电力系统状态估计 PPT
- 格式:ppt
- 大小:1.38 MB
- 文档页数:72
第四章电力系统状态估计(State Estimation)制作人:雷霞主要内容⏹重点:状态估计的概念⏹难点:状态估计的数学描述⏹概述⏹状态估计的数学模型及算法⏹不良数据的检测与辨识第一节概述⏹一、电力系统状态估计的必要性⏹运行结构和运行参数⏹SCADA数据库的缺点:⏹(1)数据不齐全;⏹(2)数据不精确;⏹(3)受干扰时会出现不良数据;⏹(4)数据不和谐。
二、状态估计的基本原理⏹1、测量的冗余度⏹测量系统的冗余度=系统独立测量数/系统状态变量数=(1.5~3.0)⏹2、状态估计的步骤⏹(1)假定数学模型⏹(2)状态估计计算⏹(3)检测⏹(4)识别第二节状态估计的数学模型及算法一、状态估计的数学描述数学模型量测量⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=i i i ij ij V Q P Q P z 待求的状态量⎥⎦⎤⎢⎣⎡=i i V θx一、状态估计的数学描述⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=)(),(),(),(),(i i ij ij i ij ij i ij ij ij ij ij ij V V V Q V P V Q V P θθθθh(x)量测方程一、状态估计的数学描述∑∑∈∈+=+=-=+-+-=--=i j ij ij ij ijji i i j ij ij ij ij j i i ji ij ij j i ij j i c i ij ijj i ij j i i ij B G V V Q B G V V P b V V g V V y b V Q b V V g V V g V P )cos sin ()sin cos (cos sin )(sin cos 22θθθθθθθθθθθ一、状态估计的数学描述[][])()(min )(1x h z R x h z x J T --=-状态估计的目标函数伪量测数据:第1类基尔霍夫型伪量测量:无源母线,注入量为0;第2类基尔霍夫型伪量测量:0阻抗支路),(0),(0ZBR j i V V ZBR j i j i j i ∈=-∈=-θθ),(ZBR j i Q P x ij ij ∈⎥⎥⎦⎤⎢⎢⎣⎡=二、基本加权最小二乘法状态估计数学模型[][])ˆ()ˆ()ˆ()ˆ(ˆ)(1)()(1)()(l l T l l T l R R x h z x H x H x H x -=∆--)()()1(ˆˆˆl l l x x x∆+=∆+迭代修正式x x h x H ∂∂=)()(雅可比矩阵ε<∆max x 迭代收敛的判断二、基本加权最小二乘法状态估计数学模型三、快速分解状态估计算法⎥⎦⎤⎢⎣⎡=r a z z z 量测量⎥⎦⎤⎢⎣⎡=V θx 状态量量测方程⎥⎦⎤⎢⎣⎡=),(),()(V θh V θh x h r a三、快速分解状态估计算法00=∂∂=∂∂θh V h ra 和01cos 0sin V V V j i ij ij ≈≈≈=和,θθ假设修正方程)()()()(l l l l B A bVaθ=∆=∆三、快速分解状态估计算法[][][][])()(120)()()(120)(120120,)()(,)()()()()()(l l rrrT rl l l aaaTal rrT ra a Ta R B V R B V B R B V B B R B V A θVh z b θV h z a --=--=--=--=----第三节不良数据的检测与辨识⏹不良数据:误差大于某一标准(如3~10倍标准方差)的量测数据。
3节电系统状态估计报告【任务说明】:闭合的开关:打开的开关:打开的刀闸:线路:负荷G:发电机:母线:连接线(没有阻抗) Unit2Unit13节点系统主接线图任务:1、采用最小二乘状态估计算法,所有量测的权重都取1.0,编写状态估计程序(C/Matlab)。
2、按量测类型,列出量测方程(每一类写出一个方程)3、画出程序流程4、提交源程序,程序中每个函数的作用5、提交计算的输出结果(屏幕拷贝)系统参数:功率基值:100MW电压基值:230 kV线路阻抗参数(标么值):线路量测(流出母线为正):母线电压量测:负荷量测(流出母线为正):发电量测(流入母线为正):注:量测存在误差【数据预处理】首先根据基值将已知的量测值均转换为标幺值,并将功率值转换为流入量,得到如下数据:线路导纳参数(标么值):线路注入功率量测(标幺值):负荷点注入功率量测(标幺值):发电机节点注入量测(流入母线为正):发电机量测真值unit2 0.88-j0.0424 0.8892-j0.0424unit3 0.23+j0.24 0.2304+j0.2378母线电压量测(标幺值):母线电压量测真值(幅值/角度)1 1.0087 1.0130/02 1.0198 1.0242/3.233 1.0281 1.0281/1.82【量测方程】选择节点1的电压相角为参考,为0度,以vi表示误差值。
1)节点1电压量测方程:Vi=Vi+v1即1.0087=V1+v12)1-3支路1号节点处注入有功功率功率:P ij=V i2g ij-V i V j(g ij cos+b ij sin)+v20.613=V12g13-V1V3(g13cos+b13sin)+v2即0.613=-1.6171V12-V1V3(-1.6171cos +13.698sin)+v2 3)1号节点注入功率:P i=V i2G ii +G ij cos+B ij sin+v3P1=V12G11+G1j cos+B1j sin+v3即-1.11=3.5613V12+V1V2(-1.9442cos -10.5107sin)+V1V3(-1.6171 cos -13.698 sin)+v3【流程图】【计算结果】其中iterations 为迭代次数,可见本例的迭代次数为4,收敛较快,状态估计得到的节点1、2、3电压分别为:234.0144444444444444444444444444444444444444444444【程序说明】遥测数据给定V 0,,k=0计算H(V (k),)和h(V (k),)A=H T R -1H, b=H T R -1(Z-h)求解A X=b,得Xk=k+1X (k+1)=X (k)+XNmax|X|<Y结束1、计算h矩阵的函数cal_hfunction h=cal_h(V,th0,B,G) %其中,V为节点电压估计值,th0为节点电压相角估计%值,B为节点电导矩阵,G为节点电纳矩阵b=-B; %线路电导矩阵g=-G; %线路电纳矩阵P=zeros(3,1); %初始化,节点注入功率Q=zeros(3,1);PP=zeros(3,3); %线路注入功率QQ=PP;th=[0;th0]; %节点1的电压相角为0for i=1:3P_P=0;Q_Q=0;for j=1:3if(j~=i)P_P=P_P+V(i)*V(j)*(G(i,j)*cos(th(i)-th(j))+B(i,j)*sin(th(i)-th(j)));Q_Q=Q_Q+V(i)*V(j)*(G(i,j)*sin(th(i)-th(j))-B(i,j)*cos(th(i)-th(j)));PP(i,j)=(V(i)^2)*g(i,j)-V(i)*V(j)*(g(i,j)*cos(th(i)-th(j))+b(i,j)*sin(th(i)-th(j)));QQ(i,j)=-(V(i)^2)*b(i,j)-V(i)*V(j)*(g(i,j)*sin(th(i)-th(j))-b(i,j)*cos(th(i)-th(j)));endendP(i)=(V(i)^2)*G(i,i)+P_P;Q(i)=-(V(i)^2)*B(i,i)+Q_Q;endVV=[V(1);V(2);V(3)];h=[P;Q;PP(1,2);PP(2,3);PP(3,1);QQ(1,2);QQ(2,3);QQ(3,1);PP(1,3);PP(2,1);P P(3,2);QQ(1,3);QQ(2,1);QQ(3,2);VV];2、计算H矩阵的函数cal_HHfunction H=cal_HH(V,th0,G,B,P,Q) %其中,P,Q为根据电压估计值计算得到的节点%注入电压b=-B;g=-G;PV=zeros(3,3); %节点注入功率对电压幅值的偏导数QV=zeros(3,3);Pth=zeros(3,3); %节点注入功率对电压相角的偏导数Qth=zeros(3,3);PPV=zeros(3,3); %P ij对V j的偏导数QQV=zeros(3,3); %Q ij对V j的偏导数PPth=zeros(3,3); %P ij对th j的偏导数QQth=zeros(3,3); %Q ij对th j的偏导数PPV1=zeros(3,3); %P ij对V i的偏导数QQV1=zeros(3,3); %Q ij对V i的偏导数PPth1=zeros(3,3); %P ij对th i的偏导数QQth1=zeros(3,3); %Q ij对th i的偏导数VV=eye(3);Vth=zeros(3,2);th=[0;th0];for i=1:3for j=1:3if (i~=j)PV(i,j)=V(i)*(G(i,j)*cos(th(i)-th(j))+B(i,j)*sin(th(i)-th(j)));QV(i,j)=V(i)*(G(i,j)*sin(th(i)-th(j))-B(i,j)*cos(th(i)-th(j)));PPV(i,j)=-V(i)*(g(i,j)*cos(th(i)-th(j))+b(i,j)*sin(th(i)-th(j)));QQV(i,j)=-V(i)*(g(i,j)*sin(th(i)-th(j))-b(i,j)*cos(th(i)-th(j)));PPV1(i,j)=2*V(i)*g(i,j)-V(j)*(g(i,j)*cos(th(i)-th(j))+b(i,j)*sin(th(i)-th(j)));QQV1(i,j)=-2*V(i)*b(i,j)-V(j)*(g(i,j)*sin(th(i)-th(j))-b(i,j)*cos(th(i)-th(j)));if (j~=1)Pth(i,j)=V(i)*V(j)*(G(i,j)*sin(th(i)-th(j))-B(i,j)*cos(th(i)-th(j)));Qth(i,j)=-V(i)*V(j)*(G(i,j)*cos(th(i)-th(j))+B(i,j)*sin(th(i)-th(j)));PPth(i,j)=-V(i)*V(j)*(g(i,j)*sin(th(i)-th(j))-b(i,j)*cos(th(i)-th(j)));QQth(i,j)=-V(i)*V(j)*(-g(i,j)*cos(th(i)-th(j))-b(i,j)*sin(th(i)-th(j)));endif(i~=1)PPth1(i,j)=V(i)*V(j)*(g(i,j)*sin(th(i)-th(j))-b(i,j)*cos(th(i)-th(j))); QQth1(i,j)=-V(i)*V(j)*(g(i,j)*cos(th(i)-th(j))+b(i,j)*sin(th(i)-th(j)));endelsePV(i,j)=(G(i,i)*(V(i)^2)+P(i))/V(i);QV(i,j)=(Q(i)-(V(i)^2)*B(i,i))/V(i);if (j~=1)Pth(i,j)=-B(i,i)*(V(i)^2)-Q(i);Qth(i,j)=P(i)-(V(i)^2)*G(i,i);endendendendH=[[PV,Pth(:,2:3)];[QV,Qth(:,2:3)];...[PPV1(1,2),PPV(1,2),0,PPth(1,2),0;...0,PPV1(2,3),PPV(2,3),PPth1(2,3),PPth(2,3);...PPV(3,1),0,PPV1(3,1),0,PPth1(3,1)];...[QQV1(1,2),QQV(1,2),0,QQth(1,2),0;...0,QQV1(2,3),QQV(2,3),QQth1(2,3),QQth(2,3);...QQV(3,1),0,QQV1(3,1),0,QQth1(3,1)];...[PPV1(1,3),0,PPV(1,3),0,PPth(1,3);...PPV(2,1),PPV1(2,1),0,PPth1(2,1),0;...0,PPV(3,2),PPV1(3,2),PPth(3,2),PPth1(3,2)];...[QQV1(1,3),0,QQV(1,3),0,QQth(1,3);...QQV(2,1),QQV1(2,1),0,QQth1(2,1),0;...0,QQV(3,2),QQV1(3,2),QQth(3,2),QQth1(3,2)];...[VV,Vth]];3、主程序calculate_all.m文件format longG=[3.5613,-1.9442,-1.6171;...-1.9442,3.0993,-1.1551;...-1.6171,-1.1551,2.7722]; %B为节点电导矩阵B=[-24.2087,10.5107,13.698;...10.5107,-20.295,9.7843;...13.698,9.7843,-23.4832]; %G为节点电纳矩阵P=[-1.11;0.88;0.23]; %节点注入功率量测值Q=[-0.135;-0.0424;0.24];PP=[0.613;-0.24;-0.459]; %线路1-2,2-3,3-1注入功率在首端的量测值QQ=[-0.012;0.066;-0.165];PP1=[0.467;-0.6;0.24]; %线路1-3,2-1,3-2注入功率在首端的量测值QQ1=[0.148;-0.024;-0.072];V=[1.0087;1.0198;1.0281]; %节点电压幅值量测值R=diag(ones(21,1)); %权重都取为1Z=[P;Q;PP;QQ;PP1;QQ1;V]; %量测值矩阵V0=[1;1;1]; %初值th0=[0;0];delta=100;iterations=0; %迭代次数while delta>0.000001iterations=iterations+1;h=cal_h(V0,th0,B,G); %计算h矩阵H=cal_HH(V0,th0,G,B,h(1:3,1),h(4:6,1)); %计算H矩阵A=H'*inv(R)*H;b=H'*inv(R)*(Z-h);d=A\b; %求解修正值delta=max(abs(d));V0=V0+d(1:3,1); %修正估计值th0=th0+d(4:5,1);enditerationsV0=V0*230; %转换为有名值th0=th0*180/pi; %转换为度for i=1:3j=num2str(i);v=num2str(V0(i));show1=strcat('The voltage magnitude of node ',j,' is', v,' kV');disp(show1);endfor i=1:2j=num2str(i+1);th=num2str(th0(i));show1=strcat('The phase angle of node ',j,' is ',th,' degrees');disp(show1);end。