 z = 1 + 2i 和 w = 3 - i 的乘积 z × w。
解答:z × w = (1 + 2i)(3 - i)= 3 + 6i - i - 2i^2= 3 + 5i + 2= 5 + 5i答案:5 + 5i四、问答题1. 复数的解析函数具有什么特点?答:复数的解析函数具有以下特点:- 函数的实部和虚部都是解析函数。
- 函数的导数在定义域内处处存在。
- 函数满足柯西-黎曼方程。
2. 复数在数学和实际应用中有什么作用?答:复数在数学和实际应用中具有广泛的作用,包括但不限于以下几个方面:- 复数可以用于表示电路中的交流电信号。
- 复数可以用于解决数学方程中的平方根问题。
- 复数可以用于描述波的传播和干涉现象。
- 复数可以用于解析几何中的向量运算。
以上为复变函数期末试题及答案,希望能对您有所帮助。
二.判断题(每题3分,共30分)
1.n
z z z f =)(在0=z 解析。
【 】
2.)(z f 在0z 点可微,则)(z f 在0z 解析。
【 】 3.z
e z
f =)(是周期函数。
【 】
4. 每一个幂函数在它的收敛圆周上处处收敛。
【 】 5. 设级数
∑∞
=0
n n
c
收敛,而
||0
∑∞
=n n
c
发散,则∑∞
=0
n n n z c 的收敛半径为1。
【 】
6. 1
tan()z
能在圆环域)0(||0+∞<<<<R R z 展开成洛朗级数。
【 】 7. n 为大于1的正整数, Ln Ln n
z n z =成立。
【 】
8.如果函数)(z f =ω在0z 解析,那末映射)(z f =ω在0z 具有保角性。
【 】 9.如果u 是D 内的调和函数,则y
u i x u f ∂∂-∂∂=
是D 内的解析函数。
【 】10.
2122
3
3||||2
2
1
1
12|2(1)
1z z z z dz dz i i z z z z ππ==
=
=
==--⎰
⎰。
【 】 三.(8分)y e v px
sin =为调和函数,求p 的值,并求出解析函数iv u z f +=)(。
四.(8分) 求())
2)(1(--=
z z z
z f 在圆环域21<<z 和+∞<-<21z 内的洛朗展开式。
五.(8分)计算积分
dx x x x
⎰∞
+∞-++54cos 22。
六.(8分)设⎰
-++=
C
d z
z f ξξξξ1
73)(2,其中C 为圆周3||=z 的正向,求(1)f i '+。
七.(8分)求将带形区域})Im(0|{a z z <<映射成单位圆的共形映射。
复变函数与积分变换(A)的参考答案与评分标准 (2007.7.5)
一.填空(各3分)
1.3
ln 2i k e +-π; 2. 三级极点 ;3. 2
3z ;4. 0 ;5. 0 ;6. e
1
;7. 3
22)1(26+-s s ;8. 0; 9. 0 ;10. )]2()2()
2(1
)2(1[
21++-+++-ωπδωπδωωj j 。
二.判断1.错;2.错;3.正确; 4. 错 ;5.正确 ;6.错; 7.错 ;8. 错 ;9. 正确 ;10. 错 。
三(8分) 解: 1)在2||1<<z
11000111111
()()(()())()21222n n n n n n n n z z f z z z z z z z z +∞∞∞
+====-=--=-+--∑∑∑-----4分
2) 在1|2|z <-<∞
2
111111
()(1)(1)(1)122122(2)(2)(1)
2
n n n f z z z z z z z z ∞
+==+=+=+---+----+-∑--4分 四.(8分) 解:被积函数分母最高次数比分子最高次数高二次,且在实轴上无奇点,在上半平面有一个一级极点 -2+i, 故
]2,54[Re 25422i z z e s i dx x x e iz
ix +-++=++⎰∞
+∞-π --------3分
)2sin 2(cos 54))2((lim 22
2i e
z z e i z i iz i z -=+++--=+-→π
π --------6分 故 2cos 254Re 254cos 222e
dx x x e dx x x x ix π
=++=++⎰⎰∞+∞-∞+∞- ---------8分 五.(8分) 解: 22
371
()()C
f z d z ξξξξ++'=-⎰ -------3分 由于1+i 在3||=z 所围的圆域内, 故
i C
i d i i f +='++=+-++=+'⎰122
2|)173(2))1((1
73)1(ξξξπξξξξ)136(2i +-=π -------8分 六. (8分) 解:利用指数函数映射的特点以及上半平面到单位圆的分式线性映射,可以得到
λ
λ
π
π
θ
--=z
a z
a
i e e
e
z f )( (映射不唯一,写出任何一个都算对)
七.(8分) 解:对方程两端做拉氏变换:
1
3
)(3))0()(()0()0()(`2+=
--+'--s s Y y s sY y sy s Y s 代入初始条件,得3
21
13)(2-+++=s s s s Y --------4分
)1)(3(1
)1)(3)(1(3-++-++=s s s s s 3
81185143
++-++-
=s s s
故, t
t t e e e t y 38
18543)(--++-
= ---------8分(用留数做也可以) 复变函数 (A)的参考答案与评分标准 (2007.7.5)
一.填空(各3分)1.3
ln 2i k e
+-π ;2. 三级极点 ;3. 2
3z ; 4. 0 ;5. 0 ;6.
e
1
;7. 1cos 1sin - ;8. 0 ;9. 0 ; 10. 0。
二.判断1.错;2.错;3.正确 ;4. 错 ;5.正确 ;6.错 ;7.错 ;8. 错 ;9. 正确 ;10. 错 。
三.(8分) 解:因为y e
v px
sin =是调和函数,则有
02222=∂∂+∂∂y
v x v ,即 0sin )1(sin sin 22=-=-y e p y e y e p px
px px 故1±=p ---------2分 1) 当 1=p 时, y e v x
sin =, 由C-R 方程,
y e y v x u x cos =∂∂=∂∂, 则)(cos ),(y g y e y x u x +=, 又由 y e x
v
y g y e y u x x sin )(sin -=∂∂-='+-=∂∂,故 0)(='y g , 所以c y g =)( 。
则 c e z f z
+=)( ----------3分
2) 当 1-=p 时, y e
v x
sin -=, 由C-R 方程,
y e y v x u x cos --=∂∂=∂∂, 则)(cos ),(y g y e y x u x +-=-, 又由 y e x
v
y g y e y u x x sin )(sin =∂∂-='+=∂∂-,故 0)(='y g , 所以c y g =)( 。
则 c e z f z
+-=-)( 四(8分) 解: 1)在2||1<<z
11000111111
()()(()())()21222
n n n n n n n n z z f z z z z z z z z +∞∞∞
+====-=--=-+--∑∑∑-----4分
2) 在1|2|z <-<∞
2
0)2(1)1(21)
)
211)(2(1
1(21)1211(21)(+∞
=--+-=-+-+-=+-+-=∑n n n
z z z z z z z z f -------4分
五.(8分) 解:被积函数分母最高次数比分子最高次数高二次,且在实轴上无奇点,在上半平面有
一个一级极点 -2+i, 故
]2,54[Re 25422i z z e s i dx x x e iz
ix +-++=++⎰∞
+∞-π --------3分
)2sin 2(cos 54))2((lim 22
2i e
z z e i z i iz i z -=+++--=+-→π
π --------6分 故 2cos 254Re 254cos 222e
dx x x e dx x x x ix π
=++=++⎰⎰∞+∞-∞+∞- ---------8分
六.(8分) 解: 22
371
()()
C
f z d z ξξξξ++'=
-⎰
-------3分 由于1+i 在3||=z 所围的圆域内, 故
i C
i d i i f +='++=+-++=+'⎰12
2
2|)173(2))1((173)1(ξξξπξξξξ )136(2i +-=π -------8分 七. (8分) 解:利用指数函数映射的特点以及上半平面到单位圆的分式线性映射,可以得到
λ
λ
π
π
θ
--=z
a z
a i e e e z f )( (映射不唯一,写出任何一个都算对)。