石油地质学教案 第四章 石油和天然气的运移
- 格式:doc
- 大小:835.00 KB
- 文档页数:11
石油与天然气地质学教案及思考题教案章节一:石油与天然气地质学概述1. 学习目标:理解石油与天然气地质学的基本概念和研究内容。
掌握石油与天然气的形成和储存条件。
2. 教学内容:石油与天然气地质学的定义和研究对象。
石油与天然气的形成过程和来源。
石油与天然气的储存条件和地质特征。
3. 教学方法:讲授法:讲解石油与天然气地质学的基本概念和研究内容。
互动法:引导学生参与讨论石油与天然气的形成和储存条件。
4. 教学资源:教材:石油与天然气地质学教科书。
图片和图表:展示石油与天然气的形成和储存条件的图片和图表。
5. 教学评估:课堂讨论:评估学生对石油与天然气地质学的基本概念的理解。
思考题:评估学生对石油与天然气的形成和储存条件的掌握。
教案章节二:石油与天然气的形成与演化1. 学习目标:理解石油与天然气的形成过程和演化规律。
掌握石油与天然气的、运移和聚集机制。
石油与天然气的形成过程:生物残体的转化、有机质的成熟等。
石油与天然气的演化规律:生烃期、排烃期、聚集期等。
石油与天然气的、运移和聚集机制:生物油源岩、热解油源岩等。
3. 教学方法:讲授法:讲解石油与天然气的形成过程和演化规律。
互动法:引导学生参与讨论石油与天然气的、运移和聚集机制。
4. 教学资源:教材:石油与天然气地质学教科书。
图片和图表:展示石油与天然气的形成过程和演化规律的图片和图表。
5. 教学评估:课堂讨论:评估学生对石油与天然气的形成过程和演化规律的理解。
思考题:评估学生对石油与天然气的、运移和聚集机制的掌握。
教案章节三:石油与天然气的储层地质学1. 学习目标:理解石油与天然气的储层特征和储集机制。
掌握储层岩石的类型和性质,以及储层评价和预测方法。
2. 教学内容:储层岩石的类型和性质:砂岩、碳酸盐岩、泥岩等。
储层特征:孔隙结构、渗透性、可动性等。
储集机制:水动力条件、油气运移路径、油气藏形成等。
储层评价和预测方法:地震勘探、测井技术、地质建模等。
讲授法:讲解储层岩石的类型和性质,以及储层特征和储集机制。
石油、天然气的生成、运移基础知识一、石油和天然气的生成油气生成的原因石油和天然气的成因,是石油地质学界主要研究和长期争论的重大课题之一。
它的研究不仅具有重要的理论意义,而且对石油和天然气的勘探起着指导作用。
根据对石油原始物质截然不同的认识,石油成因理论可以分为无机成因和有机成因两大学派。
石油无机成因认为,石油是由自然界的无机物形成的。
但是,油气田勘探的实践证明,世界上绝大多数油气田都分布在沉积岩中,极少数岩浆岩和变质岩中的油气藏也同附近的沉积有机质有关,是石油侧向或垂向运移聚集的结果。
并且在石油中相继发现许多具有明显生物标志的有机化合物。
由于石油无机成因假说不能用来指导石油勘探,所以其支持者已经很少了,只能在实验室内作为科学理论问题进行探讨。
石油有机成因说认为,石油是由沉积物当中的有机质,在特定的地质环境中,在各种压力的综合作用下,经历生物化学、热催化、热裂解、高温变质等阶段,陆续转化为石油和天然气有机成因说又可以分为早期成油说和晚期成油说两个分支。
目前,有机晚期成油说已被石油地质学家、地球化学家所接受,能比较可靠地指导油气田勘探。
因此,本节主要介绍有机晚期成油说的主要论点。
有机物质为石油的生成提供了根据,有机物质主要是指生活在地球上的生物遗体。
要使有机物质保存下来并转化成石油还要有适当的外界条件。
自然界中的生物种类繁多,它们在不同程度上都可以作为生油的原始物质。
比较起来,低等生物作为生油的原始物质更有利、更重要。
因为低等生物繁殖力极强且数量多,低等生物多为水生生物,死亡后容易被保存;另外它在历史上出现最早,其生物体中富含脂肪和蛋白质。
有机体从死亡到沉入水底的过程,不可避免地要经受游离氧的氧化和水对可溶性组分的溶解,只有幸存的一小部分有机体能够到达水底,同矿物质一起堆积起来。
只有堆积埋藏下来的有机体才能在适当的环境、条件下开始向石油烧类方向转化。
1.还原环境还原环境对有机质的保存和向油气的转化都是非常重要的。
第五章石油和天然气的运移第一节油气初次运移初次运移:是指生油层中生成的石油和天然气,从生油层向储集层(或输导层)中的运移。
是油气脱离烃源岩的过程,又称为排烃。
争论的焦点:油气是在“什么因素的驱使”下?呈“何种相态”?通过“什么途径”?排出烃源岩的一、油气初次运移的动力因素1、压实作用的动力因素正常压实:在上覆沉积负荷作用下,沉积物通过不断排出孔隙流体,如果流体能够畅通地排出,孔隙度能随上覆负荷增加而作相应减小,孔隙流体压力基本保持静水压力,则称为正常压实或压实平衡状态。
欠压实:如果由于某种原因孔隙流体的排出受到阻碍,孔隙度不能随上覆负荷的增加而相应减少,孔隙流体压力常具有高于静水压力的异常值,这种压实状态就称为欠压实或压实不平衡。
(1)正常压实压实作用过程中流体的排出实际上是由于剩余流体压力的作用。
剩余流体压力是指超过静水压力的地层压力。
沉积物在达到压实平衡的层序之上又沉积了新沉积物,此时颗粒要重新紧缩排列,孔隙体积要缩小,就在这些变化的瞬间,孔隙流体就要承受部分由颗粒产生的有效压应力,使流体产生了超过静水压力的剩余压力。
正是在剩余压力作用下孔隙流体才得以排出,排出后孔隙流体又恢复了静水压力,沉积物又达到新的压实平衡。
可见,这种剩余压力只发生在压实平衡与达到新的压实平衡之间的瞬时,所以应当叫做瞬时剩余压力。
但在一个不断沉降、不断沉积、不断压实的连续过程中也可叫做剩余压力。
因为正常压实过程就是:由压实平衡到瞬时不平衡再到平衡的过程,而孔隙流体压力则是由静水压力到瞬时剩余压力再到静水压力的连续过程。
在这过程中流体不断排出、孔隙体积不断减小,如果流体的排出时烃源岩已经成熟成烃,即可实现初次运移。
其排液的方向视不同的沉积层序而不同。
排液方向均一泥岩的层序剩余压力的大小:El=(ρbo-ρw)glo一般来讲,深部沉积物的剩余流体压力大于浅处的剩余流体压力,在均一岩性的层序里流体一般是向上运移排出的。
如果新沉积物的厚度在横向上有变化,那么由上式不难看出水平剩余流体压力梯度远远小于垂向上的剩余流体压力梯度,往往只是1/200~1/20,因此,大部分流体沿垂直方向向上运移,只有很少一部分流体沿水平方向运移。