油气运移简介
- 格式:ppt
- 大小:6.63 MB
- 文档页数:39
油气成藏机理与勘探技术创新随着全球能源需求的不断增长,油气资源的开发与利用越来越受到人们的关注。
而油气的成藏机理和勘探技术创新则成为了保障能源供应和提高勘探效率的重要因素。
本文将从油气成藏机理和勘探技术创新两个方面展开论述。
一、油气成藏机理1.1 基本概念与特征油气成藏机理是研究油气在地质中形成、存在和保存的规律性过程。
油气成藏的特征包括油气来源、油气运移、油气储集形式等。
1.2 流体运移与渗流模型油气的运移是指油气从源岩或母岩中迁移至储集层的过程。
渗流模型的建立对于研究油气运移具有重要意义。
1.3 常见油气成藏类型常见的油气成藏类型包括构造油气藏、岩性油气藏、沙岩型油气藏等。
不同类型的油气藏在成藏机理和勘探开发中有着不同的特点。
二、勘探技术创新2.1 传统勘探技术传统勘探技术包括地震勘探、测井技术、岩心分析等。
这些技术在过去的油气勘探中发挥了重要作用,但也面临着一些挑战。
2.2 非常规油气勘探开发技术非常规油气勘探开发技术包括页岩气、致密气、煤层气等。
这些新兴的勘探技术在提高油气勘探效率和开发利用率方面具有巨大潜力。
2.3 智能化勘探技术随着人工智能和大数据技术的发展,智能化勘探技术逐渐成为研究热点。
人工智能算法和数据分析能够更准确地预测油气资源的分布和储量。
三、油气成藏机理与勘探技术创新的关系油气成藏机理和勘探技术创新相互影响、相互促进。
深入研究油气成藏机理能够为勘探技术的创新提供理论依据和指导。
而勘探技术的创新又可以进一步加深对油气成藏机理的认识。
四、未来的发展趋势4.1 优化勘探方案在油气勘探中,需求不断提高勘探效率和降低勘探风险。
因此,优化勘探方案将成为未来的发展趋势之一。
4.2 探索深水油气资源随着陆地资源的不断消耗,深水油气资源将成为未来的重点开发对象。
探索深水油气资源将需要使用先进的勘探技术和设备。
4.3 发展非常规油气资源非常规油气资源具有丰富的潜力,但开发难度较大。
未来的发展趋势将集中在开发非常规油气资源上。
油气垂向和侧向倒灌运移条件及其聚集规律的差异性
油气垂向和侧向倒灌是油气开采中常见的二种运移方式,它们具有独特的影响条件,研究了这两种形式运移条件及其聚集规律的差异性,将有助于准确预测油气开采时各种条件下的聚集规律。
油气垂向倒灌是指在采油井中出现水位过高,使轻烃或混合轻烃和水从低层贯穿上层,在上层蓄积的运移过程。
它的主要特点是在垂向的方向上液体的空气体的运移过程,垂向中油气的空气体的聚集表现为混合物在水、油层向上的聚合,往往继续向上发生自由波,油气的聚合形式也趋于稳定。
侧向倒灌是指,在地层发育过程中形成的竖缝充填水体,以及较高浓度烃体和水混合物聚集在侧缝上某一层穴,沿此穴继续向上流动,随着穴的深度增加而运移的过程。
这种侧向运移的特点是两种空气体的混合运移,而油气的聚集形式则是一个不断变化的过程,也是复杂的过程。
与垂向倒灌不同,侧向倒灌对由于因开发时压力和流体关系不同而出现的混合油气前进方向变化会表现出层次化的特点,这是由于烃体存在向上流动,波动方向移动的规律性特点,以及轻质烃和油水相混合物,向前受到抗力而无法聚集起来而形成的。
油气垂向和侧向倒灌运移条件及其聚集规律的差异性主要表现在运移特点、聚集形式和流动方向等方面,这些不同的特点,也使得研究者在油气开采中综合考虑这两种形式的运移条件,了解不同深度油气分布规律,以及油气开采时更精确的聚集规律。
只有更深入地认识这两种形式运移及其聚集规律的差异性,才能确保预测的精准性,从而确保正确的开采技术,使得开采更加精准全面。
第一章石油地质基础第一节石油和天然气的化学性质一、石油的化学性质二、天然气的化学性质第二节石油、天然气的生成和运移一、石油、天然气的生成二、石油、天然气的运移第三节储油层的类型一、储油层的类型二、油气藏三、渤海部分油田油层情况第四节地质构造一、岩层二、褶皱构造三、断裂构造第五节沉积岩与沉积相一、沉积岩二、沉积相第二章采油专业知识第一节渤海地区区块及构造和井号的命名一、渤海矿区区块及构造的命名原则二、井号的命名原则三、井的分类第二节采油工艺油一、渤海海上采油方式1、自喷采油2、机械采油二、自喷井和电泵井的生产管理1、自喷井的生产管理2、电泵井的生产管理三、井口和井下结构1、井口结构2、井下结构第三章海上平台的种类及特点第一节海上钻井平台第二节海上采油平台第四章气田平台与油田平台的区别第一节平台结构第二节平台设备第三节人员配置第五章中心/井口平台主要系统、用途和功能第一节旅大10-1CEP的主要系统用途及功能第二节旅大4-2井口平台的主要系统的用途和功能第六章单点系泊的用途和功能第一节单点系泊的概念第二节单点系泊装置的类型第三节单点系泊装置的主要部分的结构以及作用第七章FPSO的主要系统用途和功能第八章应急关断及CCR工作原理第一节、生产控制系统概述第二节、紧急关断系统概述第三节、火气探测系统概述第四节、井口控制盘概述第九章现场仪表的控制原理第一节、压力类仪表第二节、温度类仪表第三节、流量类仪表第四节、调节阀第十章平台主要设备及工作原理介绍第一章石油地质基础第一节石油和天然气的化学性质一、石油的化学性质石油:由各种碳氢化合物混合而成的一种油状液体。
主要由碳、氢元素组成,碳占83%~87%,氢占10 %~14%,还有氧、氮和硫,但含量都不超过1%,个别油田含硫量可达3%~4%。
石油一般呈棕黑色、深褐色、黑绿色等,也有无色透明的。
石油有特殊气味,含硫化氢时有臭味,含芳香烃而有香味。
含蜡:蜡为碳15~42的碳氢化合物称。
油气富集样式油气富集样式是指油气在地质条件下富集形成的特定模式或方式。
它是石油地质学研究的重要内容之一,对于油气勘探和开发具有重要的指导意义。
本文将从油气富集样式的分类、形成机制以及实例等方面进行探讨。
一、油气富集样式的分类根据油气富集的地质条件和特征,可以将油气富集样式分为以下几类:1.构造圈闭型富集:主要是指在构造断层、背斜、逆冲构造等构造单元中形成的油气富集。
这类富集样式常见于裂陷盆地和造山带,如中国的塔里木盆地和四川盆地等。
2.岩性圈闭型富集:主要是指在岩性变化明显的层状岩石中形成的油气富集。
这类富集样式常见于碳酸盐岩、砂岩等储层中,如中国的渤海湾盆地和大庆油田等。
3.沉积微相型富集:主要是指在沉积环境中特定的微相条件下形成的油气富集。
这类富集样式常见于河道、湖泊、海岸等沉积环境中,如中国的珠江口盆地和松辽盆地等。
4.岩性微观型富集:主要是指在岩石的微观结构、孔隙特征等方面形成的油气富集。
这类富集样式常见于储层中的孔隙型、裂缝型、溶蚀型等,如中国的鄂尔多斯盆地和川西坳陷等。
油气富集样式的形成机制主要包括油气源、油气运移、油气储集三个方面:1.油气源:油气富集需要有充足的油气源供应,一般来自有机质丰富的母源岩。
在适宜的地质条件下,母源岩经过热演化作用,产生并释放出大量的油气。
2.油气运移:油气运移是指油气从母源岩向储集层的迁移过程。
油气富集样式的形成与油气运移的路径、速度和方向密切相关。
在构造活动和岩性条件的影响下,油气往往沿着构造断层、岩性转换带等通道向上迁移,最终富集在相对密封的储集层中。
3.油气储集:油气储集是指油气在储集层中形成可采集的规模和浓度。
储集层的岩石性质、孔隙结构以及地下流体的压力和温度等因素都会影响油气的储集。
油气往往通过孔隙、裂缝、溶洞等储集空间富集起来,形成可采集的石油和天然气资源。
三、油气富集样式的实例1.构造圈闭型富集的实例:中国的塔里木盆地是一个典型的构造圈闭型富集区,盆地内发育有多个构造单元,通过断层和背斜形成了多个油气富集区,如库车坳陷、恰哈坳陷等。
油气储运知识简介油气储运是指将油气从开采现场运输到加工厂、储存仓库或终端客户的全过程。
其流程包括采油、储存、运输和加工等环节。
为确保油气储运的安全、高效、节能和环保,需要掌握相关知识。
采油采油是指从油田地下将石油采出到地上,通常采用钻井技术顺着井筒从井口进入油层,利用钻机直接钻取油层或在油层浅处打开井眼进行油气采集。
采取哪种方法主要由油田情况、地质条件、钻探技术等决定。
采油过程中需要注意以下几点:1.地质勘探,确定油气田的地质构造、储量和采掘条件;2.钻井和配管工程,保障油气从井口顺畅采出;3.生产技术和设备,确保油气按规定产量和质量稳定输出;4.安全问题,防止井口溢油、爆炸和其他意外事故发生。
储存储存是指将采出来的油气暂时存放在地面或地下的设施里,以便运输或加工。
储存设施的种类很多,包括大型储罐、容器、地下贮藏库等。
储存油气需要注意以下几点:1.储存设施的材质和结构要符合安全要求;2.定期对设施进行检查、维护和清洗;3.控制储存压力、温度和湿度,防止油气泄露、爆炸或自燃;4.选用合适的储存方法,根据储罐、地下库、罐车、管道等不同储存装置分别进行储存处理;5.根据油品类别、油气组成和储存要求等,对油气进行分类、分层和配比。
运输运输是指将油气从生产地运送到使用地或加工厂,分为水、路、铁、空四种方式,通常由石油和天然气、石油化工等专业运输公司负责。
运输油气需要注意以下几点:1.计算好运输距离、车次、载重、装车方式等,制定合理运输方案;2.做好路线规划、交通组织和车辆监控,确保油气运输安全、准时、稳定;3.采用高效节能的运输工具和设备,如采用气体泵、低压输送等技术;4.严格管控油气泄漏、碰撞和火灾等风险,加装安全阀、液位表、浓度探头等问题采取高级安全措施;5.根据不同油品品质和油气运输方式,分别进行运输车辆的选型、检测及保养等工作。
加工加工是指将原油、天然气等原料加工成成品油、天然气制品等成品。
加工过程主要包括分馏、重整、催化裂化等工序,通过数种工艺加工成各种成品。
油田开发过程中油气水的运移特征研究石油和天然气作为一种流体是埋在地下的,它的形成和迁移过程涉及到其他流体的变化过程,也将不可避免地受到各种自然因素的影响,油气水的迁移和每个阶段都有其特殊性和独特特点,所以加强对油气田开发过程中油气水的运移特征特殊性研究是石油和天然气的勘探和开采过程中的前提和基础。
标签:油田开发过程;油气水;运移特征油气作为一种流体埋藏于地下,其形成、运移过程跟其他流体一样,必然受到各种来自自然界各种因素地影响,油气水运移是这个过程中最关键的环节,且每个阶段的运移均有其特殊性和特点,加强对其特殊性的研究是油气勘探和开采工作进行的重用前提和铺垫,具有重大意义。
1油气水运移相态气藏储层的流体以及岩石受到油气水运移的影响,将会改变原有的压缩状态,促使井口与井底的油气藏之间形成一定的压力降,由此可知,油气水之所以会发生运移现象,是受到流体与岩石的膨胀影响。
油气水呈现混合状态时,基于气体压力的作用,油水之间会弥漫大量的气,在开发过程中由于能量释放作用,气会产生膨胀现象,从而促使油气发生运移膨胀。
除此之外,油流越高压力越小,而井底压力越低于饱和压力,这时油内气体会出现溶解、分离现象,使油气水运移。
要想准确把握油气水运移相态,必须对水溶相进行迁移分析。
由天然气和石油所构成的分子溶液会在水中发生溶解。
因此,水是水溶相迁移的输送载体。
2油气水运移影响因素在开发油气田过程中,需要立足于该工程的整体,对影响因素进行有效分析。
基于油气、天然气以及石油的运移方向以及动力,可以将运移划分为两个过程,分别是一次运移和二次运移。
除此之外,要想准确分析油气水的运移特征,还需要掌握油气水形成时间,形成油气水的烃源岩特征也会影响油气水的运移特征。
影响油气水一次运移的因素有两个,一是初始运移压实。
而压实度的形式有两种,分别是欠压实、正常压实。
不过,仅仅是剩余流体所具备的压力,便可以顺利实施排出与压实作业。
在此过程中,由于沉积物的产生,颗粒将会重新排列组合,孔隙体积也会出现一定程度的变化。
油气藏形成|地质条件“六字诀”油气藏是油气聚集的基本单位,是油气勘探的对象。
石油和天然气在形成初期呈分散状态,存在于生油气地层中。
它们必须经过迁移、聚集才能形成可供开采的工业油气藏。
这就需要具备一定的地质条件。
这些条件可以概括为“生、储、盖、圈、运、保”六个字。
生油气层:是指具备生油条件的地层。
它富含有机质,是还原环境下沉积的,结构细腻、颜色较深,主要由泥质岩类和碳酸盐类岩石组成。
生油气层可以是海相的,也可以是陆相的。
另外,生油气层还必须具备一定的地质作用过程,即达到成熟才能有油气的形成。
储层:是能够储存石油和天然气,又能输出油气的岩层。
它具有良好的空隙度和渗透率,通常由砂岩、石灰岩、白云岩,以及裂隙发育的页岩、火山岩和变质岩构成。
盖层:指覆盖于储油气层之上、渗透性差、油气不易穿过的岩层,起着遮挡作用,以防油气外逸。
页岩、泥岩、蒸发岩等是常见的盖层。
圈闭:就是储集层中的油气在运移过程中,遇到某种遮挡物,使其不能继续向前运动,而在储层的局部地区聚集起来。
这种聚集油气的场所就叫圈闭,如背斜、穹隆圈闭,或断层与单斜岩层构成的圈闭等。
运移:指油气在生油气层中形成后,因压力作用、毛细管作用、扩散作用等,使之转移到有孔隙的储油气层中。
一般认为,转移到储油气层的油气呈分散状态或胶状。
由于重力作用,油气质点上浮到储油气层顶面,但还不能大量集中,只有当构造运动形成圈闭时,储油气层的油、气、水,在压力、重力及水动力等作用下,继续运移并在圈闭中聚集,才能成为有工业价值的油气藏。
保存:油气要保存必须有适宜的条件。
只有在构造运动不剧烈、岩浆活动不频繁、变质程度不深的情况下,才利于油气保存。
相反,张性断裂大量发育,剥蚀深度大,甚至岩浆活动的地区,油气是无法保存的。
第五章指示油气运移的地球化学参数石油是一种多组分的复杂混合物,每个组分的物理化学性质存在差异。
当它们从油源层被排到相邻近的运移通道中进行运移时,由于石油组分与运移介质之间物理-化学作用的影响,多组分的复杂混合物将发生不同程度的分异作用,导致石油的组成和性质发生一系列的变化,即发生分馏。
导致这种变化的影响因素颇多,在不同的地质-化学条件下,对于石油的不同组分,各种因素的影响程度不尽相同,目前还不是很了解。
而地球化学参数却可以为这些变化提供直接的证据。
现在在运移研究中发挥重要作用的地球化学参数包括石油的不同馏分、流体包裹体和同位素等。
一、原油馏分1.生物标志化合物现在用于油气运移研究中的生物标志化合物主要包括正构烷烃、异戊二烯烃、甾烷、萜烷、芳烃及卟啉化合物。
(1)正构烷烃正构烷烃是石油的重要组成部分,也是石油地化中研究和应用较早的化合物之一。
与生物标志化合物有关的正构烷烃,碳数分布范围很广,从 nC13—nC40,甚至到nC50,由于分析上的原因,一般研究的在nC15—nC35之间。
随着运移距离的增加nC17—nC25范围内的正构烷烃表现出与运移距离成正比的关系,即运移距离越长, nC17—nC25范围的正构烷烃含量越高。
在运移过程中,层析作用占主导地位时,这种规律非常明显;但是若在运移过程中,氧化作用或生物降解占主导地位,这种规律可能不明显,甚至出现相反的规律。
(2)异戊二烯烃无环异戊二烯烃类广泛地应用于油源对比和恢复沉积环境,其中姥鲛烷和植烷由于结构上的稳定性和较高的含量,成为最常用的标志化合物。
在运移方面,目前主要研究了姥鲛烷、植烷与nC17、nC18 运移的相对难易程度。
Mackenzie等和 Leythaeuser 等在研究了一些地区的地质样品后发现,在排除了成熟作用影响之后,经运移的原油中的Pr/ nC17比值较源岩中残余烃低,即nC17较Pr更易运移。
也就是说,正构烷烃较相近碳数异戊二烯烃具更强的运移能力。
浅谈油气成藏条件及成藏机理研究进展油气成藏是指地下岩石中的油气在特定地质条件下形成具有经济价值的储集体系。
油气成藏条件主要包括油源、储集空间、封盖层和构造。
储集空间是指油气储集的空隙和裂缝等空间。
主要包括孔隙、裂缝和岩石微孔等。
孔隙是指岩石中的空隙,可以储存油气。
孔隙的形成主要有物理和化学两种方式,物理孔隙是指由于岩石破碎、溶解或侵蚀形成的空隙,化学孔隙是指由于水溶液对岩石的腐蚀作用形成的空隙。
裂缝则是指由于地壳运动引起的岩石断裂,形成的具有一定宽度的空隙。
岩石微孔是指由于岩石本身的孔隙和裂缝,形成的微小空隙。
储集空间的发育与沉积环境、成岩作用和构造变形等因素密切相关。
封盖层是指位于油气储集体系上方的密封岩层,可以阻止油气从储集层向上逸散。
封盖层主要由泥岩、盐岩和非透水的火山岩等构成。
泥岩是常见的封盖岩,因其细粒、高含水量和低透水性,可以有效地封闭油气。
构造是油气成藏的重要因素。
构造是指地质上的断裂和褶皱等地壳运动形成的现象。
构造提供了油气运移的通道,也可以改变油气储集体系的形态和分布。
常见的构造包括隆起构造、凹陷构造和断裂构造等。
隆起构造是指地壳上升形成的凸起,常见于造山带和构造抬升区。
凹陷构造则是指地壳下降形成的凹陷,常见于沉积盆地和地台。
断裂构造则是指地壳断裂形成的裂隙,常见于边缘地带和断裂带。
油气成藏机理的研究主要包括油气生成、运移和聚集等方面。
油气生成是指有机质经过热解作用生成油气的过程。
油气的生成与地热条件、有机质类型和成熟度等因素有关。
油气运移是指油气从源岩向储层运移的过程。
油气的运移主要依靠渗流和扩散等物理过程,主要受到岩石渗透性和地层压力等因素的控制。
油气聚集是指油气在储集层中聚集形成储集体系的过程。
油气聚集主要依靠构造陷落和油气性的物理化学性质等因素。
近年来,随着油气勘探技术和地质学研究的不断发展,对油气成藏条件及成藏机理的研究取得了一系列重要进展。
在油源方面,研究发现,不同类型的有机质对应生成的油气类型不同,不同成熟度的有机质可以生成不同程度的干气和湿气。
油田--由单一构造控制下的同一面积范围内的一组油藏的组合。
气田--单一构造控制几个或十几个汽藏的总和。
石油--具有不同结构的碳氢化合物的混和物为主要成份的一种褐色。
暗绿色或黑色液体。
天燃气--以碳氢化合物为主的各种汽体组成的可燃混和气体。
生油层--在古代曾经生成过石油的岩层。
油气运移--在压力差和浓度差存在的条件下,石油和天然气在地壳内任意移动的过程。
垂直运移--即油气运移的方向与地层层面近于垂直的上下移动。
测向运移--即油气运移的方向与地层层面近于平行的横向移动。
储集层--能使石油和天然气在其孔隙和裂缝中流动,聚集和储存的岩层。
含油层--含有油气的储集层圈闭--凡是能够阻止石油和天然气在储集层中流动并将其聚集起来的场所。
盖层--紧邻储集层上下阻止油气扩散的不渗透岩层。
隔层--夹在两个相邻储集层之间阻隔二者串通的不渗透岩层。
遮挡--阻止油气运移的条件或物体。
含油面积--由含油内边界所圈闭的面积。
油水边界--石油和水的接触边界。
储油面积--储油构造中,含油边界以内的平面面积。
工业油气藏--在目前枝术条件下,有开采价值的油气藏。
构造油气藏--由与构造运动使岩层发生变形和移位而形成的圈闭。
地层油气藏--由地层因素造成的遮挡条件的圈闭。
岩性油气藏--由于储集层岩性改变而造成圈闭。
储油构造--凡是能够聚集油,气的地质构造。
地质构造--地壳中的岩层地壳运动的作用发生变形与变位而遗留下来的形态。
沉积相--指在一定的沉积环境中形成的沉积特征的总和。
沉积环境--指岩石在沉积和成岩过程中所处的自然地理条件、气候状况、生物发育状况、沉积介质的物理的化学性质和地球化学要条件。
单纯介质--只存在一种孔隙结构的介质称为单纯介质。
如孔隙介质、裂缝介质等。
多重介质--同时存在两种或两种以上孔隙结构的介质称为多重介质。
均质油藏--整个油藏具有相同的性质。
非均质油藏--具有不同性质的油藏,包括双重介质油藏;裂缝西个油藏;多层油藏弹性趋动--油井开井后压力下降,油层中液体会发生弹性膨账,体积增大,而把原油推向井底。
油藏基本名词解释油田------由单一构造控制下的同一面积范围内的一组油藏的组合。
气田------单一构造控制几个或十几个气藏的总和。
石油------具有不同结构的碳氢化合物的混和物为主要成份的一种褐色。
暗绿色或黑色液体。
天然气----以碳氢化合物为主的各种气体组成的可燃混和气体。
生油层----在古代曾经生成过石油的岩层。
油气运移--在压力差和浓度差存在的条件下,石油和天然气在地壳内任意移动的过程。
垂直运移--即油气运移的方向与地层层面近于垂直的上下移动。
测向运移---即油气运移的方向与地层层面近于平行的横向移动。
储集层-----能使石油和天然气在其孔隙和裂缝中流动,聚集和储存的岩层。
含油层-----含有油气的储集层。
圈闭----凡是能够阻止石油和天然气在储集层中流动并将其聚集起来的场所。
盖层----紧邻储集层上下阻止油气扩散的不渗透岩层。
隔层----夹在两个相邻储集层之间阻隔二者串通的不渗透岩层。
遮挡----阻止油气运移的条件或物体。
含油面积----由含油内边界所圈闭的面积。
油水边界----石油和水的接触边界。
储油面积-----储油构造中,含油边界以内的平面面积。
工业油气藏-----在目前枝术条件下,有开采价值的油气藏。
构造油气藏-----由与构造运动使岩层发生变形和移位而形成的圈闭。
地层油气藏-----由地层因素造成的遮挡条件的圈闭。
岩性油气藏-----由于储集层岩性改变而造成圈闭。
储油构造-----凡是能够聚集油,气的地质构造。
地质构造-----地壳中的岩层地壳运动的作用发生变形与变位而遗留下来的形态。
沉积相----指在一定的沉积环境中形成的沉积特征的总和。
沉积环境-----指岩石在沉积和成岩过程中所处的自然地理条件、气候状况、生物发育状况、沉积介质的物理的化学性质和地球化学要条件。
单纯介质-----只存在一种孔隙结构的介质称为单纯介质。
如孔隙介质、裂缝介质等。
多重介质----同时存在两种或两种以上孔隙结构的介质称为多重介质。
石油地质名词解释油田 --- 由单一构造控制下的同一面积范围内的一组油藏的组合。
.气田 -- 单一构造控制几个或十几个气藏的总和。
石油 --- 具有不同结构的碳氢化合物的混和物为主要成份的一种褐色。
暗绿色或黑色液体。
天燃气 - 以碳氢化合物为主的各种气体组成的可燃混和气体。
生油层 - 在古代曾经生成过石油的岩层。
油气运移--在压力差和浓度差存在的条件下,石油和天然气在地壳内任意移动的过程。
垂直运移--即油气运移的方向与地层层面近于垂直的上下移动。
侧向运移--- 即油气运移的方向与地层层面近于平行的横向移动。
储集层能使石油和天然气在其孔隙和裂缝中流动,聚集和储存的岩层。
含油层含有油气的储集层。
圈闭-- 凡是能够阻止石油和天然气在储集层中流动并将其聚集起来的场所。
盖层-- 紧邻储集层上下阻止油气扩散的不渗透岩层。
隔层-- 夹在两个相邻储集层之间阻隔二者串通的不渗透岩层。
遮挡-- 阻止油气运移的条件或物体。
含油面积-- 由含油内边界所圈闭的面积。
油水边界-- 石油和水的接触边界。
储油面积-- 储油构造中,含油边界以内的平面面积。
工业油气藏--- 在目前枝术条件下,有开采价值的油气藏。
构造油气藏--- 由与构造运动使岩层发生变形和移位而形成的圈闭。
地层油气藏--- 由地层因素造成的遮挡条件的圈闭。
岩性油气藏--- 由于储集层岩性改变而造成圈闭。
储油构造-- 凡是能够聚集油,气的地质构造。
地质构造-- 地壳中的岩层地壳运动的作用发生变形与变位而遗留下来的形态。
沉积相 - 指在一定的沉积环境中形成的沉积特征的总和。
沉积环境 -- 指岩石在沉积和成岩过程中所处的自然地理条件、气候状况、生物发育状况、沉积介质的物理的化学性质和地球化学要条件。
单纯介质-- 只存在一种孔隙结构的介质称为单纯介质。
如孔隙介质、裂缝介质等。
多重介质-- 同时存在两种或两种以上孔隙结构的介质称为多重介质。
均质油藏-- 整个油藏具有相同的性质。