九年级数学上册第二十三章旋转章末复习教案人教版.doc
- 格式:doc
- 大小:103.00 KB
- 文档页数:5
第二十三章旋转复习教学设计一.观点:, 这样的图形运动称为旋转.1. 旋转:假如一个图形绕某一个定点沿某一个方向转动一个角度这个定点称为旋转中心, 转动的角度称为旋转角.例:( 1)旋转中心是什么?旋转角是什么?(2)经过旋转,点A、 B、C 分别挪动到什么地点?2 .中心对称图形:图形绕着中心旋转180°后与自己重合称中心对称图形(如:平行四边形、圆等)。
旋转中心旋转中心__________例:①在线段、锐角、等边三角形、正方形和圆中,是中心对称图形的有②在图所示的 4 个图案中既包括图形的旋转,还有图形轴对称是()二.性质1.旋转的性质:①旋转不改变图形的形状和大小( 即旋转前后的两个图形全等).).②随意一对对应点与旋转中心的连线所成的角相互相等( 都是旋转角③经过旋转 , 对应点到旋转中心的距离相等2.旋转三重点 : 旋转①中心 , ②方向 , ③角度 .例:若两个图形对于某一点成中心对称,那么以下说法:①对称点的连线必过对称中心;②这两个图形必定全等;③对应线段必定平行且相等;④将一个图形绕对称中心旋转180°必然与另一个图形重合。
[ 此中正确的选项是()。
(A) ①②(B)①③(C) ①②③(D) ①②③④ 2 .如图,四边形 ABCD是边长为 1 的正方形,且 DE=1,4△ ABF是△ ADE的旋转图形.( 1)旋转中心是哪一点?( 2)旋转了多少度?( 3 )AF 的长度是多少?(4)假如连接EF,那么△ AEF是如何的三角形?三.基本练习1.将三角形绕直线L 旋转一周,能够获得如下图的立体图形的是()2.下边图形中既是轴对称图形又是中心对称图形的是()A .直角B.等边三角形C.直角梯形D.两条订交直线3.在线段,等腰梯形,平行四边形,矩形,正五角星,圆,正方形,等边三角形中,既是轴对称图形,又是中心对称图形的图形有()A.3 个B.4个 A.3个 B.4个C.5个D.6个4.以下命题中真命题是()A .两个等腰三角形必定全等B.正多边形的每一个内角的度数随边数增加而减少C.菱形既是中心对称图形,又是轴对称图形D.两直线平行,同旁内角相等5 .将矩形 ABCD沿 AE 折叠,获得如图的所示的图形,已知∠ CED′ =60°,则∠ AED的大小是()A. 60° B . 50° C .75° D . 55°6.如图,△ ABC是等边三角形。
九年级数学上册第23章旋转教案(共12套新人教版)第二十三章旋转3.1图形的旋转第1课时旋转的概念及性质※教学目标※【知识与技能】了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.【过程与方法】让学生感受生活中的几何,•通过不同的情景设计归纳出图形旋转的有关概念,并用这些概念来解决一些问题.通过复习图形旋转的有关概念从中归纳出“对应点到旋转中心的距离相等,对应点与旋转中心所连线段的夹角等于旋转角,旋转前后的图形全等”等重要性质,并运用它解决一些实际问题.【情感态度】让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.【教学重点】旋转及对应点的有关概念及其应用.【教学难点】从活生生的数学中抽出概念.※教学过程※一、复习导入问题我们以前学过图形的平移、对称等变换,它们有哪些特征?生活中是否还有其他运动变化呢?回答是肯定的,下面我们就来研究.二、探索新知探索1请同学们看讲台上的大时钟,有什么在不停地转动?旋绕什么点呢?•从现在到下课时钟转了多少度?分针转了多少度?秒针转了多少度?教师点评:时针、分针、秒针在不停地转动,它们都绕时针的中心.•如果从现在到下课时针转了_______度,分针转了_______度,秒针转了______度.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?以上两种现象有什么共同特点呢?共同特点是如果我们把时针、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.归纳总结像这样,把一个平面图形绕着平面内某一点o转动一个角度,叫做图形旋转,点o叫做旋转中心,转动的角叫做旋转角.如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.试一试请你举出一些现实生活中旋转的实例,并指出旋转中心和旋转角.探索2如图,在硬纸板上,挖一个三角形洞,再另挖一个小洞o作为旋转中心,硬纸板下面放一张白纸.先在纸上描出这个挖掉的三角形图案,然后围绕旋转中心转动硬纸板,再描出这个挖掉的三角形,移开硬纸板.根据图回答下面的问题:线段oA与oA′,oB与oB′,oc与oc′有什么关系?∠AoA′,∠BoB′,∠coc′有什么关系?△ABc与△A′B′c′的形状和大小有什么关系?答案:oA=oA′,oB=oB′,oc=oc′,也就是对应点到旋转中心相等.∠AoA′=∠BoB′=∠coc′,我们把这三个相等的角,•即对应点与旋转中心所连线段的夹角称为旋转角.△ABc和△A′B′c′形状相同和大小相等,即全等.归纳总结旋转的性质:对应点到旋转中心的距离相等.对应点与旋转中心所连线段的夹角等于旋转角.旋转前、后的图形全等.三、掌握新知例如图,E是正方形ABcD中cD边上任意一点,以点A 为中心,把△ADE顺时针旋转90°,画出旋转后的图形.分析:关键是确定△ADE三个顶点的对应点,即它们旋转后的位置.解:四、巩固练习如图,它可以看作是由一个菱形绕某一点旋转一个角度后,顺次按这个角度同向旋转而得到的:①请你在图中用字母o标注出这一点;②每次旋转了_______度;③一共旋转了_______次.将图形绕点o旋转,且图形上点P,Q旋转后的对应点分别为P′,Q′,若∠PoP′=80°,则∠QoQ′=,若oQ=2.5c,则oQ′=.从3点到5点,钟表上时针转过的角度是.如图,四边形oAcB绕点o旋转到四边形DoEF,在这个旋转过程中,旋转中心是,旋转角是,Ao与Do的关系是,∠AoD与∠BoE的关系是.五、归纳小结通过这节课的学习,你有哪些收获和体会?※布置作业※从教材习题23.1中选取.※教学反思※积极创设情境,激发学生学习的好奇心和求知欲.以“丰富的生活中的旋转”作为情境引入,这一活动的设计,极大地吸引了学生的注意力,引发了学生的好奇心和求知欲,接着,让学生说出它们的共同点,在让学生举一些旋转的例子,激发学生主动参与探索新知的兴趣.完成本课时教学时,教师需给学生充分思考的时间,帮助学生养成良好的思考、分析习惯.3.1 第1课时旋转的概念及性质01教学目标.了解旋转及旋转中心和旋转角的概念..了解旋转对应点的概念及应用它们解决一些实际问题..通过观察具体实例认识旋转,探索它的基本性质..了解图形旋转的特征,并能根据这些特征绘制旋转后的几何图形.02预习反馈阅读教材P59内容,思考和完成教材上的练习.观察:让学生看转动的钟表和风车等.上面情境中的转动现象,有什么共同的特征?钟表的指针、秋千在转动过程中,其形状、大小、位置是否发生变化呢?问题:从3时到5时,时针转动了多少度?风车每片叶轮转到与下一片原来的位置重合时,风车旋转了多少度?以上现象有什么共同特点?思考:在数学中如何定义旋转?知识探究.把一个图形绕着某一点o转动一个角度的图形变换叫做旋转,点o叫做旋转中心,转动的角叫做旋转角..如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点..旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.自学反馈.下列物体的运动不是旋转的是A.坐在摩天轮里的小朋友B.正在走动的时针c.骑自行车的人D.正在转动的风车叶片.如图,如果把钟表的指针看成四边形AoBc,它绕着o 点旋转到四边形DoEF位置,在这个旋转过程中:旋转中心是点o,旋转角是∠AoD,经过旋转,点A转到点D,点c转到点F,点B转到点E,线段oA,oB,Bc,Ac分别转到oD,oE,EF,DF,∠A,∠B,∠c分别与∠D,∠E,∠F是对应角.【点拨】旋转角指对应点与旋转中心的连线的夹角.03新课讲授例1 如图,四边形ABcD、四边形EFGH都是边长为1的正方形.这个图案可以看作是哪个“基本图案”通过旋转得到的?请画出旋转中心和旋转角;经过旋转,点A,B,c,D分别移到什么位置?【解答】可以看作是由正方形ABcD的基本图案通过旋转而得到的.画图略.点A,点B,点c,点D移到的位置分别是点E,点F,点G,点H.【点拨】这个旋转中心是固定的,即正方形对角线的交点,但旋转角和对应点都是不唯一的.【跟踪训练1】如图,AD=Dc=Bc,∠ADc=∠DcB=90°,BP=BQ,∠PBQ=90°.此图能否旋转某一部分得到一个正方形?若能,指出由哪一部分旋转而得到的?并说明理由;它的旋转角多大?并指出它们的对应点.解:能,由△BcQ绕B点旋转得到.理由:连接AB,易证四边形ABcD为正方形.再证△ABP≌△cBQ.可知△cBQ可绕B点旋转与△ABP重合,从而得到正方形ABcD.90°,点c 对应点A,点Q对应点P.例2 已知,在Rt△ABc中,∠c=90°,∠BAc=45°,Ac=2,将△ABc绕点A顺时针旋转60°得到△ADE,连接BE,交AD于点F,求BE的长.【思路点拨】关键在于连接BD,然后利用旋转的性质得出△ADB是等边三角形,从而得到BE垂直平分AD,将BE 的长转化为EF+FB的长.【解答】连接BD,∵∠c=90°,∠BAc=45°,Ac=2,∴AB=22.∵将△ABc绕点A顺时针旋转60°得到△ADE,∴AD=AB,∠DAB=60°.∴△ADB是等边三角形.∴AB=BD.∵AE=DE,∴BE垂直平分AD.∴由勾股定理得AF=EF=2,BF=6.∴BE=EF+BF=2+6.【跟踪训练2】如图,在Rt△ABc中,∠BAc=90°,∠B=60°,△AB′c′可以由△ABc绕点A顺时针旋转90°得到,连接cc′,则∠cc′B′的度数是15°.例3 如图,E是正方形ABcD中cD边上任意一点,以点A为中心,把△ADE顺时针旋转90°,画出旋转后的图形.【解答】图略.【点拨】关键是确定△ADE三个顶点的对应点的位置.04巩固训练.下列属于旋转现象的是A.空中落下的物体B.雪橇在雪地里滑动c.拧紧水龙头的过程D.火车在急刹车时向前滑动.将左图按逆时针方向旋转90°后得到的是.如图所示,将四边形ABoc绕o点按顺时针方向旋转得到四边形DFoE,则下列角中,不是旋转角的是A.∠BoFB.∠AoDc.∠coED.∠AoF.如图,将左边的“心形”绕点o顺时针旋转95°得到右边的“心形”,如果∠Boc=75°,则A,B,c三点的对应点分别是E,D,F,∠DoF=75°,∠coD=20°..如图,把△ABc绕着点c顺时针旋转35°,得到△A′B′c,A′B′交Ac于点D.若∠A′Dc=90°,则∠A=55°.05课堂小结.旋转及旋转中心、旋转角的概念..旋转的对应点及其应用..旋转的基本性质..旋转变换与平移、轴对称两种变换有哪些共性与区别.。
【数学·九年级·上册】第二十三章小结与复习【教学目标】1.总结和复习图形旋转、中心对称的基本性质的应用及两个点关于原点对称时坐标之间的关系;2.注意复习平移、轴对称、旋转的联系和区别,旋转和中心对称的联系和区别,运用图形旋转、中心对称的基本性质解一些简单问题.【学情简析】本章先学习了旋转的有关知识,要求能够从旋转的角度观察图形,进而认识特殊的旋转——中心对称,最后运用轴对称、平移、旋转的组合进行图案设计.【教学重点】复习图形旋转的基本性质和中心对称的基本性质及两个点关于原点对称时,它们坐标之间的关系.【教学难点】运用旋转的性质解决问题.【课时安排】3课时【教学过程】环节教学内容教师的行为学生的活动唤起希望差异指导引发碰撞再激希望一、复习展示问题1平移、轴对称、旋转的区别与联系个人二次备课二、典型例题例 1 (1)如图,△ABC 为等边三角形,D 是△ABC 内一点,若将△ABD 经过旋转后到△ACP 位置,则旋转中心是______,旋转角等于_____度,△ADP是______三角形.(2)如图,正方形ABCD 中,E 是AD上一点,将△CDE 逆时针旋转后得到△CBM.则旋转中心是______,△CDE 旋转了___度,△CEM 是_____三角形.例2(1)画出点P 绕点O 顺时针旋PPT给出图片及问题个人二次备课板书课题巡视,指导,检查学生独立思考个人二次备课整理笔记小组合作探究ABDPCDAEBCM转 30°后的对应点.(2)画出线段AB 绕点A(或点M )逆时针旋转45°后的图形.(3)画出△DEC 绕点C 逆时针旋转 90°后的图形.个人二次备课三、复习展示问题2旋转和中心对称的区别与联系.四、典型例题例3下列图形中,既是轴对称图形,又是中心对称图形的是().例4已知:△ABC 中,A(-2,3),B(-3,1), C(-1,2).请画出△ABC关于原点O 对称的△A1B1C1.五、小结1.平移、轴对称和旋转有什么区别与联系?2.旋转和中心对称有什么区别与联系?3.怎样利用旋转的定义和性质作图?个人二次备课个人二次备课巡视指导巡视,检查对各组完成的情况进行点评归纳本节课所学布置作业教科书复习题23第 1,4,5 题.个人二次备课小组合作探究整理笔记个人二次备课个人二次备课教学反思。
人教版九年级上册第二十三章旋转全章复习教学设计人教版九年级上册第二十三章《旋转》这一章节主要介绍了图形的旋转概念、性质以及应用。
设计一个有效的复习课,可以帮助学生更好地理解和掌握本章内容。
以下是一个基于此目标的教学设计方案:一、教学目标1.知识与技能:能够准确理解旋转的概念;掌握旋转中心、旋转角度等基本要素;能利用旋转解决简单的几何问题。
2.过程与方法:通过观察、操作等活动体验旋转的过程,发展学生的空间想象能力和逻辑思维能力。
3.情感态度价值观:培养学生对数学的兴趣,感受数学之美。
二、重点难点●重点:旋转的基本性质及其应用。
●难点:如何灵活运用旋转解决问题。
三、教学过程(一) 导入新课●通过展示生活中常见的旋转现象(如风扇叶片转动),引导学生思考“什么是旋转?”激发学习兴趣。
(二) 知识回顾1.定义讲解:明确旋转的定义,包括旋转中心、旋转方向和旋转角等关键术语。
2.性质归纳:●旋转前后对应点到旋转中心的距离相等。
●任意两点连线段经过旋转后其长度不变。
●旋转角相同。
3.例题分析:选取教材中典型题目进行详细解析,强调解题思路与步骤。
(三) 实践探索●分组活动:让学生分组完成一些关于旋转的操作实验(比如使用纸片制作模型并演示旋转过程),促进理论知识向实践技能转化。
●互动讨论:鼓励学生分享自己的发现,并就遇到的问题展开交流探讨。
(四) 巩固练习●提供不同难度层次的习题供学生选择性完成,旨在巩固所学知识的同时满足不同程度学生的需求。
●对于较难题目可设置小组合作解答环节,增强团队协作精神。
(五) 课堂小结●回顾本节课主要内容,强调旋转在实际生活中的广泛应用。
●鼓励学生反思自己在学习过程中存在的困惑或不足之处,并提出改进措施。
四、作业布置●完成课本相关练习题。
●观察身边是否存在其他可以体现旋转原理的现象,并尝试用所学知识解释。
通过这样一套完整的复习流程,不仅能让学生系统地梳理了旋转的相关知识点,还增强了他们解决问题的能力,达到了预期的教学效果。
第二十三章旋转章末复习【知识与技能】进一步掌握旋转图形、中心对称、中心对称图形的概念及其性质,能够作出旋转图形和中心对称的图形,增强图案设计的能力.【过程与方法】通过对本章知识点的回顾及运用本章知识解决具体问题的过程,进一步增强数学应用的意识和能力,锻炼分析问题和解决问题的能力.【情感态度】在探索图形之间变换关系的过程中,激发学生的学习兴趣,增强数学审美能力.【教学重点】本章涉及的主要知识点和数学思想方法.【教学难点】综合运用本章知识解决相关的几何问题.一、知识框图,整体把握二、释疑解惑,加深理解1.旋转的性质有哪些?你能举出旋转的实例吗?2.在现实生活中,存在着大量的中心对称现象,你能举出一些例子吗?成中心对称的图形有什么特点?3.请列举学过的中心对称图形,说说如何判别一个图形是否是中心对称图形.4.关于原点对称的点的坐标有什么特征?5.用平移、旋转和轴对称的组合进行图案设计的关键是什么?你能进行简单的图案设计吗?【教学说明】针对本章的主要知识点,教师可依次提出上述问题,让学生回顾,并交流结论,然后教师逐一讲解,让学生加深对本章知识的领悟,教学时,可给予适当时间让学生回顾交流.三、典例精析,复习新知例1如图,若△ABC绕点C沿顺时针方向旋转150°后得到△A1B1C,∠A=60°,∠B1=90°,则∠A1CB=______.分析:准确的找到对应角,利用三角形的内角和性质.∠A1CB=∠B1CB-∠A1CB1=150°-30°=120°.例2 在方格纸上建立如图的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点A的对应点A′的坐标为_____.分析:本题是旋转的有关知识,要看清楚旋转的三要素:①绕哪一个点旋转,即旋转中心;②顺(逆)时针,即旋转方向;③旋转角度是多少.本题只要正确找出线段OA绕O点顺时针旋转90°后的位置,就能确定A′点.如图所示,△OA′B′就是旋转后的三角形,A′(2,3).例3如图,写出图形“H”相应各点的坐标.若将A平移到A′的位置,平移后对应各点的坐标分别是多少?两个“H”是否关于原点对称?分析:由题意知,平移后的“H”与平移前的“H”关于原点对称.所以“H”中的任意一点的坐标(x,y)关于原点对称的坐标为(-x,-y).这里需要注意的是要找准对应点,如A点对应的是D′,依次类推.解:A(-3,3),B(-3,2),C(-3,1),D(-1,1),E(-1,2),F(-1,3),A′(1,-1),B′(1,-2),C′(1,-3),D′(3,-3),E′(3,-2),F′(3,-1).比较A与D′,B与E′,C与F′,D与A′,E与B′,F与C′知,两“H”是关于原点对称.例 4 如图,一财主有一块平行四边形的土地,地里有一个圆形池塘,财主立下遗嘱:要把这块土地平均分给他的两个儿子,中间的池塘也平分,但不知道怎么做,你能想个办法吗?解:本题实际上是两个中心对称图形的组合,要想将其面积等分,只要能找到一条直线,使其既平分平行四边形的面积,又等分圆的面积即可,故可连接平行四边形的两条对角线,其交点A就是平行四边形的中心,找出圆的圆心B,过A、B作一条直线,这条直线就将平行四边形地与池塘平分了.例5 已知点P为正△ABC内一点,∠APB=113°,∠APC=123°,求证:以AP、BP、CP为边可以构成一个三角形,并确定所构成的三角形的各个内角的度数.分析:要判断以AP、BP、CP为边是否构成一个三角形,既可以利用三角形任意两边之和大于第三边的方法,也可以将它们通过适当的方法组合在一起,通过图形的直观性来说明.而这些,可将△ABP绕点B顺时针旋转60°,构成新的图形(如图所示),问题可迎刃而解.证明:由图易知,BP1=BP,P1C=PA,且∠P1BP=60°,故△BPP1为等边三角形,从而PP1=BP,而△PP1C是显然存在的,即以AP(P1C)、BP(PP1)、PC为边可以组成一个三角形.故∠PP1C=∠BP1C-∠BP1P=∠BPA-60°=113°-60°=53°.∠P1PC=∠BPC-∠BPP1=(360°-113°-123°)-60°=64°,∴∠P1CP=180°-53°-64°=63°.【教学说明】选取有代表性的5个例题进行评析,可开拓学生的思维,加深对本章知识的理解和运用,起到举一反三的作用.教学时,教师可根据需要选取评讲(也可另选例题).但仍应给予学生充足分析和思考的时间,锻炼学生分析问题和解决问题的能力.四、复习训练,巩固提高1.如右图,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=3,则△DOC中CD边上的高是()A.3B.6C.8D.122.如图所示,在△ABC中,∠BAC=15°,将△ABC,绕点A按逆时针方向旋转90°到△ADE的位置,然后将△ADE以AD为轴折叠到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.【教学说明】让学生通过自主探究,完成相应习题,进一步巩固对本章知识的理解和掌握.教学时,教师可根据实际情况,选取练习题,在学生练习过程中,教师巡视,对有困难的同学给予帮助,让每个同学都得到发展.【答案】1.C2.解:△ACF是等边三角形,理由如下,由旋转及对称的性质可知∠BAD=90°,∠FAD=∠DAE=∠BAC=15°,AC=AE=AF,∴∠CAF=90°-15°-15°=60°.∴△ACF是等边三角形.五、师生互动,课堂小结通过本节课的学习,你对本章知识有哪些新的认识和体会,说说你的看法,并与同伴交流.【教学说明】让学生反思小结本章内容,巩固知识,提升解题技能.1.布置作业:从教材“复习题23”中选取.2.完成练习册中本课时的热点专题训练.图形的变换是《课标》中增强的部分,加强这部分内容的学习可进一步丰富对空间的认识和感受,体验在现实生活中的应用,发展空间观念,所以是中考的重要内容,题型很丰富,难度也不一致,各层次都有,也可能和其它知识综合出现在压轴题中,所以,同学们要认真学好这部分内容.。
本章我们学习了一种新的图形变换——旋转,下面我们来对这一章节进行简要的梳理.首先我们遵循几何变换的一般研究思路,从定义、性质、应用几个方面对旋转进行了细致、深入的学习.然后我们又对其中一种特殊的旋转——中心对称进行了研究.最后结合之前学过的图形变换平移和轴对称,利用这三种图形之间的变化关系,以及它们变化前后只改变图形的位置,不改变图形的形状和大小的共性,进行了图案设计.下面我们通过具体问题,来对本章一些具体的知识和方法进行复习和回顾.复习回顾:图形的旋转例如图所示,把一个直角三角尺ACB顺时针旋转到△EDB的位置,使得点A落在CB的延长线上的点E处,则旋转中心是___,旋转角等于___度,∠BDC的度数为___度.设计意图:通过本题复习旋转的定义及性质.图形:定义:把一个平面图形绕着平面内某一点O转动一个角度的图形变换叫做旋转. 三要素:旋转中心、旋转方向、旋转角度.性质:1.对应点到旋转中心的距离相等.2.对应点与旋转中心所连线段的夹角等于旋转角.3.旋转前、后的图形全等.例:已知:点A与点B.AB情况1:点A与点D对应,点B与点C对应.做线段AD与BC的垂直平分线,交于点E1,则点E1即为所求.进而∠A E1D、∠BE1C为旋转角.根据网格,可计算得出△AED的三边符合勾股定理逆定理,因此∠AE1D=90°,同理也可计算出∠BE1C=90°.因此线段DC可以看成是线段AB绕点E逆时针旋转90°得到的.情况2:点A与点C对应,点B与D对应.与情况1完全同理,可以确定此时点E2的位置如图所示,根据网格,可根据勾股定理逆定理得到旋转角∠AE2D=∠BE2D=90°.所以线段CD可以看成线段AB绕点E顺时针旋转90°得到的.复习回顾:中心对称例:如图,△ABC与△A′B′C′关于点O成中心对称,下列结论中不一定成立的是( ).(A)OC=OC′(B)OA=OA′(C)BC=B′C′(D)∠ABC=∠A′C′B′设计意图:复习中心对称的定义及性质.图形:定义:把一个图形绕着某一点旋转180゜,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.性质:(1)对称点所连线段都经过对称中心,而且被对称中心所平分.(2)中心对称的两个图形是全等图形.例:如图,△DEF是△ABC经过某种变换后得到的图形.△ABC内任意一点M的坐标为(x,y),点M经过这种变换后得到点N,点N的坐标是( ).(A) (-y,-x) (B)( x,-y)(C) (-x,y) (D)(-x,-y)设计意图:中心对称、关于原点对称的点的坐标.例:下列图案中,既是轴对称图形也是中心对称图形的是()。
第23章 章末复习(曹瑶)一、本章思维导图二、典型例题讲解例1、随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是( )A .B .C .D .【知识点】中心对称图形;轴对称图形质【解题过程】解:A 、不是轴对称图形,是中心对称图形;定义性质定义性质1、平面内、一个图形定义2、绕旋转中心、某个方向3、转动一定角度(旋转角)性质1、图形的形状、大小不变2、对应线段、对应角相等3、对应点到旋转中心距离相等4、对应点与旋转中心连线夹角相等性质3、转动180°1、图形的形状、大小不变2、对应线段、对应角相等3、对应线段平行(或者在同一直线上)且相等4、对称点所连线段都经过对称中心,并且被对称中心所平分中心对称定义1、平面内、一个图形2、绕旋转中心 图案设计成中心对称中心对称图形 关于原点对称的点的坐标旋转平移轴对称B 、是轴对称图形,不是中心对称图形;C 、是轴对称图形,也是中心对称图形;D 、不是轴对称图形,是中心对称图形. 故选C .【思路点拨】根据轴对称图形与中心对称图形的概念求解 【答案】C例2、如图,菱形OABC 的一边OA 在x 轴上,将菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置,若OB =23,∠C =120°,则点B′的坐标为 ( )C'B'A'ACBOx yA.(3,3)B. (3,3)-C. (6,6)D. (6,6)-【知识点】坐标与图形的旋转变化,菱形的性质,垂直的定义,旋转的性质 【数学思想】数形结合【解题过程】首先根据菱形的性质,即可求得∠AOB 的度数,又由将菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置,可求得∠B′OA 的度数,然后在Rt △B′OF 中,利用三角函数即可求得OF 与B′F 的长,则可得点B′的坐标:过点B 作BE ⊥OA 于E ,过点B′作B′F ⊥OA 于F ,∴∠BEO =B′FO =90°. ∵四边形OABC 是菱形,∴OA ∥BC ,∠AOB =12∠AOC .∵∠AOC +∠C =180°,∠C =120°,∴∠AOC =60°,∠AOB =30°. ∵菱形OABC 绕原点O 顺时针旋转75°至OA′B′C′的位置, ∴∠BOB′=75°,O B′=OB=.∴∠B′OF =45°. 在等腰Rt △B ′OF 中,OF =OB ′÷2=×2=∴B′F=∵点B′在第四象限,∴点B′的坐标为:.故选D.【思路点拨】利用旋转的性质,找到特殊的直角三角形即可解题. 【答案】D例3、在Rt △ABC 中,∠A =90°,AC =AB =4, D 、E 分别是AB 、AC 的中点.若等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°),记直线BD 1与CE 1的交点为P .(1)如图1,当α=90°时,线段BD 1的长等于 ,线段CE 1的长等于 ;(直接填写结果)(2)如图2,当α=135°时,求证:BD 1= CE 1,且BD 1⊥CE 1.E 1BCE D (D 1)APE 1BCEDD 1A图1 图2【知识点】旋转变换 【数学思想】数形结合 【解题过程】解:(1)∵∠A =90°,AC =AB =4,D 、E 分别是边AB 、AC 的中点,∴AE =AD =2,∵等腰Rt △ADE 绕点A 逆时针旋转,得到等腰Rt △AD 1E 1,设旋转角为α(0<α≤180°), ∴当α=90°时,AE 1=2,∠E 1AE =90°,1BD ==∴1E C ==故答案为25,25;(2)证明:当α=135°时,如图2,∵Rt△AD1E1是由Rt△ADE绕点A逆时针旋转135°得到∴AD1=AE1,∠D1AB=∠E1AC=135°,在△D1AB和△E1AC中∵1111AD AED ABE ACAB AC=⎧⎪∠=∠⎨⎪=⎩∴△D1AB≌△E1AC(SAS),∴BD1=CE1,且∠D1BA=∠E1CA,记直线BD1与AC交于点F,∴∠BF A=∠CFP,∴∠CPF=∠F AB=90°,∴BD1⊥CE1 .【思路点拨】(1)利用等腰直角三角形的性质结合勾股定理分别得出BD1的长和CE1的长;(2)根据旋转的性质得出,∠D1AB=∠E1AC=135°,进而求出△D1AB≌△E1AC(SAS),即可得出答案.【答案】详见解题过程第23章章末检测题(曹瑶)一、选择题(每小题4分,共48分)1、下列图形中,是中心对称但不是轴对称图形的是()A.B.C.D.【知识点】轴对称图形与中心对称图形的概念【解题过程】A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,是中心对称图形,故此选项正确;D、是轴对称图形,是中心对称图形,故此选项错误.故选C.【思路点拨】结合选项根据轴对称图形与中心对称图形的概念求解即可.【答案】C2、将叶片图案旋转180°后,得到的图形是()【知识点】图案旋转【解题过程】A是叶片图案经过翻转、旋转得到;B与叶片图案成轴对称;C是叶片图案经过平移得到;D是叶片图案旋转180°后得到.所以应选D.【思路点拨】以旋转图形的定义为依据进行判断,观察图形可知【答案】D.3、如图,在等腰直角△ABC中,∠B=90°,将△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,则∠BAC'等于()A.60°B.105°C.120°D.135°【知识点】旋转角【数学思想】数形结合【解题过程】∵△ABC绕顶点A逆时针方向旋转60°后得到△AB′C′,∴∠CAC′=60°,又∵等腰直角△ABC中,∠B=90°,∴∠BAC=45°,∴∠BAC′=∠BAC+∠CAC′=45°+60°=105°.故答案为105°【思路点拨】抓准旋转的性质,旋转角相等即可解题.【答案】B.4、在平面直角坐标系中,A点坐标为(3,4),将OA绕原点O逆时针旋转90°得到OB,则点B 的坐标是()A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)【知识点】坐标系中点的旋转【数学思想】数形结合【解题过程】解:如图:∴点B的坐标为(-4,3).故选A.【思路点拨】画出坐标系,利用全等三角形解题.【答案】A.5、如图是一个中心对称图形,A为对称中心,若∠C=90°,∠B=30°,AC=1,则BB'的长为()A.4 B.2 C.1 D.3【知识点】中心对称【数学思想】数形结合【解题过程】∵此图是中心对称图形,A为对称中心,∴△BAC≌△B′AC′,∴∠B=∠B′,∠C=∠C′,AC=AC′,AB=AB',∵∠C =90°,∠B =30°,AC =1, ∴AB′=2AC′=2,∴BB'=2AB'=4. 故选A .【思路点拨】利用中心对称图形关于A 为对称中心,得出两图形全等,即可解决. 【答案】A .6、如图,8×8方格纸上的两条对称轴EF 、MN 相交于中心点O ,对△ABC 分别作下列变换: ①先以点A 为中心顺时针方向旋转90°,再向右平移4格、向上平移4格;②先以点O 为中心作中心对称图形,再以点A 的对应点为中心逆时针方向旋转90°; ③先以直线MN 为轴作轴对称图形,再向上平移4格,再以点A 的对应点为中心顺时针方向旋转90°.其中,能将△ABC 变换成△PQR 的是( ) A.①② B.①③ C.②③ D.①②③【知识点】平移、旋转、轴对称 【数学思想】数形结合【解题过程】根据题意分析可得:①②③都可以使△ABC 变换成△PQR . 故选D .【思路点拨】利用平移、旋转、轴对称的定义. 【答案】D7、如图,边长为1的正方形ABCD 绕点A 逆时针旋转30°到正方形AB'C'D',图中阴影部分的面积为( ) A.21B.33C. 33-1D.43-1【知识点】旋转的性质 【数学思想】数形结合【解题过程】如图,设B′C′与CD 的交点为E ,连接AE ,在Rt △AB′E 和Rt △ADE 中, AE =AE ,AB′=AD ,∴Rt △AB′E ≌Rt △ADE (HL ), ∴∠DAE =∠B′AE , ∵旋转角为30°, ∴∠DAB′=60°, ∴∠DAE =0.5×60°=30°, ∴DE =33∴阴影部分的面积=1—33 故选C .【思路点拨】找准旋转角,利用30°的直角三角形解题. 【答案】C8、如图,直线434+-=x y 与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺针旋转90°后得到△AOB′,则点B′的坐标是( )A.(3,4)B.(4,5)C.(7,4)D.(7,3)【知识点】坐标系中点的旋转 【数学思想】数形结合【解题过程】直线434+-=x y 与x 轴,y 轴分别交于A (3,0),B (0,4)两点.旋转前后三角形全等.由图易知点B′的纵坐标为OA 长,即为3, ∴横坐标为OA +OB =OA +O′B′=3+4=7. 故选D .【思路点拨】找对应线段,利用三角形全等. 【答案】D9、将含有30°角的直角三角板OAB 如图放置在平面直角坐标中,OB 在x 轴上,若OA =2,将三角板绕原点O 顺时针旋转75°,则点A 的对应点A′的坐标为( )A.3(,)1B.1(,)3-C.2(,)2-D.2(-,)2 【知识点】坐标与图形变化-旋转. 【数学思想】数形结合 【解题过程】解:如图,∵三角板绕原点O 顺时针旋转75°, ∴旋转后OA 与y 轴夹角为45°, ∵OA =2, ∴OA′=2,∴点A′的横坐标为2222=⨯,纵坐标为2222-=⨯-,所以A′点的坐标为)2,2(-,故选C. 【思路点拨】利用旋转性质得出OA′线段长度和各夹角大小,然后求出A′的坐标. 【答案】C.10、已知坐标平面上的机器人接受指令“[a ,A ]”(a ≥0,0°<A <180°)后的行动结果为:在原地顺时针旋转A 后,再向面对方向沿直线行走a . 若机器人的位置在原点,面对方向为y 轴的负半轴,则它完成一次指令[2,60°]后,所在位置的坐标为( )A. (-1,-3)B. (-1,3)C.(3,-1)D.(-3,-1)【知识点】图形旋转【数学思想】数形结合【解题过程】由已知得到:OA=2,∠COA=60°,过A作AB⊥x轴于B,∴∠BOA=90°-60°=30°,∴AB=1,由勾股定理得:OB=3,∴A的坐标是(-3,-1).故选C.【思路点拨】旋转过程中对应线段相等【答案】D.11、如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次変换,如果这样连续经过2016次变换后,等边△ABC的顶点C的坐标为().A.),132014(+-B.),132014(--C.),132014(-D.),132014(+【知识点】翻折变换(折叠问题);等边三角形的性质;坐标与图形变化-平移.【数学思想】数形结合【解题过程】解:∵△ABC 是等边三角形AB =3﹣1=2,∴点C 到x 轴的距离为1+2×23=3+1, 横坐标为2,∴A (2,3+1),第2016次变换后的三角形在x 轴上方,点A 的纵坐标为3+1,横坐标为2-2016×1=-2014, 所以,点A 的对应点A′的坐标是(-2014,3+1)故答案为:A (-2014,3+1).【思路点拨】据轴对称判断出点A 变换后在x 轴上方,然后求出点A 纵坐标,再根据平移的距离求出点A 变换后的横坐标,最后写出即可.【答案】A .12、如图,边长为1的正方形ABCD 的对角线AC 、BD 相交于点O .有直角∠MPN ,使直角顶点P 与点O 重合,直角边PM 、PN 分别与OA 、OB 重合,然后逆时针旋转∠MPN ,旋转角为θ(0°<θ<90°),PM 、PN 分别交AB 、BC 于E 、F 两点,连接EF 交OB 于点G ,则下列结论中正确的个数是( ).(1)EF =2OE ;(2)S 四边形OEBF :S 正方形ABCD =1:4;(3)BE +BF =2OA ;(4)在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =43.A.1个B.2个C.3个D.4个【知识点】四边形的旋转【数学思想】数形结合【解题过程】解:(1)∵四边形ABCD 是正方形,∴OB=OC ,∠OBE =∠OCF =45°,∠BOC =90°,∴∠BOF +∠COF =90°,∵∠EOF =90°,∴∠BOF +∠COE =90°,∴∠BOE =∠COF ,在△BOE 和△COF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠OCF OBE OCOB COF BOE , ∴△BOE ≌△COF (ASA ),∴OE =OF ,BE =CF ,∴EF =2OE ;故正确; (2)∵S 四边形OEBF =S △BOE +S △BOF =S △BOF +S △COF =S △BOC =41S 正方形ABCD , ∴S 四边形OEBF :S 正方形ABCD =1:4;故正确;(3)∴BE +BF =BF +CF =BC =2OA ;故正确;(4)过点O 作OH ⊥BC , ∵BC =1,∴OH =21BC =21, 设AE =x ,则BE =CF =1﹣x ,BF =x ,∴S △BEF +S △COF =21BE •BF +21CF •OH =21x (1﹣x )+21(1﹣x )×21 =﹣21(x ﹣41)2+329, ∵a =﹣21<0, ∴当x =41时,S △BEF +S △COF 最大;即在旋转过程中,当△BEF 与△COF 的面积之和最大时,AE =41;故错误. 【思路点拨】(1)由四边形ABCD 是正方形,直角∠MPN ,易证得△BOE ≌△COF (ASA ),则可证得结论;(2)由(1)易证得S 四边形OEBF =S △BOC =41S 正方形ABCD ,则可证得结论; (3)由BE =CF ,可得BE +BF =BC ,然后由等腰直角三角形的性质,证得BE +BF =2OA ; (4)首先设AE =x ,则BE =CF =1﹣x ,BF =x ,继而表示出△BEF 与△COF 的面积之和,然后利用二次函数的最值问题,求得答案.【答案】C二、填空题(每小题4分,共24分)13、下面图形:①四边形,②等边三角形,③正方形,④等腰梯形,⑤平行四边形,⑥圆,其中既是轴对称图形又是中心对称图形的有 .(填序号)【知识点】轴对称、中心对称【解题过程】①是轴对称图形,也是中心对称图形;②是轴对称图形,不是中心对称图形;③不是轴对称图形,是中心对称图形;④是轴对称图形,不是中心对称图形;⑤不是轴对称图形,是中心对称图形;⑥是轴对称图形,也是中心对称图形.故选答案为:①⑥.【思路点拨】把握住轴对称和中心对称的定义即可.【答案】①⑥14、小明、小辉两家所在位置关于学校中心对称,如果小明家距学校2公里,那么他们两家相距 公里.【知识点】中心对称图形的性质【解题过程】解:∵小明、小辉两家所在位置关于学校中心对称,∴小明、小辉两家到学校距离相等,∵小明家距学校2公里,∴他们两家相距:4公里. 故答案为4.【思路点拨】根据中心对称图形的性质,得出小明、小辉两家到学校距离相等,即可得出答案.【答案】4.15、将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD =110°,则∠BOC =_____. D C B A O【知识点】旋转角【数学思想】数形结合【解题过程】由题意可得∠AOB +∠COD =180°,又∠AOB +∠COD =∠AOC +2∠COB +∠BOD =∠AOD +∠COB ,∵∠AOD =110°,∴∠COB =70°.故答案为70°.【思路点拨】旋转角相等【答案】70°16、如图,在正方形ABCD 内作∠EAF =45°,AE 交BC 于点E ,AF 交CD 于点F ,连接EF ,过点A 作AH ⊥EF ,垂足为H ,将△ADF 绕点A 顺时针旋转90°得到△ABG ,若BE =2,DF =3,则AH 的长为 .【知识点】旋转的性质【数学思想】数形结合【解题过程】解:由旋转的性质可知:AF=AG ,∠DAF =∠BAG .∵四边形ABCD 为正方形,∴∠BAD =90°.又∵∠EAF =45°,∴∠BAE+∠DAF =45°.∴∠BAG +∠BAE =45°.∴∠GAE =∠F AE .在△GAE 和△F AE 中⎪⎩⎪⎨⎧=∠=∠=AE AE FAE GAE AF AG∴△GAE ≌△F AE .∵AB ⊥GE ,AH ⊥EF ,∴AB=AH ,GE=EF =5.设正方形的边长为x ,则EC=x-2,FC=x-3.在Rt △EFC 中,由勾股定理得:EF 2=FC 2+EC 2,即(x -2)2+(x -3)2=25.解得:x =6.∴AB =6.∴AH =6.故答案为:6.【思路点拨】由旋转的性质可知:AF =AG ,∠DAF =∠BAG ,接下来再证明∠GAE =∠F AE ,由全等三角形的性质可知:AB=AH ,GE=EF =5.设正方形的边长为x ,接下来,在Rt △EFC 中,依据勾股定理列方程求解即可.【答案】6.17、如图,等边△ABC 绕点B 逆时针旋转30°时,点C 转到C′的位置,且BC′与AC 交于点D ,则CDD C '的值为 . 【知识点】旋转的性质,等边三角形的性质【数学思想】数形结合【解题过程】设等边△ABC 的边长是a ,则BD =23BC 3, C′D =331a a ⎛= ⎝⎭,CD = 12a .∴31'2312a C D CD a ⎛ ⎝⎭==【思路点拨】等边△ABC 绕点B 逆时针旋转30°时,则△BCD 是直角三角形,即可求解.【答案】23.18、如图,边长为1的正方形ABCD 中绕点A 逆时针旋转30°得到正方形AB′C′D′,则图中阴影部分的面积为 .【知识点】旋转的性质;正方形的性质.【数学思想】数形结合【解题过程】如图,连接AO ,根据旋转的性质,得∠BAB′=30°,则∠DAB′=60°.在Rt △ADO 和Rt △AB′O 中,AD=AB′,AO=AO ,∴Rt △ADO ≌Rt △AB′O .∴∠OAD =∠OAB′=30°.又∵AD =1,∴OD =AD •tan ∠OAD =33 ∴阴影部分的面积33133212=⨯⨯⨯=,故答案为33 【思路点拨】此题只需把公共部分分割成两个三角形,根据旋转的旋转发现两个三角形全等,从而求得直角三角形的边,再进一步计算其面积.【答案】33 三、解答题(共78分)19、(6分)如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(﹣1,3)、(﹣4,1)(﹣2,1),先将△ABC 沿一确定方向平移得到△A 1B 1C 1,点B 的对应点B 1的坐标是(1,2),再将△A 1B 1C 1绕原点O 顺时针旋转90°得到△A 2B 2C 2,点A 1的对应点为点A 2.(1)画出△A 1B 1C 1;(2)画出△A 2B 2C 2;(3)求出在这两次变换过程中,点A 经过点A 1到达A 2的路径总长.【知识点】作图-旋转变换;作图-平移变换【数学思想】数形结合【解题过程】解:(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作;(3)OA =244422=+.点A 经过点A 1到达A 2的路径总长=18024901522••++π=π2226+. 【思路点拨】(1)由B 点坐标和B 1的坐标得到△ABC 向右平移5个单位,再向上平移1个单位得到△A 1B 1C 1,则根据点平移的规律写出A 1和C 1的坐标,然后描点即可得到△A 1B 1C 1;(2)利用网格特点和旋转的性质画出点A1的对应点为点A2,点B1的对应点为点B2,点C1的对应点为点C2,从而得到△A2B2C2;(3)先利用勾股定理计算平移的距离,再计算以OA1为半径,圆心角为90°的弧长,然后把它们相加即可得到这两次变换过程中,点A经过点A1到达A2的路径总长.【答案】(1)见上图(2)见上图(3)π226+220、(8分)四边形ABCD是正方形,△ADF旋转一定角度后得△ABE,如图所示,如果AF=4,AB=7.(1)指出旋转中心和旋转角度;(2)求DE的长度.【知识点】旋转的性质【数学思想】数形结合【解题过程】(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°,∠EBA=∠FDA;可得旋转中心为点A;(2)DE=AD-AE=7-4=3.【思路点拨】利用旋转的性质找到旋转角和对应线段即可.【答案】(1)点A;旋转角度为90°或270°(2)321、(8分)如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.(1)线段A1C1的长度是,∠CBA1的度数是.(2)连接CC1,求证:四边形CBA1C1是平行四边形.【知识点】旋转的性质,等腰直角三角形的性质,平行四边形的判定【解题过程】解:(1)10;135°.(2)证明:∵∠A 1C 1B =∠C 1BC =90°,∴A 1C 1∥BC .又∵A 1C 1=AC =BC ,∴四边形CBA 1C 1是平行四边形.【思路点拨】(1)由于将△ABC 绕点B 沿顺时针方向旋转90°得到△A 1BC 1,根据旋转的性质可以得到A 1C 1=AC =10,∠CBC 1=90°,而△ABC 是等腰直角三角形,利用等腰直角三角形的性质即可求出∠CBA 1=∠CBC 1+∠A 1BC 1=90°+45°=135°.(2)由∠A 1C 1B =∠C 1BC =90°可以得到A 1C 1∥BC ,又A 1C 1=AC =BC ,利用评选四边形的判定即可证明.【答案】(1)10;135° (2)略22、(10分)两个长为2cm ,宽为1cm 的长方形,摆放在直线l 上(如图①),CE =2cm ,将长方形ABCD 绕着点C 顺时针旋转α角,将长方形EFGH 绕着点E 逆时针旋转相同的角度.(1)当旋转到顶点D 、H 重合时,连接AE 、CG ,求证:△AED ≌△GCD (如图②).(2)当α=45°时(如图③),求证:四边形MHND 为正方形.【知识点】旋转的性质;全等三角形的判定与性质;矩形的性质与判定;正方形的判定【数学思想】数形结合【解题过程】证明:(1)如图②,∵由题意知,AD=GD ,ED=CD ,∠ADC=∠GDE=90°,∴∠ADC+∠CDE=∠GDE+∠CDE ,即∠ADE=∠GDC ,在△AED 与△GCD 中,AD GD ADE GDC ED CD =⎧⎪∠=∠⎨⎪=⎩∴△AED ≌△GCD (SAS );(2)如图③,∵α=45°,BC∥EH,∴∠NCE=∠NEC=45°,CN=NE,∴∠CNE=90°,∴∠DNH=90°,∵∠D=∠H=90°,∴四边形MHND是矩形,∵CN=NE,∴DN=NH,∴矩形MHND是正方形.【思路点拨】(1)根旋转的性质得AD=GD,CD=ED,由于∠CDE=∠EDC,则可根据全等三角形的判定方法SAS得到△AED≌△GCD(SAS);(2)由于α=45°,结合旋转的性质,∠CNE=90°,再根据矩形的性质∠GHN=∠AND=90°,可以判定四边形MHND是矩形,最后根据DN=NH,所以可判断矩形MHND是正方形.【答案】见解题过程23、(10分)如图,已知△ABC是等腰三角形,顶角∠BAC=α(α<60°),D是BC边上的一点,连接AD,线段AD绕点A顺时针旋转α到AE,过点E作BC的平行线,交AB于点F,连接DE,BE,DF.(1)求证:BE=CD;(2)若AD⊥BC,试判断四边形BDFE的形状,并给出证明.【知识点】全等三角形的判定与性质;菱形的判定;旋转的性质.【数学思想】数形结合【解题过程】证明:(1)∵△ABC是等腰三角形,顶角∠BAC=α(α<60°),线段AD绕点A顺时针旋转α到AE,∴AB =AC , ∴∠BAE =∠CAD , 在△ACD 和△ABE 中,⎪⎩⎪⎨⎧=∠=∠=AD AE CAD BAE AC AB , ∴△ACD ≌△ABE (SAS ), ∴BE =CD ; (2)∵AD ⊥BC , ∴BD =CD ,∴BE =BD =CD ,∠BAD =∠CAD , ∴∠BAE =∠BAD , 在△ABD 和△ABE 中,⎪⎩⎪⎨⎧=∠=∠=AD AE BAD BAE AB AB , ∴△ABD ≌△ABE (SAS ), ∴∠EBF =∠DBF , ∵EF ∥BC , ∴∠DBF =∠EFB , ∴∠EBF =∠EFB , ∴EB =EF , ∴BD =BE =EF =FD , ∴四边形BDFE 为菱形 【思路点拨】(1)根据旋转可得∠BAE =∠CAD ,从而SAS 证明△ACD ≌△ABE ,得出答案BE =CD ; (2)由AD ⊥BC ,SAS 可得△ACD ≌△ABE ≌△ABD ,得出BE =BD =CD ,∠EBF =∠DBF ,再由EF ∥BC ,∠DBF =∠EFB ,从而得出∠EBF =∠EFB ,则EB =EF ,证明得出四边形BDFE 为菱形【答案】 详见解题过程24、(12分)数学问题:计算m 1+21m +31m +...+n m1(其中m 、n 都是正整数,且m ≥2,n ≥1). 探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究. 探究一:计算21+221+321+...+n 21. 第1次分割,把正方形的面积二等分,其中阴影部分的面积为21; 第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为21+221; 第3次分割,把上次分割图中空白部分的面积继续二等分,…; …第n 次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为21+221+321+...+n 21,最后空白部分的面积是n 21. 根据第n 次分割图可得等式:21+221+321+...+n 21.=1﹣n 21.探究二:计算31+231+331+...+n 31.第1次分割,把正方形的面积三等分,其中阴影部分的面积为32; 第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为32+232; 第3次分割,把上次分割图中空白部分的面积继续三等分,…; …第n 次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为32+232+332+...+n 32,最后空白部分的面积是n 31. 根据第n 次分割图可得等式:32+232+332+...+n 32=1﹣n 31,两边同除以2,得31+231+331+...+n 31=21-n321⨯.探究三:计算n 41...41414132++++.(仿照上述方法,只画出第n 次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算m 1+21m +31m +...+n m1. (只需画出第n 次分割图,在图上标注阴影部分面积,并完成以下填空) 根据第n 次分割图可得等式: , 所以,m 1+21m +31m +...+n m1= . 拓广应用:计算n n 51-5...51-551-551-53322++++. 【知识点】作图—应用与设计作图;规律型:图形的变化类 【数学思想】数形结合【解题过程】解:探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为43; 第2次分割,把上次分割图中空白部分的面积继续四等分, 阴影部分的面积之和为24343+; 第3次分割,把上次分割图中空白部分的面积继续四等分, …,第n 次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:n 43...43434332++++,最后的空白部分的面积是n 41,根据第n 次分割图可得等式:n n 41-143...43434332=++++,两边同除以3,得nn 431-3141...41414132⨯=++++; 解决问题:n n mm m m m m m m m 1-11-...1-1-1-32=++++,m 1+21m +31m +...+n m 1=nm m m ⨯---)(1111; 故答案为:n n 41-143...43434332=++++,nmm m ⨯---)(1111.拓广应用:n n 51-5...51-551-551-53322++++ =1﹣51+1﹣251+1﹣351+…+1﹣n 51,=n ﹣(51+251+351+…+n 51),=n ﹣(41﹣n 541⨯),=nn 54141⨯+-.【思路点拨】探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m ﹣1)即可得解;拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.【答案】n n 41-143...43434332=++++,nm m m ⨯---)(1111,n n 51-5...51-551-551-53322++++=n n 54141⨯+-25、(12分)在校园文化建设活动中,需要裁剪一些菱形来美化教室.现有平行四边形ABCD 的邻边长分别为1,a (a >1)的纸片,先剪去一个菱形,余下一个四边形,在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,…依此类推,请画出剪三次后余下的四边形是菱形的裁剪线的各种示意图,并求出a 的值. 【知识点】作图—应用与设计作图 【数学思想】数形结合【解题过程】解:①如图,a =4,②如图,a =25,③如图,a =34,④如图,a =35,【思路点拨】平行四边形ABCD 的邻边长分别为1,a (a >1),剪三次后余下的四边形是菱形的4种情况画出示意图. 【答案】a =4、a =25、a =34、a =35. 26、(12分)已知:点P 是平行四边形ABCD 对角线AC 所在直线上的一个动点(点P 不与点A 、C 重合),分别过点A 、C 向直线BP 作垂线,垂足分别为点E 、F ,点O 为AC 的中点. (1)当点P 与点O 重合时如图1,易证OE =OF (不需证明)(2)直线BP 绕点B 逆时针方向旋转,当∠OFE =30°时,如图2、图3的位置,猜想线段CF 、AE 、OE 之间有怎样的数量关系?请写出你对图2、图3的猜想,并选择一种情况给予证明.【知识点】四边形中的旋转 【数学思想】数形结合【解题过程】解:(1)∵AE ⊥PB ,CF ⊥BP , ∴∠AEO =∠CFO =90°, 在△AEO 和△CFO 中,⎪⎩⎪⎨⎧∠=∠=∠=∠COF AOE OCAO CFOAEO , ∴△AOE ≌△COF , ∴OE =OF .(2)图2中的结论为:CF =OE +AE . 图3中的结论为:CF =OE ﹣AE . 选图2中的结论证明如下: 延长EO 交CF 于点G , ∵AE ⊥BP ,CF ⊥BP , ∴AE ∥CF , ∴∠EAO =∠GCO ,在△EOA 和△GOC 中,⎪⎩⎪⎨⎧∠=∠=∠=∠COG AOE OCAO GCO EAO , ∴△EOA ≌△GOC , ∴EO =GO ,AE =CG , 在RT △EFG 中,∵EO =OG , ∴OE =OF =GO , ∵∠OFE =30°,∴∠OFG =90°﹣30°=60°, ∴△OFG 是等边三角形, ∴OF =GF , ∵OE =OF , ∴OE =FG , ∵CF =FG +CG , ∴CF =OE +AE .选图3的结论证明如下: 延长EO 交FC 的延长线于点G , ∵AE ⊥BP ,CF ⊥BP , ∴AE ∥CF , ∴∠AEO =∠G , 在△AOE 和△COG 中,⎪⎩⎪⎨⎧=∠=∠∠=∠OC AO GOC AOE G AEO∴△AOE ≌△COG , ∴OE =OG ,AE =CG , 在RT △EFG 中,∵OE =OG , ∴OE =OF =OG , ∵∠OFE =30°,∴∠OFG=90°﹣30°=60°,∴△OFG是等边三角形,∴OF=FG,∵OE=OF,∴OE=FG,∵CF=FG﹣CG,∴CF=OE﹣AE.【思路点拨】(1)由△AOE≌△COF即可得出结论.(2)图2中的结论为:CF=OE+AE,延长EO交CF于点G,只要证明△EOA≌△GOC,△OFG 是等边三角形,即可解决问题.图3中的结论为:CF=OE﹣AE,延长EO交FC的延长线于点G,证明方法类似.【答案】略。
旋转章末复习一、复习导入1.导入课题:本节课对全章的知识作一回顾,梳理其知识脉络,弄清其重点和考点.2.复习目标:(1)梳理全章知识要点,能画出它的知识结构框图.(2)进一步明确旋转、中心对称、中心对称图形等概念的含义及它们的性质和作图等.3.复习重、难点:重点:旋转、中心对称的概念和性质.难点:性质的应用及图案的设计.二、分层复习1.复习指导:(1)复习内容:教材第58页至第77页的内容.(2)复习时间:7分钟.(3)复习要求:搜集知识要点,画知识结构框图.(4)复习参考提纲:①梳理知识要点:a.旋转的概念.b.旋转的性质.c.中心对称与中心对称图形的概念.d.中心对称的性质.e.关于原点对称的点的坐标特征.f.旋转和中心对称的作图.②画全章知识结构框图.180180⎧⎪⎨⎪⎩︒⎧⎪⎧⎪⎨⎪⎨⎩⎪︒⎪⎪⎩定义(三要素:旋转中心、旋转方向、旋转角)对应点到旋转中心的距离相等性质对应点与旋转中心连线的夹角等于旋转角旋转不改变图形的形状和大小定义:两个图形旋转后互相重合旋转对称点的连线经过对称中心且被对称中心平分性质特殊的旋转中心对称关于对称中心对称的两个图形是全等图形中心对称图形(一个图形旋转后与其自身重合)关于原点对称的两点:横、纵坐标分别互为相反数⎧⎪⎪⎪⎪⎪⎪⎧⎪⎨⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎩利用平移、轴对称、旋转进行图案设计 2.自主复习:可结合复习指导进行自主复习.3.互助复习:(1)师助生:①明了学情:知识点的梳理是否详细、准确;知识结构框图是否能清晰展现全章的知识脉络.②差异指导:根据学情进行个别指导或分类指导.(2)生助生:生生互动、交流、研讨、改正.4.强化:学习成果展示:画出全章知识结构框图.1.复习指导:(1)复习内容:典例剖析,考点跟踪.(2)复习时间:10分钟.(3)复习要求:注意体会知识点的考查方式,以及所学知识的综合运用.(4)复习参考提纲:①在俄罗斯方块游戏中,若某行被小方格块填满,则该行中的所有小方格会自动消失.现在游戏机屏幕下面三行已拼成如图所示的图案,屏幕上方又出现一小方格块正向下运动,为了使屏幕下面三行中的小方格都自动消失,你可以将图形进行以下的操作(A )A .先逆时针旋转90°,再向左平移B .先顺时针旋转90°,再向左平移C .先逆时针旋转90°,再向右平移D .先顺时针旋转90°,再向右平移②下列四个图形中,既是轴对称图形又是中心对称图形的有(B )A.4个B.3个C.2个D.1个③若点A(2m-1,2n+3)与B(2-m,2-n)关于原点O对称,则m= -1 ,n= -5 .④如图,在平面直角坐标系中,点A的坐标为(-2,3),点B的坐标为(-5,0),画出点A、点B关于原点的对称点A′、B′,并写出对称点的坐标.A′(2,-3)B′(5,0)⑤如图,在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴、y轴的负半轴上,且OA=2,OB=1,将Rt△AOB绕点O按顺时针方向旋转90°,再把所得的图形沿x轴正方向平移1个单位得到△CDO,写出A、C两点的坐标并求出点A和点C之间的距离.A(-2,0),C(1,2),点A和点C之间的距离AC===.2.自主复习:可结合复习指导自主复习,或相互交流研讨.3.互助复习:(1)师助生:①明了学情:特别关注学生是否对以往学过的旧知识不熟悉.②差异指导:根据学情进行针对性指导.(2)生助生:小组内研讨、总结.4.强化:结合复习参考提纲,让学生明确本章的主要考点有:(1)中心对称图形的识别(或综合轴对称图形);(2)关于原点对称的点的坐标的运用;(3)利用旋转进行相关的计算或证明;(4)平移、轴对称和旋转变换的综合运用;(5)中心对称的性质的应用及相关的作图等.三、评价1.学生的自我评价(围绕三维目标):在这节课的学习中有何新的认识和收获?自我感觉还有什么不足的地方吗?2.教师对学生的评价:(1)表现性评价:点评学生学习的主动参与情况,小组交流协作状况,以及学习效果和存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):针对本课时的主要问题,从多个角度、分层次引导复习,让学生在复习中得到提升,设置典型的问题考查学生对于基础知识的理解和运用,从课堂反馈来看,大部分学生掌握了本章知识要点,还有部分学生对中心对称(图形)还是有些迷惑,在后面的教学中,要不定时检验他们对这方面知识的掌握情况.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分) 如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为(C)A.60°B.75°C.85°D.90°第1题图第3题图第4题图2.(10分)已知点P(a,a+2)在直线y=2x-1上,则点P关于原点的对称点P′的坐标为(D)A.(3,5)B.(-3,5)C.(3,-5)D.(-3,-5)3.(10分) 如图,边长为4的正方形ABCD的对角线相交于点O,过点O的直线分别交边AD、BC于E、F两点,则阴影部分的面积是(B)A.1B.4C.6D.84.(10分) 如图,在△ABC中,∠C=90°,AC=BC=4cm,若以AC的中点O为旋转中心,将这个三角形旋转180°后,点B落在点B′处,则BB′=cm.5.(10分) 在艺术字中,有些汉字或字母是中心对称图形.下面的汉字或字母是中心对称图形吗?如果是,请标出它们的对称中心.解:都是中心对称图形,对称中心如图所示.6.(10分)如图,在张伯与王叔联合承包的平行四边形田地ABCD中,有块圆形低洼地,现要修建一条笔直的路,将平行四边形田地和圆形低洼地同时平分成两部分,请设计路线.解:连接AC,BD,交于O′,则O′是平行四边形ABCD的对称中心,连接圆心O与O′,则OO′所在的直线将平行四边形田地和圆形低洼地同时分成两部分.7.(10分) 如图,写出△ABC三顶点的坐标,并在图中描出点A1(3,3),B1(2,-2),C1(4,-1),并说明△A1B1C1是△ABC通过怎样的变化得到的?解:A(-2,2),B(-3,-3),C(-1,-2).描点如图.△A1B1C1是由△ABC先向右平移5个单位,再向上平移1个单位得到的.二、综合应用(20分)8.(20分) 如图,有三个菱形位于同一个平面直角坐标系中,解答下列问题:(1)这三个菱形的对称中心坐标分别为:①(8,0),②(0,8),③(-8,0),面积都等于12.(2)菱形②可以看做是由菱形①如何旋转得到的?解:绕点O逆时针旋转90°得到的.(3)菱形③与菱形②可看做是关于直线l对称的,则直线l所对应的函数关系式是y=-x.(4)从菱形①变换到菱形③,可以满足什么几何变换?请你设计两种不同的变换方法.解:第一种:向左平移16个单位长度.第二种:关于原点作中心对称.三、拓展延伸(10分)9.(10分) 如图,平行四边形ABCD中,AB⊥AC,AB=2,BC=25,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点F、E.(1)当旋转角度为90°时,四边形ABFE的形状是平行四边形;(2)试说明在旋转过程中,线段AF与EC总是保持相等;(3)在旋转过程中四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由,并求出此时AC绕点O顺时针旋转的度数.解:(2)连接AF,EC.∵四边形ABCD是平行四边形∴AD与CB关于点O中心对称.又E、F分别在AD、BC上.∴AE与CF关于点O中心对称.∴AE=CF,又AE∥CF,∴四边形AFCE是平行四边形.∴AF=CE.(3)可能是菱形,当AC绕点O旋转45°时,∵AC=BC2-AB2=4,∴OA=OC=2,∴OA=AB,又∠BAC=90°,∴△OAB为等腰直角三角形,∴∠AOB=45°.当AC绕点O顺时针旋转45°时,∠AOE=45°,∴∠BOE=90°,EF垂直平分BD,∴BE=ED.易证四边形BEDF为平行四边形. ∴四边形BEDF是菱形.。
第二十三章旋转章末复习
【知识与技能】
进一步掌握旋转图形、中心对称、中心对称图形的概念及其性质,能够作出旋转图形和中心对称的图形,增强图案设计的能力.
【过程与方法】
通过对本章知识点的回顾及运用本章知识解决具体问题的过程,进一步增强数学应用的意识和能力,锻炼分析问题和解决问题的能力.
【情感态度】
在探索图形之间变换关系的过程中,激发学生的学习兴趣,增强数学审美能力.
【教学重点】
本章涉及的主要知识点和数学思想方法.
【教学难点】
综合运用本章知识解决相关的几何问题.
一、知识框图,整体把握
二、释疑解惑,加深理解
1.旋转的性质有哪些?你能举出旋转的实例吗?
2.在现实生活中,存在着大量的中心对称现象,你能举出一些例子吗?成中心对称的图形有什么特点?
3.请列举学过的中心对称图形,说说如何判别一个图形是否是中心对称图形.
4.关于原点对称的点的坐标有什么特征?
5.用平移、旋转和轴对称的组合进行图案设计的关键是什么?你能进行简单的图案设计
吗?
【教学说明】
针对本章的主要知识点,教师可依次提出上述问题,让学生回顾,并交流结论,然后教师逐一讲解,让学生加深对本章知识的领悟,教学时,可给予适当时间让学生回顾交流.
三、典例精析,复习新知
例1如图,若△ABC绕点C沿顺时针方向旋转150°后得到△A1B1C,∠A=60°,∠B1=90°,则∠A1CB=______.
分析:准确的找到对应角,利用三角形的内角和性质.∠A1CB=∠B1CB-∠A1CB1=150°-30°=120°.
例2 在方格纸上建立如图的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得到△A′B′O,则点A的对应点A′的坐标为_____.
分析:本题是旋转的有关知识,要看清楚旋转的三要素:①绕哪一个点旋转,即旋转中心;②顺(逆)时针,即旋转方向;③旋转角度是多少.本题只要正确找出线段OA绕O点顺时针旋转90°后的位置,就能确定A′点.如图所示,△OA′B′就是旋转后的三角形,A′(2,3).
例3如图,写出图形“H”相应各点的坐标.若将A平移到A′的位置,平移后对应各点的坐标分别是多少?两个“H”是否关于原点对称?
分析:由题意知,平移后的“H”与平移前的“H”关于原点对称.所以“H”中的任意一点的坐标(x,y)关于原点对称的坐标为(-x,-y).这里需要注意的是要找准对应点,如
A点对应的是D′,依次类推.
解:A(-3,3),B(-3,2),C(-3,1),D(-1,1),E(-1,2),F(-1,3),A′(1,-1),B′(1,-2),C′(1,-3),D′(3,-3),E′(3,-2),F′(3,-1).比较A与D′,B与E′,C与F′,D与A′,E与B′,F与C′知,两“H”是关于原点对称.
例 4 如图,一财主有一块平行四边形的土地,地里有一个圆形池塘,财主立下遗嘱:要把这块土地平均分给他的两个儿子,中间的池塘也平分,但不知道怎么做,你能想个办法吗?
解:本题实际上是两个中心对称图形的组合,要想将其面积等分,只要能找到一条直线,使其既平分平行四边形的面积,又等分圆的面积即可,故可连接平行四边形的两条对角线,其交点A就是平行四边形的中心,找出圆的圆心B,过A、B作一条直线,这条直线就将平行四边形地与池塘平分了.
例5 已知点P为正△ABC内一点,∠APB=113°,∠APC=123°,求证:以AP、BP、CP 为边可以构成一个三角形,并确定所构成的三角形的各个内角的度数.
分析:要判断以AP、BP、CP为边是否构成一个三角形,既可以利用三角形任意两边之和大于第三边的方法,也可以将它们通过适当的方法组合在一起,通过图形的直观性来说明.而这些,可将△ABP绕点B顺时针旋转60°,构成新的图形(如图所示),问题可迎刃而解.
证明:由图易知,BP1=BP,P1C=PA,且∠P1BP=60°,故△BPP1为等边三角形,从而PP1=BP,而△PP1C是显然存在的,即以AP(P1C)、BP(PP1)、PC为边可以组成一个三角形.故∠PP1C=∠BP1C-∠BP1P=∠BPA-60°=113°-60°=53°.
∠P1PC=∠BPC-∠BPP1=(360°-113°-123°)-60°=64°,
∴∠P1CP=180°-53°-64°=63°.
【教学说明】
选取有代表性的5个例题进行评析,可开拓学生的思维,加深对本章知识的理解和运用,起到举一反三的作用.教学时,教师可根据需要选取评讲(也可另选例题).但仍应给予学生充足分析和思考的时间,锻炼学生分析问题和解决问题的能力.
四、复习训练,巩固提高
1.如右图,已知△AOB与△DOC成中心对称,△AOB的面积是12,AB=3,则△DOC中CD 边上的高是()
A.3
B.6
C.8
D.12
2.如图所示,在△ABC中,∠BAC=15°,将△ABC,绕点A按逆时针方向旋转90°到△
ADE的位置,然后将△ADE以AD为轴折叠到△ADF的位置,连接CF,判断△ACF的形状,并说明理由.
【教学说明】
让学生通过自主探究,完成相应习题,进一步巩固对本章知识的理解和掌握.教学时,教师可根据实际情况,选取练习题,在学生练习过程中,教师巡视,对有困难的同学给予帮助,让每个同学都得到发展.
【答案】1.C
2.解:△ACF是等边三角形,理由如下,由旋转及对称的性质可知∠BAD=90°,∠FAD=∠DAE=∠BAC=15°,AC=AE=AF,∴∠CAF=90°-15°-15°=60°.∴△ACF是等边三角形.
五、师生互动,课堂小结
通过本节课的学习,你对本章知识有哪些新的认识和体会,说说你的看法,并与同伴交流.
【教学说明】让学生反思小结本章内容,巩固知识,提升解题技能.
1.布置作业:从教材“复习题23”中选取.
2.完成练习册中本课时的热点专题训练.
图形的变换是《课标》中增强的部分,加强这部分内容的学习可进一步丰富对空间的认识和感受,体验在现实生活中的应用,发展空间观念,所以是中考的重要内容,题型很丰富,难度也不一致,各层次都有,也可能和其它知识综合出现在压轴题中,所以,同学们要认真学好这部分内容.。