初中数学函数之平面直角坐标系综合练习(1)
- 格式:doc
- 大小:449.50 KB
- 文档页数:11
初中数学七年级下册第七章平面直角坐标系综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,任意两点1(A x ,1)y ,2(B x ,2)y .规定运算:①12(A B x x =+⊕,12)y y +;②1212A B x x y y ⊗=+;③当12x x =,且12y y =时,A B =.有下列三个命题:(1)若(1,2)A ,(2,1)B -,则(3,1)A B ⊕=,0A B ⊗=;(2)若A B B C ⊕=⊕,则A C =;(3)对任意点A ,B ,C ,均有()()A B C A B C ⊕⊕=⊕⊕成立.其中正确命题的个数为( )A .0个B .1个C .2个D .3个2、如图所示,笑脸盖住的点的坐标可能为( )A .(5,2)B .(﹣2,3)C .(﹣4,﹣6)D .(3,﹣4)3、根据下列表述,能确定位置的是( )A .光明剧院8排B .毕节市麻园路C .北偏东40°D .东经116.16°,北纬36.39°4、在平面直角坐标系中,点A 的坐标为()21,,将点A 向左平移3个单位长度,再向上平移1个单位长度得到点'A ,则点'A 的坐标为( )A .()12-,B .()50,C .()10-,D .()52,5、如图,在平面直角坐标系中,已知“蝴蝶”上有两点(3,7)A ,(7,7)B ,将该“蝴蝶”经过平移后点A 的对应点为(1,3)A ',则点B 的对应点B '的坐标为( )A .(9,11)B .(9,3)C .(3,5)D .(5,3)6、将点()2,3P -向右平移3个单位,再向下平移2个单位后得到的点P '的坐标为( )A .(-5,1)B .(-4,6)C .(1,1)D .(1,5)7、如图,这是一所学校的平面示意图,在同一平面直角坐标系中,教学楼A 的坐标为()3,0-,实验楼B 的坐标为()2,0,则图书馆C 的坐标为( )A .()0,3B .()1,3--C .()3,0D .()2,0-8、已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .29、如图,A 、B 两点的坐标分别为A (-2,-2)、B (4,-2),则点C 的坐标为( )A .(2,2)B .(0,0)C .(0,2)D .(4,5)10、已知A 、B 两点的坐标分别是()2,3-和()2,3,则下面四个结论:①点A 在第四象限;②点B 在第一象限;③线段AB 平行于y 轴:④点A 、B 之间的距离为4.其中正确的有( )A .①②B .①③C .②④D .③④二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,将点P (﹣1,2)向右平移3个单位得到点Q ,则点Q 的坐标为 ___.2、下图是小明、小刚、小红做课间操时的位置,如果用(4,5)表示小明的位置,(2,4)表示小刚的位置,那么小红的位置可表示为________.3、小华将平面直角坐标系中的点A 向上平移了3个单位长度,得到对应点A 1(10 ,1),则点A 的坐标为_______.4、如图,将一片银杏叶放置到平面直角坐标系中,若银杏叶上A ,B 两点的坐标分别为(﹣1,﹣1),(﹣1,2),则银杏叶杆处点C 的坐标为________.5、已知点P (2﹣2a ,4﹣a )到x 轴、y 轴的距离相等,则点P 的坐标_______.三、解答题(5小题,每小题10分,共计50分)1、如图,在平面直角坐标系中,三角形OBC 的顶点都在网格格点上,一个格是一个单位长度.(1)将三角形OBC 先向下平移3个单位长度,再向左平移2个单位长度(点1C 与点C 是对应点),得到三角形111O B C ,在图中画出三角形111O B C ;(2)直接写出三角形111O B C 的面积为____________.2、如图,在平面直角坐标系中,已知O 是原点,四边形ABCD 是长方形,且四个顶点都在格点上.(1)分别写出A ,B ,C ,D 四个点的坐标;(2)画出将长方形ABCD 先向下平移4个单位,再向右平移2个单位得到的四边形1111D C B A ,并写出其四个顶点的坐标.3、在8×8的正方形网格中建立如图所示的平面直角坐标系,已知A (2,- 4),B (4,-2).C 是第四象限内的一个格点,由点C 与线段AB 组成一个以AB 为底,且腰长为无理数的等腰三角形.(1)填空:C 点的坐标是 ,△ABC 的面积是(2)将△ABC 绕点C 旋转180°得到△A 1B 1C 1,连接AB 1、BA 1, 则四边形AB 1A 1B 的形状是何特殊四边形?___________________.(3)请探究:在坐标轴上是否存在这样的点P ,使四边形ABOP 的面积等于△ABC 面积的2倍?若存在,请求出点P 的坐标;若不存在,请说明理由.4、如图是由边长为2的六个等边三角形组成的正六边形,建立适当的直角坐标系,写出各顶点的坐标.5、(1)写出图中八边形各顶点的坐标;(2)找出图中几个具有特殊位置关系的点,说说它们的坐标之间的关系.---------参考答案-----------一、单选题1、D【分析】根据新的运算定义分别判断每个命题后即可确定正确的选项.【详解】解:(1)A⊕B=(1+2,2-1)=(3,1),A⊗B=1×2+2×(-1)=0,∴①正确;(2)设C(x3,y3),A⊕B=(x1+x2,y1+y2),B⊕C=(x2+x3,y2+y3),∵A⊕B=B⊕C,∴x1+x2=x2+x3,y1+y2=y2+y3,∴x1=x3,y1=y3,∴A=C,∴②正确.(3)∵(A⊕B)⊕C=(x1+x2+x3,y1+y2+y3),A⊕(B⊕C)=(x1+x2+x3,y1+y2+y3),∴(A⊕B)⊕C=A⊕(B⊕C),∴③正确.正确的有3个,故选:D.【点睛】本题考查了命题与定理,解题时注意:判断一件事情的语句,叫做命题.有些命题的正确性是用推理证实的,这样的真命题叫做定理.2、D【分析】根据平面直角坐标系中,各象限内点坐标的特征得出笑脸的位置对应点的特征,进而得出答案.【详解】解:由图形可得:笑脸盖住的点在第四象限,∵第四象限的点横坐标为正数,纵坐标为负数,故笑脸盖住的点的坐标可能为(3,-4).故选D.【点睛】此题主要考查了点所在象限的坐标特征,得出笑脸的横纵坐标符号是解题关键.3、D【分析】根据位置的确定需要两个条件对各选项分析判断即可得解.【详解】解:A.光明剧院8排,没有明确具体位置,故此选项不合题意;B.毕节市麻园路,不能确定位置,故此选项不合题意;C.北偏东40︒,没有明确具体位置,故此选项不合题意;D.东经116.16︒,北纬36.39︒,能确具体位置,故此选项符合题意;故选:D.【点睛】本题考查了坐标确定位置,解题的关键是理解位置的确定需要两个条件.4、A【分析】利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:∵点A的坐标为(2,1),将点A向左平移3个单位长度,再向上平移1个单位长度得到点A′,∴点A′的横坐标是2-3=-1,纵坐标为1+1=2,即(-1,2).故选:A.【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减、右加;上下移动改变点的纵坐标,下减、上加.5、D先根据(37)A ,与点(1,3)A '对应,求出平移规律,再利用平移特征求出点B′坐标即可 【详解】解:∵(37)A ,与点(1,3)A '对应, ∴平移1-3=-2,3-7=-4,先向下平移4个单位,再向左平移2个单位,∵点B (7,7),∴点B′(7-2,7-4)即(5,3)B '.如图所示故选:D .【点睛】本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.6、C【分析】根据平面直角坐标系中点的平移规律求解即可.解:将点()2,3P -向右平移3个单位,得到坐标为(1,3),再向下平移2个单位后得到的点P '的坐标为()1,1.故选:C .【点睛】此题考查了平面直角坐标系中点的平移,解题的关键是熟练掌握平面直角坐标系中点的平移规律.7、B【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示:图书馆C 的坐标为(−1,−3).故选:B .【点睛】此题主要考查了坐标确定位置,正确得出原点位置是解题关键.8、C【分析】由对应点坐标确定平移方向,再由平移得出x ,y 的值,即可计算x +y .【详解】∵A(3,﹣2),B(1,0)平移后的对应点C(5,x),D(y,0),∴平移方法为向右平移2个单位,∴x=﹣2,y=3,∴x+y=1,故选:C.【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.9、B【分析】根据A、B两点的坐标建立平面直角坐标系即可得到C点坐标.【详解】解:∵A点坐标为(-2,-2),B点坐标为(4,-2),∴可以建立如下图所示平面直角坐标系,∴点C的坐标为(0,0),故选B.【点睛】本题主要考查了写出坐标系中点的坐标,解题的关键在于能够根据题意建立正确的平面直角坐标系.10、C【分析】根据点的坐标特征,结合A、B两点之间的距离进行分析即可.【详解】解:∵A、B两点的坐标分别是(-2,3)和(2,3),∴①点A在第二象限;②点B在第一象限;③线段AB平行于x轴;④点A、B之间的距离为4,故选:C.【点睛】本题主要考查了坐标与图形的性质,关键是掌握点的坐标特征.二、填空题1、(2,2)【解析】【分析】点P向右平移3个单位,横坐标加3,纵坐标不变,进而得出点Q的坐标.【详解】解:将点P(﹣1,2)向右平移3个单位得到点Q,点Q的坐标为(13,2)-+,即(2,2),故答案为:(2,2).【点睛】此题考查了坐标与图形的变化-平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.2、(-1,3)【解析】【分析】先根据小明和小刚的位置确定直角坐标系,然后确定小红的位置即可.【详解】解:根据小明和小刚的位置坐标可建立如图平面直角坐标系.由上图可知小红的位置坐标为(-1,3).故填(-1,3).【点睛】本题主要考查了运用类比法确定点的坐标以及平面直角坐标系的应用,根据已知条件建立平面直角坐标系成为解答本题的关键.3、()10,2--【解析】【分析】根据题意,将()110,1A -向下平移3个单位长度即可得到点A ;【详解】∵点A 向上平移了3个单位长度,得到对应点A 1(10-,1),∴将()110,1A -向下平移3个单位长度即可得到点A ,∴点A 的坐标是()10,2--;故答案是()10,2--.【点睛】本题主要考查了坐标与图形平移变化,准确分析计算是解题的关键.4、(1,1)-【解析】【分析】由题意根据A ,B 两点的坐标建立平面直角坐标系,进而即可得出C 的坐标.【详解】解:由题意上A ,B 两点的坐标分别为(﹣1,﹣1),(﹣1,2),可建立如图坐标系,由图可知点C 的坐标为(1,1)-.故答案为:(1,1)-.【点睛】本题考查平面直角坐标系,熟练掌握根据点的坐标建立平面直角坐标系是解题的关键.5、()22-,或()66, 【解析】【分析】利用点P 到x 轴、y 轴的距离相等,得出横纵坐标相等或互为相反数进而得出答案.【详解】解:∵点P (2﹣2a ,4﹣a )到x 轴、y 轴的距离相等,∴224a a =--或()224a a =---,解得:12a =,22a =-,故当2a =时,222a =﹣﹣,42a =﹣,则P (-2,2); 故当2a =-时,226a =﹣,46a =﹣,则P (6,6); 综上所述:P 的坐标为()22-,或()66,. 故答案为:()22-,或()66,. 【点睛】此题主要考查了点的坐标性质,用到的知识点为:点到两坐标轴的距离相等,那么点的横纵坐标相等或互为相反数.三、解答题1、(1)见解析;(2)5【解析】【分析】(1)根据平移的性质先确定O 、B 、C 的对应点O 1、B 1、C 1的坐标,然后顺次连接O 1、B 1、C 1即可;(2)根据111O B C 的面积=其所在的长方形面积减去周围三个三角形的面积进行求解即可.【详解】解:(1)如图所示,111O B C 即为所求;(2)由题意得:11111143421313=5222O B C S =⨯-⨯⨯-⨯⨯-⨯⨯△. 【点睛】本题主要考查了平移作图,三角形面积,解题的关键在于能够熟练掌握平移作图的方法.2、(1)A (-3,1),B (-3,3),C (2,3),D (2,1);(2)图见解析,四个顶点的坐标分别为:A1(-1,-3),()11,1B --,()14,1C -,()14,3D -【解析】【分析】(1)根据已知图形写出点的坐标即可;(2)求出A ,B ,C ,D 四个点向下平移4个单位,再向右平移2个单位的点,连接即可;【详解】(1)由图可知:A (-3,1),B (-3,3),C (2,3),D (2,1);(2)∵A (-3,1),B (-3,3),C (2,3),D (2,1),∴向下平移4个单位,再向右平移2个单位后对应点为()11,3A --,()11,1B --,()14,1C -,()14,3D -,作图如下,【点睛】本题主要考查了平面直角坐标系中写点的坐标,图形的平移,准确分析作图是解题的关键.3、(1)(1,-1); 4 ;(2)矩形;(3)存在,点P 的坐标为(-1,0),(0,-2).【解析】【详解】.解:(1)(1,-1); 4 ;(2) 矩形,(3)存在.由(1)知S △ABC =4,则S 四边形ABOP =8.同(1)中的方法得S △ABO =16-4-4-2=6.当P 在x 轴负半轴时,S △APO =2,高为4,那么底边长为1,所以P (-1,0);当P 在y 轴负半轴时,S △APO =2,高为2,所以底边长为2,此时P (0,-2).而当P 在x 轴正半轴及y 轴正半轴时均不能形成四边形ABOP故点P 的坐标为(-1,0),(0,-2).4、建立平面直角坐标系见解析,六个顶点的坐标分别为()2,0,(,(-,()2,0-,(1,-,(1,.【解析】【分析】首先,根据题意以正六边形的中心为坐标原点,一条对角线所在的直线为x 轴,建立平面直角坐标系;再根据正六边形的性质,写出各顶点的坐标即可.【详解】如果以正六边形的中心为原点,建立如图所示的平面直角坐标系,那么六个顶点的坐标分别为()2,0,(,(-,()2,0-,(1,-,(1,.【点睛】通过此题的解答,主要是考查图形与坐标的知识;根据正六边形的性质,以正六边形的中心为坐标原点,一条对角线所在的直线为x 轴,建立平面直角坐标系,就可以写出各顶点的坐标.5、(1)()6,3A ,()3,6B ,()2,6C -,()5,3D -,()5,2E --,()2,5F --,()3,5G -,()6,2H -;(2)见解析.【解析】【分析】(1)根据图形在平面直角坐标系中的位置即可得出各点坐标;(2)根据点的坐标特点,则可判断点的位置及关系.【详解】解:(1)由图知: ()6,3A ,()3,6B ,()2,6C -,()5,3D -,()5,2E --,()2,5F --,()3,5G -,()6,2H -;(2)具有特殊位置关系的点很多,如下表所示,只要学生能写出几组即可.【点睛】本题考查了点的坐标及其规律,熟练掌握在平面直角坐标系中确定点的坐标和位置的方法是解题的关键.。
初中数学函数之平面直角坐标系知识点总复习附答案(1)一、选择题1.在平面直角坐标系中,点P(-3,4)到x轴的距离为( )A.3 B.-3 C.4 D.-4【答案】C【解析】【分析】纵坐标的绝对值就是点到x轴的距离.【详解】∵|4|=4,∴点P(-3,4)到x轴距离为4.故选C.2.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.3.如图,ABCDEF是中心为原点O,顶点A,D在x轴上,半径为4的正六边形,则顶点F的坐标为()A .()2,23B .()2,2-C .()2,23-D .()1,3- 【答案】C【解析】【分析】 连接OF ,设EF 交y 轴于G ,那么∠GOF=30°;在Rt △GOF 中,根据30°角的性质求出GF ,根据勾股定理求出OG 即可.【详解】解:连接OF ,在Rt △OFG 中,∠GOF=13603026⨯=oo ,OF=4. ∴GF=2,3∴F (-2,3).故选C .【点睛】本题利用了正六边形的对称性,直角三角形30°的角所对的边等于斜边的一半,勾股定理等知识,熟练掌握正六边形的对称性是解答本题的关键.4.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()()()()()()1,02,02,11,11,22,2,,,,,······根据这个规律,第2019个点的纵坐标为( )A.5B.6C.7D.8【答案】B【解析】【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B.【点睛】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.5.如图,在平面直角坐标系中,□ ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是().A.(3,7)B.(5,3)C.(7,3)D.(8,2)【答案】C【解析】【分析】由平行四边形的对边相等且互相平行可得AB=CD,CD∥AB,因为AB=5,点D的横坐标为2,所以点C的横坐标为7,根据点D的纵坐标和点C的纵坐标相同即可的解.【详解】∵四边形ABCD为平行四边形,AB=5,∴AB=CD=5,∵点D的横坐标为2,∴点C的横坐标为2+5=7,∵AB∥CD,∴点D和点C的纵坐标相等为3,∴C点的坐标为(7,3).故选:C.【点睛】本题考查平行四边形的性质以及坐标与图形的性质,解题的关键是熟知与x轴平行的点纵坐标都相等,将点向右移动几个单位横坐标就加几个单位.6.如图,若A、B两点的坐标分别为(﹣3,5)、(3,5),则点C坐标为()A.(﹣2,6)B.(﹣1,6)C.(﹣2,7)D.(﹣1,7)【答案】D【解析】【分析】根据A、B的坐标判断出y轴在AB的垂直平分线上,结合图形可得点C的纵坐标比A、B 的纵坐标大2,然后解答即可.【详解】如图所示,∵A、B两点的坐标分别为(﹣3,5)、(3,5),∴则点C坐标为(﹣1,7),故选:D.【点睛】本题考查了坐标确定位置,准确识图,判断出y轴的位置以及点C的纵坐标与点A、B的纵坐标的关系是解题的关键.7.如图,在平面直角坐标系中,将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,依此方式,绕点O连续旋转2018次得到正方形OA2018B2018C2018,如果点A的坐标为(1,0),那么点B2018的坐标为()A.(1,1)B.(0,2)C.(20,)D.(﹣1,1)【答案】D【解析】分析:根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.详解:∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:OB=2,由旋转得:OB=OB1=OB2=OB3= (2)∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45°,依次得到∠AOB=∠BOB1=∠B1OB2=…=45°,∴B1(0,2),B2(-1,1),B3(-2,0),…,发现是8次一循环,所以2018÷8=252 (2)∴点B2018的坐标为(-1,1)故选:D.点睛:本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角.也考查了坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法8.如图,小手盖住的点的坐标可能为( )A.(-1,1) B.(-1,-1) C.(1,1) D.(1,-1)【答案】D【解析】【详解】解:根据第四象限的坐标特征,易得小手盖住的点的横坐标为正,纵坐标为负,选项D符合此特征,故选:D9.如果点M(3a﹣9,1+a)是第二象限的点,则a的取值范围在数轴上表示正确的是()A.B.C.D.【答案】A【解析】试题分析:点在第二象限的条件是:横坐标是负数,纵坐标是正数.解:∵点M(3a﹣9,1+a)是第二象限的点,∴,解得﹣1<a<3.在数轴上表示为:.故选A.考点:在数轴上表示不等式的解集;解一元一次不等式组;点的坐标.10.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A.O1B.O2C.O3D.O4【答案】A【解析】试题分析:因为A点坐标为(-4,2),所以,原点在点A的右边,也在点A的下边2个单位处,从点B来看,B(2,-4),所以,原点在点B的左边,且在点B的上边4个单位处.如下图,O1符合.考点:平面直角坐标系.11.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵−2<0,3>0,∴(−2,3)在第二象限,故选B.12.在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为( )A.(3,-1) B.(-3,1) C.(1,-3) D.(-1,3)【答案】A【解析】【分析】根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,结合第四象限点(+,-),可得答案.【详解】解:若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为(3,-1),故选:A.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是( )A.(3,4) B.(-3,4) C.(-4,3) D.(4,3)【答案】A【解析】【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【详解】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P 点距y 轴3个单位长度,距x 轴4个单位长度,∴P 点横坐标为3,纵坐标为4,即点P 的坐标为(3,4).故选A .【点睛】本题考查了点的位置判断方法及点的坐标几何意义.14.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限A .一B .二C .三D .四【答案】D【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b -在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.15.在平面直角坐标系中,以A (0,2),B (﹣1,0),C (0.﹣2),D 为顶点构造平行四边形,下列各点中,不能作为顶点D 的坐标是( )A .(﹣1,4)B .(﹣1,﹣4)C .(﹣2,0)D .(1,0)【答案】C【解析】【分析】根据平行四边形的判定,可以解决问题.【详解】若以AB 为对角线,则BD ∥AC ,BD=AC=4,∴D (-1,4)若以BC 为对角线,则BD ∥AC ,BD=AC=4,∴D (-1,-4)若以AC 为对角线,B ,D 关于y 轴对称,∴D (1,0)故选C .【点睛】本题考查了平行四边形的判定,关键是熟练利用平行四边形的判定解决问题.16.会议室2排3号记作(2,3),那么3排2号记作()A.(3,2)B.(2,3)C.(-3,-2) D.(-2,-3)【答案】A【解析】【分析】根据有序数对的意义求解.【详解】会议室2排3号记作(2,3),那么3排2号记作(3,2).故选:A【点睛】关键是理解题意,理解有序数对的意义..17.点P(1,-2)在( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】点P(1,-2)所在的象限是第四象限,故选D.18.在平面直角坐标系中,点(一6,5)位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】【分析】根据所给点的横纵坐标的符号可得所在象限.【详解】解:∵所给点的横坐标是-6为负数,纵坐标是5为正数,∴点(-6,5)在第二象限,故选:B.【点睛】本题考查象限内点的符号特点;用到的知识点为:符号为(-,+)的点在第二象限.19.在平面直角坐标系中,点P(1,-2)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】∵点P(1,-2),横坐标大于0,纵坐标小于0,∴点P(1,-2)在第三象限,故选D.【点睛】本题考查了象限内点的坐标特征,关键是熟记平面直角坐标系中各个象限内点的坐标符号.20.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【答案】B【解析】【分析】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.【详解】根据点P在x轴上,即y=0,可得出m的值,从而得出点P的坐标.解:∵点P(m+3,m+1)在x轴上,∴y=0,∴m+1=0,解得:m=﹣1,∴m+3=﹣1+3=2,∴点P的坐标为(2,0).故选:B.【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m的值是解题关键.。
一、选择题1.如图是北京市地图简图的一部分,图中“故宫”、“颐和园”所在的区域分别是( )D E F6 颐和园奥运村7 故宫 日坛8天坛A .D7,E6B .D6,E7C .E7,D6D .E6,D72.如图是轰炸机机群的一个飞行队形,如果最后两架轰炸机的坐标分别为(2,1)A -和(2,3)B --,那么第一架轰炸机C 的坐标是( )A .(2,3)-B .(2,1)-C .(2,1)--D .(3,2)-3.若点(),A m n 到y 轴的距离是它到x 轴距离的两倍,则( ). A .2m n = B .2m n =C .2m n =D .2m n =4.点M 在第二象限,距离x 轴5个单位长度,距离y 轴3个单位长度,则M 点的坐标为( ) A .(-3,5)B .(5,- 3)C .(-5,3)D .(3,5)5.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1B .79- C .1 D .26.若实数a ,b 2(2)30a b +-=,则点P(a ,b)所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限7.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上8.点(),A m n 满足0mn =,则点A 在( ) A .原点B .坐标轴上C .x 轴上D .y 轴上 9.已知点(224)P m m +,﹣在x 轴上,则点P 的坐标是( ) A .(40),B .(0)4,C .40)(-,D .(0,4)-10.在平面直角坐标中,点()1,2P 平移后的坐标是)3(3,-'P ,按照同样的规律平移其它点,则以下各点的平移变换中( )符合这种要求. A .()3,24(,2)→-B .()(104),5,--→-C .(1.2,5)→(-3.2,6)D .122.5, 1.5,33⎛⎫⎛⎫-→- ⎪ ⎪⎝⎭⎝⎭11.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上12.已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在x 轴的上方,则点P 的坐标为( ) A .(2,3) B .(3,2) C .(2,3)或(-2,3)D .(3,2)或(-3,2)13.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m 其行走路线如图所示,第1次移动到1A ,第2次移动到2A ,…第n 次移动到n A .则32020OA A △的面积是( )A .2504.5mB .2505mC .2505.5mD .21010m14.如图,线段OA ,OB 分别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA 每秒转动45︒,OB 的转动速度是每秒转动30,则第2020秒时,OA 与OB 之间的夹角的度数为( )A .90︒B .145︒C .150︒D .165︒15.已知点M (12,﹣5)、N (﹣7,﹣5),则直线MN 与x 轴、y 轴的位置关系分别为( )A .相交、相交B .平行、平行C .垂直相交、平行D .平行、垂直相交二、填空题16.如图,平面直角坐标系xOy 中,点A(4,3),点B(3,0),点C(5,3),OAB ∆沿AC 方向平移AC 长度的到ECF ∆,四边形ABFC 的面积为_________.17.在平面直角坐标系内,把点A (5,-2)向右平移3个单位,再向下平移2个单位,得到的点B 的坐标为______.18.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)19.如图,()3,3A -,()1,2P -,P 关于直线OA 的对称点为1P ,1P 关于x 轴的对称点为2P ,2P 关于y 轴的对称点为3P ,3P 关于直线OA 的对称点为4P ,4P 关于x 轴的对称点为5P ,5P 关于y 轴的对称点为6P ,6P 关于直线OA 的对称点为7P ,…,则2020P 的坐标是__________.20.平面直角坐标系中,已知点P 到x 轴的距离为2,到y 轴的距离为3,且点P 在第二象限,则点P 的坐标是__________.21.如下图,在平面直角坐标系中,第一次将OAB 变换成11OA B ,第二次将11OA B 变换成22OA B △,第三次将22OA B △变换成33OA B ,…,将OAB 进行n 次变换,得到n n OA B △,观察每次变换中三角形顶点坐标有何变化,找出规律,推测2020A 的坐标是__________.22.如图,点A 的坐标(-2,3)点B 的坐标是(3,-2),则图中点C 的坐标是______.23.如图所示的坐标系中,单位长度为1 ,点 B 的坐标为(1,3) ,四边形ABCD 的各个顶点都在格点上, 点P 也在格点上,ADP △ 的面积与四边形ABCD 的面积相等,写出所有点P 的坐标 _____________.(不超出格子的范围)24.如图,正方形ABCD 的各边分别平行于x 轴或y 轴,蚂蚁甲和蚂蚁乙都由点E (3,0)出发,同时沿正方形ABCD 的边逆时针匀速运动,蚂蚁甲的速度为3个单位长度/秒,蚂蚁乙的速度为1个单位长度/秒,则两只蚂蚁出发后,蚂蚁甲第3次追上蚂蚁乙的坐标是_____.25.如图,在平面直角坐标系中,三角形ABC 经过平移后得到三角形A′B′C′,且平移前后三角形的顶点坐标都是整数.若点P (12,﹣15)为三角形ABC 内部一点,且与三角形A′B′C′内部的点P′对应,则对应点P′的坐标是_____.26.若点()35,62P a a +--到 两坐标轴的距离相等,则a 的值为____________三、解答题27.ABC 在直角坐标系中如图所示. (1)请写出点A 、B 、C 的坐标; (2)求ABC 的面积.28.在平面直角坐标系xOy 中,△ABC 的位置如图所示.(l)分别写出△ABC各个顶点的坐标.(2)请在图中画出△ABC关于y轴对称的图形△A'B'C'.(3)计算出△ABC的面积.29.如图,在平面直角坐标系中,点C(-1,0),点A(-4,2),AC⊥BC且AC=BC,求点B的坐标.30.画图并填空:如图,方格纸中每个小正方形的边长都为1,在方格纸内将ABC经过''',图中标出了点B的对应点B'.请利用网格点和直尺画图或计一次平移后得到A B C算:''';(1)在给定方格纸中画出平移后的A B C(2)画出AB边上的中线CD及高线CE;(3)在上述平移中,边AB所扫过的面积为.。
初中数学七年级下册第七章平面直角坐标系综合训练(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、在平面直角坐标系中,AB=5,且AB ∥y 轴,若点A 的坐标为(-4,3),点B 的坐标是( )A .(0, 0)B .(-4,8)C .(-4,-2)D .(-4,8)或(-4,-2)2、如图是某校的平面示意图的一部分,若用“()0,0”表示校门的位置,“()0,3”表示图书馆的位置,则教学楼的位置可表示为( )A .()0,5B .()5,3C .()3,5D .()5,3-3、在平面直角坐标系中,点A (0,3),B (2,1),经过点A 的直线l ∥x 轴,C 是直线l 上的一个动点,当线段BC 的长度最短时,点C 的坐标为( )A .(0,1)B .(2,0)C .(2,﹣1)D .(2,3)4、如图,在平面直角坐标系上有点A (1,0),点A 第一次跳动至点A 1(﹣1,1),第四次向右跳动5 个单位至点A 4(3,2),…,依此规律跳动下去,点A 第2020次跳动至点A 2020的坐标是( )A .(﹣2020,1010)B .(﹣1011,1010)C .(1011,1010)D .(2020,1010)5、岚山根——袁家村·运城印象全民健身游乐场,位处运城市黄金旅游路线上,南靠中条山,东临九龙山,西临凤凰谷和死海景区,是运城盐湖区全域旅游中项目最全,规模最大的标志性综合游乐场(图1).若利用网格(图2)建立适当的平面直角坐标系,表示冲浪乐园的点的坐标为()2,1A ,表示特色小吃米线的坐标为()4,2B -,那么儿童游乐园所在的位置C 的坐标应是( )A .()5,1-B .()2,4--C .()6,2--D .()5,1--6、某气象台为了预报台风,首先需要确定台风中心的位置,则下列说法能确定台风中心位置的是( )A .北纬38°B .距气象台500海里C .海南附近D .北纬38°,东经136°7、若点B (m +1,3m ﹣5)到x 轴的距离与到y 轴的距离相等,则点B 的坐标是( )A .(4,4)或(2,2)B .(4,4)或(2,﹣2)C .(2,﹣2)D .(4,4)8、洞天福地、花海毕节,以下能准确表示毕节市某地地理位置的是( )A.在贵州的西北部 B.北纬27°36'C.乌蒙山腹地D.北纬27°36',东经105°39'9、在平面直角坐标系中,如果点A既在x轴的上方,又在y轴的左边,且距离x轴,y轴分别为5个单位长度和4个单位长度,那么点A的坐标为().A.(5,-4)B.(4,-5)C.(-5,4)D.(-4,5)10、在图中,所画的平面直角坐标系正确的是()A.B.C.D.二、填空题(5小题,每小题4分,共计20分)1、点A的坐标为(5,-3),点A关于y轴的对称点为点B,则点B的坐标是__________.2、在平面直角坐标系中,O为坐标原点,已知:A(3,2),B(5,0),则△AOB的面积为___________.3、若x轴上的点Q到y轴的距离为6,则点Q的坐标为______.4、如图,某吉祥物所处的位置分别为M(﹣2,2)、B(1,1),则A、C、N三点中为坐标原点的是______点.5、已知点(210,39)P m m --在第二象限,且离x 轴的距离为3,则|3||5|m m ++-=____.三、解答题(5小题,每小题10分,共计50分)1、在直角坐标系中,如果a ,b 都为正数,那么点()0,a ,(),0b 分别在什么位置?2、如图,在平面直角坐标系中,三角形ABC 三个顶点的坐标分别为()()()2,2,3,1,0,2A B C --.点P (,)a b 是三角形ABC 的边AC 上任意一点,三角形ABC 经过平移后得到三角形A B C ''',已知点P 的对应点P '()2,3a b -+.(1)在图中画出平移后的三角形A B C ''',并写出点,,A B C '''的坐标;(2)求三角形ABC 的面积.3、(1)写出图中八边形各顶点的坐标;(2)找出图中几个具有特殊位置关系的点,说说它们的坐标之间的关系.4、已知A (-2,0),B (4,0),C (x ,y )(1)若点C 在第二象限,且44x y ==,,求点C 的坐标, (2)在(1)的条件下,求三角形ABC 的面积;5、如图,在平面直角坐标系中,点A (4,0),B (3,4),C (0,2).(1)求S 四边形ABCO ;(2)连接AC ,求S △ABC ;(3)在x 轴上是否存在一点P ,使S △PAB =8?若存在,请求点P 坐标.---------参考答案-----------一、单选题1、D【分析】根据AB ∥y 轴,点A 的坐标为(-4,3),可得点B 的横坐标为-4,设点B 的纵坐标为m ,由AB =5,可得35m -=,解绝对值方程即可.【详解】解:∵AB ∥y 轴,点A 的坐标为(-4,3),∴点B 的横坐标为-4,设点B 的纵坐标为m ,∵AB =5, ∴35m -=,解得8m =或2m =-,∴B 点坐标为(-4,-2)或(-4,8),故选D .【点睛】本题主要考查了平行于y 轴的直线的特点,解绝对值方程,解题的关键在于能够根据题意得到35m -=.2、B【分析】根据校门和图书馆的额坐标,可得出校门为坐标原点,过校门的水平方向为x 轴,竖直方向为y 轴,从而得出教学楼的坐标.【详解】解:∵校门()0,0,图书馆()0,3∴建立坐标系,如下图:∴教学楼的位置可表示为(5,3)故选:B【点睛】本题考查了坐标确定位置,平面位置对应平面直角坐标系,解题的关键是根据题意正确建立平面直角坐标系.3、D【分析】根据垂线段最短可知BC⊥l,即BC⊥x轴,由已知即可求解.【详解】解:∵点A(0,3),经过点A的直线l∥x轴,C是直线l上的一个动点,∴点C的纵坐标是3,根据垂线段最短可知,当BC⊥l时,线段BC的长度最短,此时, BC⊥x轴,∵B(2,1),∴点C的横坐标是2,∴点C坐标为(2,3),故选:D.【点睛】本题考查坐标与图形、垂线段最短,熟知图形与坐标的关系,掌握垂线段最短是解答的关键.4、C【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,然后写出即可.【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…∴第2n 次跳动至点的坐标是(n +1,n ),∴第2020次跳动至点的坐标是(1010+1,1010)即(1011,1010).故选C .【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键.5、C【分析】根据浪乐园的点的坐标为()2,1A ,特色小吃米线的坐标为()4,2B -建立直角坐标系即可求解.【详解】解:根据浪乐园的点的坐标为()2,1A ,表示特色小吃米线的坐标为()4,2B -建立平面直角坐标系,得,儿童游乐园所在的位置C的坐标应是(-6,-2)故选:C.【点睛】本题考查平面内点的坐标特点;能够根据已知的点确定原点的位置,建立正确的平面直角坐标系是解题的关键.6、D【分析】根据坐标确定位置的相关知识可直接进行排除选项.【详解】解:A、北纬38°不能确定台风中心的具体位置,故不符合题意;B、距气象台500海里,范围太广,不能确定台风中心位置,故不符合题意;C、海南附近,范围太广,不能确定台风中心位置,故不符合题意;D、北纬38°,东经136°,表示具体坐标,能确定台风中心位置,故符合题意;故选D.【点睛】本题主要考查坐标表示位置,解题的关键是判断是不是利用坐标来表示位置.7、B【分析】根据到x轴的距离与它到y轴的距离相等可得m+1=3m-5,或m+1+3m-5=0,解方程可得m的值,求出B 点坐标.【详解】解:由题意得:m+1=3m-5,或m+1+3m-5=0,解得:m=3或m=1;当m=3时,点B的坐标是(4,4);当m=1时,点B的坐标是(2,-2).所以点B的坐标为(4,4)或(2,-2).故选:B.【点睛】本题主要考查了点的坐标,关键是掌握到x轴的距离与它到y轴的距离相等时横坐标的绝对值=纵坐标的绝对值.8、D【分析】根据题意,准确表示毕节市地理位置,需要两个指标:经度和纬度即可得出结果.【详解】解:准确表示毕节市地理位置,需要两个指标:经度和纬度,A、C、两个选项都不能准确表示,B、只有纬度,无经度,故选:D.【点睛】题目主要考查位置的表示,理解题意,将坐标与实际相结合是解题关键.9、D【分析】根据点A既在x轴的上方,又在y轴的左边,即可判断点A在第二象限,再根据点A距离x轴,y轴分别为5个单位长度和4个单位长度,即可求出点A的坐标.【详解】解:∵点A既在x轴的上方,又在y轴的左边,∴点A在第二象限,又∵点A距离x轴,y轴分别为5个单位长度和4个单位长度,∴点A的坐标为(-4,5),故选D.【点睛】本题主要考查了点到坐标轴的距离,点所在的象限,解题的关键在于能够根据题意确定A在第二象限.10、C【分析】根据平面直角坐标系的定义判断即可.【详解】解:A、原点的位置错误,坐标轴上y的字母位置错误,错误;B、两坐标轴不垂直,错误;C、符号平面直角坐标系的定义,正确;D、x轴和y轴的方向有错误,坐标系无箭头,错误.故选:C.【点睛】本题考查平面直角坐标系,在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系,解题关键是掌握平面直角坐标系坐标轴的位置.二、填空题1、(-5,-3)【解析】【分析】关于y轴对称的点的特征:纵坐标不变,横坐标变为原来的相反数,据此可以求出B点坐标.【详解】解:点A的坐标为(5,-3),关于y轴对称的对称点B的坐标为(-5,-3).故答案为:(-5,-3).【点睛】本题考察直角坐标系、关于y轴对称的点的特征,是基础考点,掌握相关知识是解题的关键.2、5【解析】【分析】首先在坐标系中标出A、B两点坐标,由于B点在x轴上,所以面积较为容易计算,根据三角形面积的计算公式,即可求出△AOB的面积.【详解】解:如图所示,过A点作AD垂直x轴于D点,则h=2,∴1152522AOBS OB AD==⨯⨯=.故答案为:5.【点睛】本题主要考查的是坐标系中三角形面积的求法,需要准确对点位进行标注,并根据公式进行求解即可.3、 (6,0)或(-6,0)【解析】【分析】根据x轴上的点的坐标特征,可知点A的纵坐标为0;接下来根据点A到y轴的距离即可求出其横坐标,进而得到答案.【详解】解:根据题意可知点A的纵坐标为0.∵点A到y轴的距离为6,∴点A的横坐标为±6,∴点A的坐标为(6,0)或(-6,0).【点睛】本题主要考查坐标轴上的点的特征和点的坐标的定义,熟练掌握坐标轴上点的坐标的特点,平面直角坐标系内的点与有序实数对的关系是解题的关键.4、A【解析】【分析】根据点的平移规律将点B 移动到原点即可.【详解】解:∵B (1,1),∴点B 向左一个单位,向下一个单位为坐标原点,即点A 为坐标原点.故答案为:A .【点睛】本题考查了平面直角坐标系,点的平移规律,熟练掌握平面直角坐标系中点的坐标表示方法是解本题的关键.5、8【解析】【分析】根据题意可得393m -=,求出m 的值,代入|3||5|m m ++-计算即可.【详解】 解:点(210,39)P m m --在第二象限,且离x 轴的距离为3,393m ∴-=,解得4m =,|3||5|m m ∴++-71=+8=.故答案为:8.【点睛】本题考查了平面直角坐标系-点到坐标轴的距离,绝对值的意义,跟具体题意求出m 的值是解本题的关键.三、解答题1、点()0,a 在纵轴的正半轴上;(),0b 在横轴的正半轴上.【解析】【分析】根据坐标轴上点的特征解答.【详解】解:∵a ,b 都是正数,∴点(a ,0),(b ,0)分别在x 轴正半轴上,x 轴正半轴上.【点睛】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.2、(1)作图见解析,()()()4,1,1,4,2,5A B C '--;(2)7【解析】【分析】(1)直接利用P 点平移变化规律得出A ′、B ′、C ′的坐标;直接利用得出各对应点位置进而得出答案;(2)利用三角形ABC 所在矩形面积减去周围三角形面积进而得出答案.【详解】解:(1)∵P (,)a b 到点P 的对应点P '()2,3a b -+,横坐标向左平移了两个单位,纵坐标向上平移了3个单位.∵()()()2,2,3,1,0,2A B C --,∴()()()4,1,1,4,2,5A B C '--,如图所示,三角形A ′B ′C ′即为所求,(2)三角形ABC 的面积为:4×5−12×1×3−12×2×4−12×3×5=7.【点睛】此题主要考查了平移变换以及三角形面积求法,正确得出对应点位置是解题关键.3、(1)()6,3A ,()3,6B ,()2,6C -,()5,3D -,()5,2E --,()2,5F --,()3,5G -,()6,2H -;(2)见解析.【解析】【分析】(1)根据图形在平面直角坐标系中的位置即可得出各点坐标;(2)根据点的坐标特点,则可判断点的位置及关系.【详解】解:(1)由图知: ()6,3A ,()3,6B ,()2,6C -,()5,3D -,()5,2E --,()2,5F --,()3,5G -,()6,2H -;(2)具有特殊位置关系的点很多,如下表所示,只要学生能写出几组即可.【点睛】 本题考查了点的坐标及其规律,熟练掌握在平面直角坐标系中确定点的坐标和位置的方法是解题的关键.4、(1)点C 的坐标为(-4,4);(2)三角形ABC 的面积为12.【解析】【分析】(1)根据点C (x ,y )在第二象限,可得0,0x y <> ,再由44x y ==,,即可求解; (2)根据A (-2,0),B (4,0),可得AB =6,即可求解.【详解】解:(1)∵点C (x ,y )在第二象限,∴0,0x y <> , ∵44x y ==,, ∴4,4x y =-= ,∴点C 的坐标为(-4,4);(2)∵A (-2,0),B (4,0),∴AB =6, ∴146122ABCS =⨯⨯= . 【点睛】本题主要考查了平面直角坐标系内,各象限内点的坐标特征,三角形的面积,熟练掌握平面直角坐标系内,各象限内点的坐标特征是解题的关键.5、(1)11;(2)7;(3)存在,(0,0)或(8,0).【解析】【分析】(1)如图1,过点B 作BD ⊥OA 于点D ,根据 S 四边形ABCO =S 梯形CODB +S △ABD ,利用面积公式求解即可;(2)根据S △ABC =S 四边形ABCO -S △AOC ,利用面积公式求解即可;(3)设P(m,0),构建方程求出m即可.【详解】解:(1)如图1,过点B作BD⊥OA于点D,∵点A(4,0),B(3,4),C(0,2),∴OC=2,OD=3,BD=4,AD=4-3=1,∴S四边形ABCO=S梯形CODB+S△ABD=1(24)32⨯+⨯+1142⨯⨯=9+2=11;(2)如图2,连接AC,S△ABC=S四边形ABCO-S△AOC=11-1422⨯⨯=11-4=7;(3)设P(m,0),则有12×|m-4|×4=8,∴m=0或8,∴P(0,0)或(8,0).【点睛】本题考查了三角形的面积,坐标与图形的性质等知识,解题的关键是学会利用分割法求四边形面积,学会利用参数构建方程解决问题.。
初中数学:平面直角坐标系及函数初步习题精选(附参考答案)1.如图,已知在平面直角坐标系中的一点P恰好被墨水遮住了,则点P的坐标不可能是()A.(-2,3)B.(-3,2)C.(-3,3)D.(-2,-3)2.在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,-b),则ab的值为()A.-4B.4C.12D.-123.点A(-3,4)到y轴的距离是()A.3B.4C.5D.74.点A(3,-2)关于x轴对称的点的坐标是____________.5.已知点P(5a+7,6a+2)在一、三象限的角平分线上,则a=_____.6.函数y=√x+3+1x−1的自变量x的取值范围是()A.x≠-3且x≠1B.x>-3且x≠1C.x>-3D.x≥-3且x≠17.下列各曲线中,不表示y是x的函数的是()A B C D8.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是()A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x9.如图,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:cm3)表示注入容器内的水量,则表示V 与h的函数关系的图象大致是()A B C D10.)已知A,B两地相距720 m,甲从A地去B地,乙从B地去A地,图中分别表示甲、乙两人离B地的距离y(单位:m),下列说法正确的是()A.乙先走5 minB.甲的速度比乙的速度快C.12 min时,甲、乙相距160 mD.甲比乙先到2 min参考答案1.如图,已知在平面直角坐标系中的一点P恰好被墨水遮住了,则点P的坐标不可能是(D)A.(-2,3)B.(-3,2)C.(-3,3)D.(-2,-3)2在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,-b),则ab的值为(D)A.-4B.4C.12D.-123.点A(-3,4)到y轴的距离是(A)A.3B.4C.5D.74.点A(3,-2)关于x轴对称的点的坐标是(3,2)5.已知点P(5a+7,6a+2)在一、三象限的角平分线上,则a=5解析:∵点P(5a+7,6a+2)在第一、三象限的角平分线上,∴5a+7=6a+2解得a=5故答案为56.函数y=√x+3+1x−1的自变量x的取值范围是(B)A.x≠-3且x≠1 B.x>-3且x≠1 C.x>-3D.x≥-3且x≠1解析:函数y=√x+3+1x−1的自变量x的取值范围是x+3>0,且x-1≠0解得x>-3且x≠1故选B7.下列各曲线中,不表示y是x的函数的是(C)A B C D8.某油箱容量为60升的汽车,加满汽油后行驶了100千米时,油箱中的汽油大约消耗了15.若加满汽油后汽车行驶的路程为x千米,油箱中剩余油量为y升,则y与x之间的函数表达式是(D)A.y=0.12xB.y=60+0.12xC.y=-60+0.12xD.y=60-0.12x9.如图,有一个容器水平放置,往此容器内注水,注满为止.若用h(单位:cm)表示容器底面到水面的高度,用V(单位:cm3)表示注入容器内的水量,则表示V 与h的函数关系的图象大致是(B)A B C D10.已知A,B两地相距720 m,甲从A地去B地,乙从B地去A地,图中分别表示甲、乙两人离B地的距离y(单位:m),下列说法正确的是(D)A.乙先走5 minB.甲的速度比乙的速度快C.12 min时,甲、乙相距160 mD.甲比乙先到2 min。
初中数学七年级下册第七章平面直角坐标系专题练习(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图,在平面直角坐标系中,存在动点P 按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2021次运动后,点P 的坐标是( )A .(2022,1)B .(2021,0)C .(2021,1)D .(2021,2)2、平面直角坐标系中,属于第四象限的点是( )A .()3,4--B .()3,4C .()3,4-D .()3,4-3、如图,每个小正方形的边长为1,在阴影区域的点是( )A .(1,2)B .(﹣1,﹣2)C .(﹣1,2)D .(1,﹣2)4、如图所示,已知棋子“车”的坐标为(2-,1-),棋子“马”的坐标为(1,1-),则棋子“炮”的坐标为( )A.(3,2) B.(3-,2)C.(3,2-) D.(3-,2-)5、点A在x轴上,位于原点的左侧,距离坐标原点4个单位长度,则点A的坐标为()A.(0,4)B.(4,0)C.(0,﹣4)D.(﹣4,0)6、在平面直角坐标系中,点A的坐标为(-2,3)若线段AB∥y轴,且AB的长为4,则点B的坐标为()A.(-2,-1)B.(-2,7)C.(﹣2,-1)或(-2,7)D.(2,3)7、根据下列表述,不能确定具体位置的是()A.电影院一层的3排4座B.太原市解放路85号C.南偏西30D.东经108︒,北纬53︒8、根据下列表述,能确定位置的是()A.红星电影院2排 B.北京市四环路C.北偏东30D.东经118︒,北纬40︒9、在图中,所画的平面直角坐标系正确的是()A.B.C.D .10、下列各点,在第一象限的是( )A .(2,1)-B .(2,1)-C .(2,1)D .(2,1)--二、填空题(5小题,每小题4分,共计20分)1、已知点()2,1P m m -在第二、四象限的角平分线上,则m 的值为______.2、将点P (2,1)沿x 轴方向向左平移3个单位,再沿y 轴方向向上平移2个单位,所得的点的坐标是_______.3、如图,将一等边三角形的三条边各8等分,按顺时针方向(图中箭头方向)标注各等分点的序号 0、1、2、3、4、5、6、7、8,将不同边上的序号和为 8 的两点依次连接起来,这样就建立了“三角形”坐标系.在建立的“三角形”坐标系内,每一点的坐标用过这一点且平行(或重合)于原三角形三条边的直线与三边交点的序号来表示(水平方向开始、按顺时针方向、取与三角形外箭头方向一致的一侧序号),如点 A 的坐标可表示为(1,2,5),点 B 的坐标可表示为(4,3,1),按此方法,若点 C 的坐标为(2,m ,m -2),则 m =__________.4、如图,在中国象棋棋盘上建立平面直角坐标系,若“帅”位于点(﹣1,﹣2)处,则“兵”位于点__________处.5、如图,将△AOB 沿x 轴方向向右平移得到△CDE ,点B 的坐标为(3,0),DB =1,则点E 的坐标为 ___.三、解答题(5小题,每小题10分,共计50分)1、长方形的两条边长分别为8,6,建立适当的直角坐标系,并写出它的四个顶点的坐标.2、(1)在平面直角坐标系中描出点()()()()()8,7,7,3,6,7,5,3,4,7A B C D E -----,并将它们依次连接;(2)将(1)中所画图形先向右平移10个单位长度,再向下平移10个单位长度,画出第二次平移后的图形;(3)如何将(1)中所画图形经过一次平移得到(2)中所画图形?平移前后对应点的横坐标有什么关系?纵坐标呢?3、郑州市区的许多街道习惯用“经几纬几”来表示.小颖所乘的汽车从“经七纬五”出发,经过“经六纬五”到达“经五纬一”.(1)在图上标出“经五纬一”的位置;(2)在图上标出小颖所乘汽车可能行驶的一条路线图.还有其他可能吗?(3)你能说出图中“华美达广场”的位置吗?4、如图是某地火车站及周围的简单平面图.(图中每个小正方形的边长代表1千米)(1)请以火车站所在的位置为坐标原点,以图中小正方形的边长为单位长度,建立平面直角坐标系,并写出体育场A、超市B、市场C、文化宫D的坐标;(2)在(1)中所建的坐标平面内,若学校E的位置是(﹣3,﹣3),请在图中标出学校E的位置.5、在平面直角坐标系中,△ABC的三个顶点的位置如图所示,将△ABC向左平移3个单位,再向下平移2个单位.(1)写出△ABC的三个顶点坐标;(2)请画出平移后的△A′B′C′,并求出△A′B′C′的面积.---------参考答案-----------一、单选题1、C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,…4个数一个循环,进而可得经过第2021次运动后,动点P的坐标.【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次接着运动到点(5,1),…按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以2021÷4=505…1,所以经过第2021次运动后,动点P的坐标是(2021,1).【点睛】本题考查了规律型−点的坐标,解决本题的关键是观察点的坐标变化寻找规律.2、D【分析】根据各象限内点的符号特征判断即可.【详解】解:A.(-3,-4)在第三象限,故本选项不合题意;B.(3,4)在第一象限,故本选项不合题意;C.(-3,4)在第二象限,故本选项不合题意;D.(3,-4)在第四象限,故本选项符合题意;故选:D.【点睛】本题主要考查了点的坐标,关键是掌握四个象限内点的坐标符号,第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).3、C【分析】根据平面直角坐标系中点的坐标的表示方法求解即可.【详解】解:图中阴影区域是在第二象限,A.(1,2)位于第一象限,故不在阴影区域内,不符合题意;B.(-1,-2)位于第三象限,故不在阴影区域内,不符合题意;C.(﹣1,2)位于第二象限,其横纵坐标的绝对值不超过3,故在阴影区域内,符合题意;D. (1,-2)位于第四象限,故不在阴影区域内,不符合题意.【点睛】此题考查了平面直角坐标系中四个象限中点的坐标特点,解题的关键是熟练掌握平面直角坐标系中四个象限中点的坐标特点:第一象限横坐标为正,纵坐标为正;第二象限横坐标为负,纵坐标为正;第三象限横坐标为负,纵坐标为负;第四象限横坐标为正,纵坐标为负.4、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,−2).故选:C.【点睛】本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5、D【分析】点A 在x 轴上得出纵坐标为0,点A 位于原点的左侧得出横坐标为负,点A 距离坐标原点4个单位长度得出横坐标为4-,故得出点A 的坐标.【详解】∵点A 在x 轴上,位于原点左侧,距离坐标原点4个单位长度,∴A 点的坐标为:(4,0)-.故选:D .【点睛】本题考查直角坐标系,掌握坐标的表示是解题的关键.6、C【分析】设点B (),x y ,根据线段与数轴平行可得2x =-,根据线段4AB =,可得34y -=,求解即可得出点的坐标.【详解】解:设点B (),x y ,∵AB y ∥轴,∴A ()2,3-与点B 的横坐标相同,∴2x =-,∵4AB =, ∴34y -=,∴34y -=或34y -=-,∴1y =-或7y =,∴点B 的坐标为:()2,1--,()2,7-,故选:C .【点睛】题目主要考查线段与坐标轴平行的点的坐标特点,两点之间的距离,一元一次方程应用等,理解题意,利用绝对值表示两点之间距离是解题关键.7、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西30,不能确定具体位置,故该选项符合题意;D. 东经108︒,北纬53︒,能确定具体位置,故该选项不符合题意;故选C【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键.8、D【分析】根据位置的确定需要两个条件对各选项分析判断即可.【详解】解:A 、红星电影院2排,具体位置不能确定,不符合题意;B 、北京市四环路,具体位置不能确定,不符合题意;C、北偏东30,具体位置不能确定,不符合题意;D、东经118︒,北纬40︒,很明确能确定具体位置,符合题意;故选:D.【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.9、C【分析】根据平面直角坐标系的定义判断即可.【详解】解:A、原点的位置错误,坐标轴上y的字母位置错误,错误;B、两坐标轴不垂直,错误;C、符号平面直角坐标系的定义,正确;D、x轴和y轴的方向有错误,坐标系无箭头,错误.故选:C.【点睛】本题考查平面直角坐标系,在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系,解题关键是掌握平面直角坐标系坐标轴的位置.10、C【分析】由题意根据各象限内点的坐标特征逐项进行分析判断即可.【详解】解:A、(2,1)-在第四象限,故本选项不合题意;B 、(2,1)-在第二象限,故本选项不合题意;C 、(2,1)在第一象限,故本选项符合题意;D 、(2,1)--在第三象限,故本选项不合题意;故选:C .【点睛】本题考查各象限内点的坐标的符号特征,熟练掌握各象限内点的坐标的符号是解决问题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).二、填空题1、-1【解析】【分析】根据第二、四象限的角平分线上点的特点即可得到关于a 的方程,进行求解即可.【详解】解:点()2,1P m m -在第二、四象限的角平分线上,∴210m m +-=,解得:1m =-,故答案为:1-.【点睛】题目主要考查了二、四象限角平分线上点的特点,掌握象限角平分线上点的特点是解题的关键.2、(﹣1,3)【解析】根据点坐标的平移规律:左减右加,上加下减的变化规律运算即可.【详解】解:将点P(2,1)沿x轴方向向左平移3个单位,再沿y轴方向向上平移2个单位,所得的点的坐标是(2-3,1+2)即(-1,3).故答案为:(-1,3)【点睛】本题主要考查了根据平移方式确定点的坐标,解题的关键在于能够熟练掌握点坐标平移的规律.3、4【解析】【分析】根据题目中定义的新坐标系中点坐标的表示方法,求出点C坐标,即可得到结果.【详解】2,4,2,解:根据题意,点C的坐标应该是()∴4m=.故答案是:4.【点睛】本题考查新定义,解题的关键是理解题目中新定义的坐标系中点坐标的表示方法.4、(-3,1)【解析】【分析】直接利用已知点坐标建立平面直角坐标系进而得出答案.如图所示:则“兵“位于点:(﹣3,1).故答案为:(﹣3,1).【点睛】本题考查了坐标位置的确定,解题的关键是正确建立平面直角坐标系.5、(5,0)【解析】【分析】先由点B坐标求得OB,进而求得OD,根据平移性质可求得点E坐标.【详解】解:∵点B的坐标为(3,0),∴OB=3,又∵DB=1,∴OD=OB-DB=3-1=2,∵△AOB沿x轴方向向右平移得到△CDE,∴BE=OD=2,∴点E坐标为(5,0),故答案为:(5,0).本题考查坐标与图形变换-平移,熟练掌握平移变换规律是解答的关键.三、解答题1、作图见解析;()4,3A -,()4,3B --,()4,3C -,()4,3D【解析】【分析】根据长方形的性质和边长建立平面直角坐标系即可得解;【详解】根据题意可设正方形ABCD 的长为8,宽为6,建立平面直角坐标系如下:∴四个顶点的坐标分别为()4,3A -,()4,3B --,()4,3C -,()4,3D ;【点睛】本题主要考查了建立平面直角坐标系和矩形的性质,准确作图计算是解题的关键.2、(1)见解析;(2)见解析;(3)将(1)中所画图形沿由A到A'的方向平移到(2)中所画图形.平移后的点与平移前的对应点相比,横坐标分别增加了10,纵坐标分别减少了10【解析】【分析】(1)利用点平移的坐标规律写出A、B、C、D、E的对应点的坐标,然后描点连接即可;(2)按照平移方式描出对应点,依次连接即可;(3)把(1)中所画图形沿A到A'方向平移2)中所画图形,利用(1)中的平移规律得到平移前后对应点的横坐标和纵坐标的关系.【详解】解:(1)(2)如图所示;(3)将(1)中所画图形沿由A到A'=2)中所画图形.平移后的点与平移前的对应点相比,横坐标分别增加了10,纵坐标分别减少了10.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.3、(1)“经五纬一”在广播大厦旁边的十字路口;(2)“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”;(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近【解析】【分析】(1)先在图中分别找出经七路和纬五路,两条路的交点位置即为“经七纬五"的位置,与上步同理可确定"经六纬五”、“经五纬一"的位置;(2)结合“市区图"即可画出路线图了;(3)根据“市区图”中“华美达广场”的位置确定其所在的“经"路与"纬"路,问题即可解答.【详解】解:(1)如图:“经五纬一”在广播大厦旁边的十字路口.(2)如图:从“经七纬五”到达“经五纬一”的路线不唯一.例如,“经七纬五”“经六纬五”“经五纬五”“经五纬五”到达“经五纬一”.(3)“华美达广场”位于“经六路”与“纬三路”的十字路口附近.【点睛】本题旨在让学生感受平面内确定物体位置的方法,在平面内确定一个物体的位置一般需要两个数据.4、(1)见解析,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C的坐标为(4,3)、文化宫D的坐标为(2,﹣3);(2)见解析【解析】【分析】(1)以火车站所在的位置为坐标原点,建立平面直角坐标系,即可表示出体育场A、超市B市场C、文化宫D的坐标.(2)根据点的坐标的意义描出点E.【详解】解:(1)平面直角坐标系如图所示,体育场A的坐标为(﹣4,3)、超市B的坐标为(0,4)、市场C 的坐标为(4,3)、文化宫D的坐标为(2,﹣3).(2)如图,点E即为所求.【点睛】本题考查了坐标确定位置,主要是对平面直角坐标系的定义和点的坐标的写法的考查,是基础题.5、(1)A(2,4),B(1,1),C(3,0);(2)图见解析,3.5【解析】【分析】(1)根据图形即可写出三点的坐标;(2)把三个顶点A、B、C分别向左平移3个单位,再向下平移2个单位得到三个点A′、B′、C′,然后依次连接这三个点,即可得到平移后的△A′B′C′;由于平移不改变图形的面积,所以只要计算出△ABC的面积即可,用割补法即可计算出△ABC的面积.【详解】(1)A(2,4),B(1,1),C(3,0),(2)如图△A′B′C′为所求;由平移性质得,△A′B′C′的面积等于△ABC的面积即,11124-12-14-13222A B C ABCS S∆∆'''==⨯⨯⨯⨯⨯⨯⨯=3.5.【点睛】本题考查了点的坐标、平面直角坐标系中图形的平移及求图形的面积,掌握平移的性质是关键.。
初中数学函数之平面直角坐标系经典测试题含答案(1)一、选择题1.如图,已知A :(1,0).A 2(1,-1),A 3(-1,-l).A 4 (-1, 1), A 5 (2, 1),...则点A 2020的坐标是( )A .(506,505)B .(-505,-505)C .(505,-505)D .(-505,505)【答案】D【解析】【分析】 经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2020【详解】解:易得4的整数倍的各点如:4812,,A A A∵20204505÷=,∴点2020A 在第二象限,∴2020A 是第二象限的第505个点,∴2020A 的坐标为(-505,505),故选:D【点睛】本题考查了点的坐标规律,属于规律型,考查点的坐标,首先确定象限,再找出点之间的规律.2.如果点P (),3m 在第二象限,那么点Q ()3,m -在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】根据第二象限的横坐标小于零可得m的取值范围,进而判定Q点象限.【详解】解:由点P(),3m在第二象限可得m<0,再由-3<0和m<0可知Q点在第三象限,故选择C.【点睛】本题考查了各象限内坐标的符号特征.3.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.4.如图,在菱形ABCD中,点,B C在x轴上,点A的坐标为(0,23,分别以点,A B为圆心、大于12AB的长为半径作弧,两弧相交于点,E F.直线EF恰好经过点,D则点B的坐标为()1,0B.)3,0C.()2,0D.()3,0 A.()【答案】C【解析】【分析】连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出OB=2,从而得到B点坐标.【详解】解:连接DB,如图,由作法得EF垂直平分AB,∴DA=DB,∵四边形ABCD是菱形,∴AD∥BC,AD=AB,∴AD=AB=DB,∴△ADB为等边三角形,∴∠DAB=60°,∴∠ABO=60°,∵A(0,23∴OA=23∵∠ABO=60°,∠AOB=90°,∴∠BAO=30°,∴在Rt△AOB中,AB=2OB,∵OB2+OA2=AB2,∴OB2+(232=(2OB)2,∴OB=2(舍负),∴B(2,0).故选:C.【点睛】 本题考查了作图基本作图:作已知线段的垂直平分线,也考查了线段垂直平分线的性质和菱形的性质以及30°的直角三角形的特殊性质.5.已知直线y x m =-+与直线1y x =-的交点在第四象限,则m 的取值范围是( ) A .1m >-B .1m <C .11m -<<D .11m -≤≤【答案】C【解析】【分析】解方程组求出交点坐标,根据交点在第四象限得到不等式组,即可求出答案.【详解】 解方程组1y x m y x =-+⎧⎨=-⎩,得1212m x m y +⎧=⎪⎪⎨-⎪=⎪⎩, ∴直线y x m =-+与直线1y x =-的交点坐标是(12+m ,12m - ), ∵交点在第四象限, ∴102102m m +⎧>⎪⎪⎨-⎪<⎪⎩, 得-1<m<1,故选:C.【点睛】此题考查一次函数交点与二元一次方程组的关系:交点的横纵坐标即是方程组的解,直角坐标系中点的坐标的特点,熟记每个象限内点的坐标特点是解题的关键.6.在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点一定不在( ) A .直线y=-x 上B .直线y=x 上C .双曲线y=1xD .抛物线y=x 2上 【答案】C【解析】【分析】【详解】解:A 、若此点坐标是(0,0)时,在直线y=-x 上,故本选项错误;B 、若此点坐标是(0,0)时,在直线y=x 上,故本选项错误;C 、因为双曲线y=1x上的点必须符合xy=1,故x 、y 同号与已知矛盾,故本选项正确; D 、若此点坐标是(0,0)时,在抛物线y=x 2上,故本选项错误.故选C .【点睛】 本题考查反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.7.若点M 的坐标为b |+1),则下列说法中正确的是 ( )A .点M 在x 轴正半轴上B .点M 在x 轴负半轴上C .点M 在y 轴正半轴上D .点M 在y 轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M 的横、纵坐标的符号; 然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】有意义,则-a 2≥0,∴a =0.∵|b |≥0,∴|b |+1>0,∴点M 在y 轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.8.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.9.如图,在平面直角坐标系中,点O 是坐标原点,四边形ABOC 是正方形,其中,点A 在第二象限,点,B C 在x 轴、y 轴上.若正方形ABOC 的面积为36,则点A 的坐标是( )A .()6,6-B .()6,6-C .(6,6-D .6,6- 【答案】B【解析】【分析】 由正方形的面积可以把正方形的边长计算出来,根据点A 在第二象限和,B C 在x 轴、y 轴上,可以得到点A 的坐标.【详解】解:∵正方形ABOC 的面积为36,∴假设正方形ABOC 的边长为x ,则236x =,解得6x =或者6x =-(舍去),又∵点A 在第二象限,因此,A 点坐标为()6,6-,点,B C 在x 轴、y 轴上,故B 为答案.【点睛】本题主要考查了正方形的性质、正方形的面积公式以及直角坐标系的基本特点,知道正方形面积能反过来求正方形的边长是解题的关键.10.如图,若A 、B 两点的坐标分别为(﹣3,5)、(3,5),则点C 坐标为( )A .(﹣2,6)B .(﹣1,6)C .(﹣2,7)D .(﹣1,7)【答案】D【解析】【分析】 根据A 、B 的坐标判断出y 轴在AB 的垂直平分线上,结合图形可得点C 的纵坐标比A 、B 的纵坐标大2,然后解答即可.【详解】如图所示,∵A 、B 两点的坐标分别为(﹣3,5)、(3,5),∴则点C 坐标为(﹣1,7),故选:D .【点睛】本题考查了坐标确定位置,准确识图,判断出y 轴的位置以及点C 的纵坐标与点A 、B 的纵坐标的关系是解题的关键.11.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【答案】C【解析】【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.12.点A(-4,3)和点B(-8,3),则A,B相距()A.4个单位长度B.12个单位长度C.10个单位长度D.8个单位长度【答案】A【解析】【分析】先根据A,B两点的坐标确定AB平行于x轴,再根据同一直线上两点间的距离公式解答即可.【详解】解:∵点A和点B纵坐标相同,∴AB平行于x轴,AB=﹣4﹣(﹣8)=4.故选A.13.如果点P(m+3,m+1)在x轴上,则点P的坐标为()A.(0,2)B.(2,0)C.(4,0)D.(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m +3=﹣1+3=2,∴点P 的坐标为(2,0).故选:B .【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x 轴上时纵坐标为0,得出m 的值是解题关键.14.如图,在菱形OABC 中,30AOC ∠=︒,4OA =,以O 为坐标原点,以OA 所在的直线为x 轴建立平面直角坐标系,如图.按以下步骤作图:①分别以点A ,B 为圆心,以大于2AB 的长为半径作弧,两弧相交于点M ,N ;②作直线MN 交BC 于点P .则点P 的坐标为( )A .(4,2)B .4382⎛⎫ ⎪ ⎪⎝⎭C .2342⎛⎫+ ⎪ ⎪⎝⎭D .()33,2 【答案】C【解析】【分析】 延长BC 交y 轴于点D 可求OD ,CD 的长,进一步求出BD 的长,再解直角三角形BPE ,求得BP 的长,从而可确定点P 的坐标.【详解】延长BC 交y 轴于点D ,MN 与AB 将于点E ,如图,∵四边形OABC 是菱形,∠AOC=30°,∴OA=OC=AB=BC=4,BC ∥OA ,∠ABC=30°,∴∠OCD=∠AOC=30°,∴OD=12OC=2,即点P 的纵坐标是2. ∴3∴3∵MN 是AB 的垂直平分线,∴BE=12AB=2, ∴BP=43cos303BE ==︒ ∴34323. ∴点P 的坐标为23423⎛⎫+ ⎪ ⎪⎝⎭故选C.【点睛】此题主要考查了坐标与图形的性质,也考查了菱形的性质和解直角三角形.15.根据下列表述,能确定位置的是( )A .红星电影院第2排B .北京市四环路C .北偏东30°D .东经118°,北纬40°【答案】D【解析】解:在平面内,点的位置是由一对有序实数确定的,只有D 能确定一个位置, 故选D .点睛:本题考查了在平面内,如何表示一个点的位置的知识点.16.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限 A .一B .二C .三D .四 【答案】D【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b 在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.17.如图,象棋盘上,若“将”位于点(1,﹣2),“象”位于点(5,0),则炮位于点( )A .(﹣1,1)B .(﹣1,2)C .(﹣2,1)D .(﹣2,2)【答案】C【解析】【分析】 根据“将”的位置向左平移一个单位所得直线是y 轴,向上平移2个单位所得直线是x 轴,根据“炮”的位置,可得答案.【详解】解:根据题意可建立如图所示坐标系,由坐标系知炮位于点(﹣2,1),故选:C .【点睛】本题考查了坐标确定位置,利用“将”的位置向左平移一个单位所得直线是y 轴,向上平移2个单位所得直线是x 轴是解题关键.18.如图,若OABC Y 的顶点O ,A ,C 的坐标分别为(0,0),(4,0),(1,3),则顶点B 的坐标为( )A .(4,1)B .(5,3)C .(4,3)D .(5,4)【答案】B【解析】【分析】 根据平行四边形的性质,以及点的平移性质,即可求出点B 的坐标.【详解】解:∵四边形OABC 是平行四边形,∴OC ∥AB ,OA ∥BC ,∴点B 的纵坐标为3,∵点O 向右平移1个单位,向上平移3个单位得到点C ,∴点A 向右平移1个单位,向上平移3个单位得到点B ,∴点B 的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.19.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,……,组成一条平滑的曲线,点P 从原点O出发沿这条曲线向右运动,速度为每秒2个单位长度,则第2019秒时,点P 的坐标是( )A .(2018,0)B .(2019,1)C .(2019,﹣1)D .(2020,0)【答案】C【解析】分析:计算点P 走一个半圆的时间,确定第2019秒点P 的位置.详解:点运动一个半圆用时为2ππ=2秒∵2019=1009×2+1∴2019秒时,P在第1010个的半圆的中点处∴点P坐标为(2019,-1)故选C.点睛:本题是平面直角坐标系下的规律探究题,解答时既要研究动点的位置规律,又要考虑坐标的象限符号.20.已知在平面直角坐标系中,点A的坐标为(﹣3,4),下列说法正确的有()个①点A与点B(-3,﹣4)关于x轴对称②点A与点C(3,﹣4)关于原点对称③点A与点F(-4,3)关于第二象限的平分线对称④点A与点C(4,-3)关于第一象限的平分线对称A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于第2象限角平分线对称的点的坐标特点:横纵坐标变换位置且变为相反数;关于第1象限角平分线对称的点的坐标特点:横纵坐标变换位置.综合以上即可得答案.【详解】∵点A的坐标为(﹣3,4),∴点A关于x轴对称的点的坐标为(﹣3,﹣4),点A关于原点对称的点的坐标为(3,-4),点A关于第二象限的角平分线对称的点的坐标为(-4,3)点A关于第一象限的角平分线对称的点的坐标为(4,-3)∴①、②、③、④正确.故选:D.【点睛】此题主要考查了关于x轴、y轴、第二象限的角平分线、第一象限的角平分线对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.。
初中数学函数之平面直角坐标系综合练习(1)一、选择题1.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第100个点的坐标为( )A .(14,8)B .(13,0)C .(100,99)D .(15,14)【答案】A【解析】【详解】由图形可知:点的个数依次是1、2、3、4、5、…,且横坐标是偶数时,箭头朝上, ∵1+2+3+…+13=91,1+2+3+…+14=105,∴第91个点的坐标为(13,0),第100个点横坐标为14.∵在第14行点的走向为向上,∴纵坐标为从第92个点向上数8个点,即为8;∴第100个点的坐标为(14,8).故选A .【点睛】本题主要考查了根据图形的变化找规律的方法,首先要分析图形中每一列的点人个数的变化规律是,1,2,3,4,5,…,由此找出第100个点所在的列,再根据奇数列是从上往下依次增加1,偶数列是从下往上依次增加1,由此即可找到第100个点所对应的坐标.2.已知点() ,3A a 、点()3, B b -关于y 轴对称,点(),P a b --在第( )象限A .一B .二C .三D .四【答案】C【解析】【分析】根据点A 、点B 关于y 轴对称,求出a ,b 的值,然后根据象限点的符号特点即可解答.【详解】∵点() ,3A a 、点()3, B b -关于y 轴对称,∴a=3,b=3,∴点P 的坐标为()3, 3 --,∴点P 在第三象限,故答案为:C.【点睛】本题考查了轴对称和象限内点的符号特点,解题的关键是熟练掌握其性质.3.已知点A 的坐标为(a +1,3﹣a ),下列说法正确的是( )A .若点A 在y 轴上,则a =3B .若点A 在一三象限角平分线上,则a =1C .若点A 到x 轴的距离是3,则a =±6D .若点A 在第四象限,则a 的值可以为﹣2【答案】B【解析】【分析】依据坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,即可得出结论.【详解】解:A .若点A 在y 轴上,则a +1=0,解得a =﹣1,故本选项错误;B .若点A 在一三象限角平分线上,则a +1=3﹣a ,解得a =1,故本选项正确;C .若点A 到x 轴的距离是3,则|3﹣a |=3,解得a =6或0,故本选项错误;D .若点A 在第四象限,则a +1>0,且3﹣a <0,解得a >3,故a 的值不可以为﹣2; 故选:B .【点睛】本题主要考查了坐标轴上的点、一三象限角平分线上的点以及不同象限内点的坐标特征,解题时注意:横轴上点的纵坐标为0,纵轴上点的横坐标为0.4.下列说法中,正确的是( )A .点P (3,2)到x 轴距离是3B .在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示同一个点C .若y =0,则点M (x ,y )在y 轴上D .在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号【答案】D【解析】【分析】根据点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点逐一判断可得.A、点P(3,2)到x轴距离是2,此选项错误;B、在平面直角坐标系中,点(2,﹣3)和点(﹣2,3)表示不同的点,此选项错误;C、若y=0,则点M(x,y)在x轴上,此选项错误;D、在平面直角坐标系中,第三象限内点的横坐标与纵坐标同为负号,此选项正确;故选D.【点睛】本题主要考查点的坐标,解题的关键是掌握点的坐标到坐标轴的距离、坐标轴上点的坐标特点及第三象限内点的坐标符号特点.5.点 P(m + 3,m + 1)在x轴上,则P点坐标为()A.(0,﹣2)B.(0,﹣4)C.(4,0)D.(2,0)【答案】D【解析】【分析】根据点在x轴上的特征,纵坐标为0,可得m+1=0,解得:m=-1,然后再代入m+3,可求出横坐标.【详解】解:因为点P(m + 3,m + 1)在x轴上,所以m+1=0,解得:m=-1,所以m+3=2,所以P点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.6.如图,已知A:(1,0).A2(1,-1),A3(-1,-l).A4 (-1, 1), A5 (2, 1),...则点A2020的坐标是( )A.(506,505) B.(-505,-505) C.(505,-505) D.(-505,505)【答案】D【分析】经过观察可得在第一象限的在格点的正方形的对角线上的点的横坐标依次加1,纵坐标依次加1,在第二象限的点的横坐标依次加-1,纵坐标依次加1;在第三象限的点的横坐标依次加-1,纵坐标依次加-1,在第四象限的点的横坐标依次加1,纵坐标依次加-1,第二,三,四象限的点的横纵坐标的绝对值都相等,并且第三,四象限的横坐标等于相邻4的整数倍的各点除以4再加上1,由此即可求出点A 2020【详解】解:易得4的整数倍的各点如:4812,,A A A∵20204505÷=,∴点2020A 在第二象限,∴2020A 是第二象限的第505个点,∴2020A 的坐标为(-505,505),故选:D【点睛】本题考查了点的坐标规律,属于规律型,考查点的坐标,首先确定象限,再找出点之间的规律.7.如图,小手盖住的点的坐标可能为( )A .(-1,1)B .(-1,-1)C .(1,1)D .(1,-1)【答案】D【解析】【详解】 解:根据第四象限的坐标特征,易得小手盖住的点的横坐标为正,纵坐标为负,选项D 符合此特征,故选:D8.如果点P (m +3,m +1)在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,﹣4)【答案】B【解析】【分析】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.【详解】根据点P 在x 轴上,即y =0,可得出m 的值,从而得出点P 的坐标.解:∵点P (m +3,m +1)在x 轴上,∴y =0,∴m +1=0,解得:m =﹣1,∴m +3=﹣1+3=2,∴点P 的坐标为(2,0).故选:B .【点睛】本题考查了点的坐标,注意平面直角坐标系中,点在x 轴上时纵坐标为0,得出m 的值是解题关键.9.在平面直角坐标系中,点(),P x y 经过某种变换后得到点()'1,2P y x -++,我们把点()'1,2P y x -++叫做点(),P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3,P 点3P 的终结点为4P ,这样依次得到1234,,,,,n P P P P P ⋅⋅⋅.若点1P 的坐标为(50,),则2017P 点的坐标为( )A .()2,0B .()3,0C .()4,0D .()5,0【答案】D【解析】【分析】根据题意先求出12345,,,,P P P P P L 的坐标,然后找到规律,利用规律即可求出答案.【详解】 ∵点1P 的坐标为(5)0,,根据题意有 ∴2345(1,7),(6,3),(2,4),(5,0)P P P P ---,由此可见,n P 点的坐标是四个一循环,201745041÷=Q L ,∴2017P 点的坐标为()5,0,故选:D .【点睛】本题主要考查点的坐标的规律,找到规律是解题的关键.10.若点(24,24)P m m -+在y 轴上,那么m 的值为( )A .2B .2-C .2±D .0【答案】A【解析】【分析】依据点P(2m-4,2m+4)在y轴上,其横坐标为0,列式可得m的值.【详解】∵P(2m-4,2m+4)在y轴上,∴2m-4=0,解得m=2,故选:A.【点睛】此题考查点的坐标,解题关键在于掌握y轴上点的横坐标为0.11.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【答案】C【解析】【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C.12.在平面直角坐标系xOy中,若点P在第四象限,且点P到x轴的距离为1,到y轴的距离为3,则点的坐标为( )A.(3,-1) B.(-3,1) C.(1,-3) D.(-1,3)【答案】A【解析】【分析】根据点到x 轴的距离是纵坐标的绝对值,到y 轴的距离是横坐标的绝对值,结合第四象限点(+,-),可得答案.【详解】解:若点P 在第四象限,且点P 到x 轴的距离为1,到y 轴的距离为3,则点的坐标为(3,-1),故选:A .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).13.根据下列表述,能确定位置的是( )A .红星电影院第2排B .北京市四环路C .北偏东30°D .东经118°,北纬40°【答案】D【解析】解:在平面内,点的位置是由一对有序实数确定的,只有D 能确定一个位置, 故选D .点睛:本题考查了在平面内,如何表示一个点的位置的知识点.14.如果(,)p a b ab +在第二象限,那么点(,)Q a b -在第( )象限A .一B .二C .三D .四【答案】D【解析】【分析】由点P 在第二象限得到a+b<0,ab>0,即可得到a 与b 的符号,由此判断点Q 所在的象限.【详解】∵点P 在第二象限,∴a+b<0,ab>0,∴a<0,b<0,∴-a>0,∴点(,)Q a b -在第四象限,故选:D.【点睛】此题考查象限中点的坐标特点,熟记每个象限中的点坐标特点是解题的关键.15.如图,在直角坐标系内,正方形如图摆放,已知顶点 A(a ,0),B(0,b) ,则顶点C 的坐标为( )A .(-b ,a + b)B .(-b ,b - a)C .(-a ,b - a)D .(b ,b -a)【答案】B【解析】【分析】 根据题意首先过点C 作CE ⊥y 轴于点E ,易得△AOB ≌△BEC ,然后由全等三角形的性质,证得CE=OB=b ,BE=OA=a ,继而分析求得答案.【详解】解:如图,过点C 作CE ⊥y 轴于点E ,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠ABO+∠BAO=90°,∴∠CBE=∠BAO ,在△ABO 和△BCE 中,90AOB CEB BAO CBEAB BC ⎧⎪⎨⎪∠∠︒∠∠⎩==== ∴△AOB ≌△BEC (AAS ),∴BE=OA=a ,CE=OB=b ,∴OE=OB-BE=b-a ,∴顶点C 的坐标为:(-b ,b-a ).故选:B .【点睛】本题考查正方形的性质以及全等三角形的判定与性质.注意掌握辅助线的作法以及注意掌握数形结合思想的应用.16.m mn-有意义,那么直角坐标系中 P(m,n)的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】 先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.17.如图,在平面直角坐标系中,三角形AOB 的三个顶点的坐标分别是(1,3)A ,(0,0)O ,(2,0)B ,第一次将三角形AOB 变换成三角形11AOB ,1(2,3)A ,1(4,0)B ;第二次将三角形11AOB 变换成三角形22A OB ,2(4,3)A ,2(8,0)B ;第三次将三角形22A OB 变换成三角形33A OB …,则2020B 的横坐标是( )A .20192B .20202C .20212D .20222【答案】C【解析】【分析】 对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是3,B n 的纵坐标总为0,横坐标为2n+1,即可得到2020B 的横坐标.【详解】解:因为B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)…纵坐标不变,为0, 同时横坐标都和2有关为2n+1,那么B 的坐标为2020B (20212,0);故选:C .【点睛】本题考查了学生观察图形及总结规律的能力,解题的关键是找到点B 横坐标都与2有关的规律.18.在平面直角坐标系中.对于平面内任一点(m ,n ),规定以下两种变换: ①f (m ,n )=(m ,﹣n ),如f (2,1)=(2,﹣1);②g (m ,n )=(﹣m ,﹣n ),如g (2,1)=(﹣2,﹣1).按照以上变换有:f[g (3,4)]=f (﹣3,﹣4)=(﹣3,4),那么g[f (3,2)]等于( )A .(3,2)B .(3.﹣2)C .(﹣3,2)D .(﹣3,﹣2)【答案】C【解析】【分析】根据f 、g 的规定进行计算即可得解.【详解】g [f (3,2)]=g (3,﹣2)=(﹣3,2).故选C .【点睛】本题考查了点的坐标,读懂题目信息,理解f 、g 的运算方法是解题的关键.19.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,……,组成一条平滑的曲线,点P 从原点O出发沿这条曲线向右运动,速度为每秒2π个单位长度,则第2019秒时,点P 的坐标是( )A .(2018,0)B .(2019,1)C .(2019,﹣1)D .(2020,0)【答案】C【解析】分析:计算点P 走一个半圆的时间,确定第2019秒点P 的位置.详解:点运动一个半圆用时为2ππ=2秒∵2019=1009×2+1∴2019秒时,P 在第1010个的半圆的中点处∴点P 坐标为(2019,-1)故选C .点睛:本题是平面直角坐标系下的规律探究题,解答时既要研究动点的位置规律,又要考虑坐标的象限符号.20.在平面直角坐标系中,已知Rt ABC ∆中的直角顶点C 落在第一象限,()0,0A ,()10,0B ,且6BC =,则C 点的坐标是( )A .()6.4,4.8B .()8,6C .()8,4.8D .()3.6,4.8 【答案】A【解析】【分析】作CD ⊥OB 交OB 于D ,由勾股定理求出AC 的长,根据面积法求出CD 的长,再根据勾股定理求出OD 的长,即可求出点C 的坐标.【详解】作CD ⊥OB 交OB 于D ,∵()10,0B ,∴OB=10,∵∠C=90°,∴AC=221068-=,∵1122OC BC OB CD ⋅=⋅, ∴8×6=10CD ,∴CD=4.8, ∴OD= 228 4.8 6.4-=,∴C 点的坐标是 ()6.4,4.8.故选A.【点睛】本题考查了图形与坐标的性质,勾股定理,以及面积法求线段的长,根据面积法求出CD 的长是解答本题的关键.。