炼铁原理与工艺培训课程
- 格式:pptx
- 大小:219.13 KB
- 文档页数:41
炼钢工艺及基础理论培训课件一、转炉炼钢的基础理论1、氧气炼钢转炉中物理化学反应的基本条件和特点(1)、首先,在氧气炼钢转炉中要用氧气将铁水中的C、Si、Mn、P等元素快速氧化到吹炼终点的要求,在吹氧的全部时间内,熔池中始终进行着强烈的元素氧化反应,显然,在吹氧时间内,炉中具有很强的氧化特性。
只是在吹氧结束后的为时很短的脱氧和合金化时间内,熔池中的反应才主要是还原反应。
(2)、氧气转炉炼钢是在适当的高温下进行的,在吹炼过程中,将入炉的1250~1350℃的铁水加热到1660~1730℃。
这是现代优质、高产、低耗、低成本炼钢方法的必要条件。
吹炼的过程温度和终点温度都应当适当,不应过低或过高,过程温度过低,熔池中传质和传热速度缓慢,造渣困难,因而不利于熔池金属中杂质的去除和废钢等固体料的熔化,相反,过程温度过高,又对炉衬寿命有害,不利于某些不适于过高温度下进行反应的杂质的去除,钢中有害气体的含量也将提高。
此外,过高或过低的终点温度,都有会降低钢坯的质量,降低钢坯的合格率,降低设备的寿命,事故也增高。
(3)、氧气转炉炼钢过程中,同时而连续地进行着多种多相物理化学反应,通常在转炉中同时存在着金属和炉渣两相液相,CO、CO2、O2和炉气等几种气相,炉衬、固体成渣材料、废钢、铁合金和固体非金属夹杂物等多相固相,因此,必须应用多相系的物理化学规律研究炼钢熔池中的反应。
2、氧化反应化学反应进行的结果受两个因素制约;一个是热力学,即在给定的外界条件下,反应最终能达到的状态——平衡态;另一个是动力学,即反应向平衡态趋近的速率。
动力学因素比热力学复杂的多。
但幸运的是,化学反应随温度的升高而急剧增加,在炼钢主高温下,许多反应都可以达到或接近平衡。
因此,有关高温冶金反应平衡的知识对炼钢工作者是很有用的,炼钢过程中,有些反应没有完全达到,而是主要原因是由于反应物传输到反应地带的传质速率不够快造成的。
炼钢过程所涉及的物理变化和化学反应是复杂的,其中最主要的是[C]、[Si]、[Mn]、[P]组分的氧化。
第一章炼铁工艺和原燃料第一节炼铁工艺简介一.钢铁工业在国民经济中的作用钢铁工业在人类社会活动中占有极其重要的地位,工业、农业、交通及国防等工业均离不开钢铁,一个国家的钢铁生产水平,直接反映了这个国家科学技术发展程度和人民的生活水平。
二、我国炼铁史简述三、现代化高炉炼铁生产工艺流程铁广泛地存在自然界中,铁在自然界中的贮存量仅次于铝,居第二位(Al:7.5%、铁:5.1%),自然界中的铁元素主要以氧化物的形式存在于矿石中,如赤铁矿(Fe2O3)磁铁矿(Fe3O4)等。
高炉冶炼生铁的本质是从铁矿石中将铁还原出来,并熔化成生铁流出炉外。
还原铁矿石需要的还原剂和热量由燃料燃烧产生,炼铁的主要燃料是焦炭,使用了喷吹煤粉、重油、天燃气等辅助燃料新工艺过程,随着采矿、选矿和造块等技术的不断发展,现代几乎采用了人造富矿(烧结矿、球团矿)作为含铁原料。
在高炉炼铁生产中,高炉是工艺流程的主体,从上部装入矿石、燃料和熔剂向下运动,下部鼓入空气燃烧燃料,产生大量的还原性气体向上运动,炉料经过加热、还原、熔化、造渣、渗碳、脱硫等一系列的物理化学过程,最后生成液态炉渣和生铁。
高炉是一个竖式圆筒形冶炼炉,由炉基、炉壳、炉衬及冷却设备、支柱或框架组成。
从上至下分为:炉喉、炉身、炉腰、炉腹、炉缸五部分。
高炉炼铁的工艺流程组成:以高炉本体为核心,高炉生产还包括以下几个系统:上料系统、装料系统、送风系统、煤气回收与除尘系统、渣铁处理系统、煤粉喷吹系统以及为这些系统服务的动力系统。
1.上料系统:包括贮矿场、贮矿槽、焦炭滚动筛、称量漏斗、称量车、料坑、斜桥和卷扬机,大型高炉采用皮带上料。
这些设备根据冶炼工艺要求,把矿、焦等原燃料配成一定质量和成分的“料批”运到炉顶装入受料漏斗。
2.装料系统:钟式炉顶包括:受料漏斗,旋转布料器,大小钟漏斗,大、小钟,大、小钟平衡杆,探尺,高压操作的高炉还有均压阀和放散阀。
无料钟炉顶包括:受料罐、上料闸、上密封阀、称料罐、阀门箱、料流调节阀、下密封阀、中心喉管、齿轮箱等。