第十三章稳恒磁场
- 格式:pdf
- 大小:326.84 KB
- 文档页数:7
衡水学院 理工科专业 《大学物理B 》 稳恒磁场 习题解答一、填空题(每空1分)1、电流密度矢量的定义式为:dIj n dS ⊥=,单位是:安培每平方米(A/m 2) 。
2、真空中有一载有稳恒电流I 的细线圈,则通过包围该线圈的封闭曲面S 的磁通量Φ = 0 .若通过S 面上某面元d S 的元磁通为d Φ,而线圈中的电流增加为2I 时,通过同一面元的元磁通为d Φ',则d Φ∶d Φ'= 1:2 。
3、一弯曲的载流导线在同一平面内,形状如图1(O 点是半径为R 1和R 2的两个半圆弧的共同圆心,电流自无穷远来到无穷远去),则O 点磁感强度的大小是2020100444R IR IR IB πμμμ-+=。
4小为πR 2c Wb。
5、如图2所示通有电流I 的两根长直导线旁绕有三种环路;在每种情况下,等于:对环路a :dB l ⋅⎰=____μ0I __; 对环路b :d B l ⋅⎰=___0____; 对环路c :d B l ⋅⎰ =__2μ0I __。
6、两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是___1∶2__,运动轨迹半径之比是_____1∶2_____。
二、单项选择题(每小题2分)( B )1、均匀磁场的磁感强度B 垂直于半径为r 的圆面.今以该圆周为边线,作一半球面S ,则通过S 面的磁通量的大小为A. 2πr 2BB. πr 2BC. 0D. 无法确定的量( C )2、有一个圆形回路1及一个正方形回路2,圆直径和正方形的边长相等,二者中通有大小相等的电流,它们在各自中心产生的磁感强度的大小之比B 1 / B 2为A. 0.90B. 1.00C. 1.11D. 1.22( D )3、如图3所示,电流从a 点分两路通过对称的圆环形分路,汇合于b 点.若ca 、bd 都沿环的径向,则在环形分路的环心处的磁感强度A. 方向垂直环形分路所在平面且指向纸内B. 方向垂直环形分路所在平面且指向纸外C .方向在环形分路所在平面内,且指向aD .为零( D )( C )绕AC 轴旋转时,在中心O 点产生的磁感强度大小为B 1;此正方形同样以角速度绕过O 点垂直于正方形平面的轴旋转时,在O 点产生的磁感强度的大小为B 2,则B 1与B 2间的关系为A. B 1 = B 2B. B 1 = 2B 2 C .B 1 = 21B 2 D .B 1 = B 2 /4( B )6、有一半径为R 的单匝圆线圈,通以电流I ,若将该导线弯成匝数N = 2的平面圆线圈,导线长度不变,并通以同样的电流,则线圈中心的磁感强度和线圈的磁矩分别是原来的 (A) 4倍和1/8. (B) 4倍和1/2. (C) 2倍和1/4. (D) 2倍和1/2. 三、判断题(每小题1分,请在括号里打上√或×)( × )1、电源的电动势是将负电荷从电源的负极通过电源内部移到电源正极时,非静电力作的功。
第十一章真空中的静电场1.如图所示,真空中一长为L的均匀带电细直杆,电荷为q,试求在直杆延长线上距杆的一端距离为d的P点的电场强度.LP2.一个点电荷位于一边长为a的立方体高斯面中心,则通过此高斯面的电通量为ˍˍˍ,通过立方体一面的电场强度通量是ˍˍˍ,如果此电荷移到立方体的一个角上,这时通过(1)包括电荷所在顶角的三个面的每个面电通量是ˍˍˍ,(2)另外三个面每个面的电通量是ˍˍˍ。
3.在场强为E的均匀静电场中,取一半球面,其半径为R,E的方向和半球的轴平行,可求得通过这个半球面的E通量是()A.ER2π B.R22πC. ER22π D. ER221π4.根据高斯定理的数学表达式⎰∑⋅=SqSE/dε可知下述各种说法中,正确的是()(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零.(C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零.(D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.5.半径为R的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E与距轴线的距离r的关系曲线为( )图11-2图11-3EOr (A)E ∝1/r6.如图所示, 电荷-Q 均匀分布在半径为R ,长为L 的圆弧上,圆弧的两端有一小空隙,空隙长为)(R L L <<∆∆,则圆弧中心O 点的电场强度和电势分别为( )A.R Q i L R L Q 0204,4πεπε-∆- B.RQ i L R L Q 02024,8πεεπ-∆- C.RQ i L R L Q 0204,4πεπε ∆ D.RL L Qi L R L Q 0204,4πεπε∆-∆-7.如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8 C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×108C ,设无穷远处电势为零,则空间另一电势为零的球面半径r = __________________8. 如图所示,一半径为a 的“无限长”圆柱面上均匀带电,其电荷线密度为λ.在它外面同轴地套一半径为b 的薄金属圆筒,圆筒原先不带电,但与地连接.设地的电势为零,则在内圆柱面里面、距离轴线为r 的P 点的场强大小和电势分别为( )(A) E =0,U =r a ln 20ελπ. (C) E =r 02ελπ,U =rb ln 20ελπ (B) E =0,U =a b ln 20ελπ (D) E =r 02ελπ,U =a b ln 20ελπ.图11-69.如图,在点电荷+Q ,-Q 产生的电场中,abcd 为同一直线上等间距的四个点,若将一点电荷+q 0由b 点移到d 点,则电场力( )A. 作正功;B. 作负功;C.不作功;D.不能确定10.说明下列各式的物理意义(1)l d E ⋅(2)l d E b a ⋅⎰ (3)l d E L ⋅⎰(4)S d E ⋅11.已知某静电场的电势函数)(14121222SI y y x x U --=,由场强和电势梯度的关系式可得点(2,3,0)处的场强E =ˍˍˍi +ˍˍˍj +ˍˍˍk (SI)a c +Q-Q 图11-9答案:1.()d L d q +π04ε 2. 00024,0,6,εεεq q q 3.A4.C5.C ⎪⎪⎩⎪⎪⎨⎧≥=≤=)( 22)( 220020R r R rr R R r r E ρπλπελερερ,或 6. A7. 10cm8.B9.A10. (1)l d E ⋅表示电场力对单位正电荷所做的元功。
第七章稳恒电流1、在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n 与B的夹角为 ,则通过半球面S 的磁通量(取弯面向外为正)为 (A) r 2B . . (B) 2r 2B . (C) -r 2B sin . (D) -r 2B cos .2、磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R ,x 坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B -x 的关系[ ]3、如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分 LlB d 等于(A) I 0 . (B) I 031. (C) 4/0I . (D) 3/20I .4、如图,在一固定的载流大平板附近有一载流小线框能自由转动或平动.线框平面与大平板垂直.大平板的电流与线框中电流方向如图所示,则通电线框的运动情况对着从大平板看是: (A) 靠近大平板. (B) 顺时针转动. (C) 逆时针转动. (D) 离开大平板向外运动.5、在一根通有电流I 的长直导线旁,与之共面地放着一个长、宽各为a 和b 的矩形线框,线框的长边与载流长直导线平行,且二者相距为b ,如图所示.在此情形中,线框内的磁通量 =______________.n B SOB x O R (A) BxO R (B)Bx O R (D) Bx O R (C)BxO R (E)x电流 圆筒II ab c d120°I 1I 2b baI6、如图所示,在真空中有一半圆形闭合线圈,半径为a ,流过稳恒电流I ,则圆心O 处的电流元l I d 所受的安培力Fd 的大小为____,方向________.7、有一根质量为m ,长为l 的直导线,放在磁感强度为 B的均匀磁场中B 的方向在水平面内,导线中电流方向如图所示,当导线所受磁力与重力平衡时,导线中电流I =___________________.8、如图所示,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为,求与平板共面且距平板一边为b的任意点P 的磁感强度.9、一根同轴线由半径为R 1的长导线和套在它外面的内半径为R 2、外半径为R 3的同轴导体圆筒组成.中间充满磁导率为的各向同性均匀非铁磁绝缘材料,如图.传导电流I 沿导线向上流去,由圆筒向下流回,在它们的截面上电流都是均匀分布的.求同轴线内外的磁感强度大小B 的分布.答案:一 选择题1、D2、A3、D4、B5、2ln 20Ia6、a l I 4/d 20 垂直电流元背向半圆弧(即向左)7、)/(lB mgIlI dIBI8、解:利用无限长载流直导线的公式求解. (1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d(2) 这载流长条在P 点产生的磁感应强度x i B 2d d 0 xx2d 0 方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都相同,所以载流平板在P 点产生的磁感强度B B dba bxdx x20b b a x ln 20 方向垂直纸面向里.9、解:由安培环路定理: i I l Hd 0< r <R 1区域: 212/2R Ir rH 212R Ir H, 2102R Ir BR 1< r <R 2区域: I rH 2r I H 2, rIB 2R 2< r <R 3区域: )()(22223222R R R r I I rH )1(22223222R R R r r IH )1(2222322200R R R r r IH B r >R 3区域: H = 0,B = 0x d x PO x。
1.SI J ds =⎰⎰2. 毕奥-萨伐尔定律:34Idl r dB rμπ⨯=034LI r B dl rμπ⨯=⎰3. 有限长载流导线的磁感应强度()()021021sin sin 4cos cos 4 I B z Izμθθπμββπ=-=- !!!zP 1无限长载流导线的磁感应强度 02IB zμπ=!!!4. 载流线圈在轴线上任意一点的磁感应强度()2032222IRB Rzμ=+ !!!圆心处的磁感应强度02IB Rμ=!!!5. 有限长螺线管内部任意一点的磁感应强度()021cos cos 2nIB μθθ=-无限长直螺线管内的磁感应强度 0B n I μ=!!!6. 运动电荷的磁场034q v rB rμπ⨯= 7. 磁偶极子与磁矩磁偶极子:载流线圈(任意形状)。
磁矩:m IS ISn ==其中S Sn = ,n 为面元S 的法线方向单位矢量,与I 的环绕方向成右手螺旋关系。
8. 稳恒磁场的高斯定理 0SB d s =⎰⎰9. 稳恒磁场的安培环路定理0iiLB d l Iμ=∑⎰ 两项注意:(1)虽然B的环量仅与L内的电流有关,但B本身却取决于L 内、外的所有电流。
(2) 当i I 的流动方向与L 的环绕方向成右手螺旋关系时,0i I >,反之0i I <。
10. 无限长载流圆柱体020()2()2Irr R R B Ir R rμπμπ⎧<⎪⎪=⎨⎪>⎪⎩11. 无限大载流平面的磁感应强度大小:02B μα=(其中α为面电流线密度);方向:右手螺线关系。
12. 安培定律-磁场对载流体的作用dF Idl B =⨯13. 在一均匀外磁场中,如果一任意形状的有限平面曲线电流的平面垂直于外磁场,那么平面电流所受到的安培力的大小与由起点到终点连接而成的直线电流所受到的安培力一样,方向垂直于从起点到终点的连线。
推论:处于均匀外磁场中的任意平面闭合载流回路,所受到的安培力=0,但要受到一力矩的作用L m B =⨯处于非均匀外磁场中的闭合载流线圈受到的安培力≠0。
第十三章 电流和稳恒磁场习题13-1 北京正负电子对撞机的储存环是周长为240m 的近似圆形轨道,求当环中电子电流强度为8mA 时,在整个环中有多少电子在运行。
已知电子的速率接近光速。
解:设储存环周长为l ,电子在储存环中运行一周所需时间cl v l t ≈=在这段时间里,通过储存环任一截面的电量即等于整个环中电子的总电量,以Q 表示,则 cl I It Q ==故电子总数为10819-3-104103106.1240108⨯=⨯⨯⨯⨯⨯===ec Il e Q N13-2 一用电阻率为ρ的物质制成的空心半球壳,其内半径为1R ,外半径为2R 。
试计算其两表面之间的电阻。
(此题课本的习题答案错了,答案是用空心球壳计算的结果) 解:)R 1-R 1(222122121πρπρρ====⎰⎰⎰R R R R rdr SdrdR R13-3 大气中由于存在少量的自由电子和正离子而具有微弱的导电性,地表面附近,晴天时大气平均电场强度约为120m V /,大气中的平均电流密度约为212-/104mA ⨯。
问:(1)大气的电阻率是多大?(2)若电离层和地表面之间的电势差为V 5104⨯,大气中的总电阻是多大?(课本习题中平均电流密度值错了,指数少了负号)解: (1)大气电阻率 mj E ⋅Ω⨯=⨯==1312-103104120ρ(2)总电阻Ω=⨯⨯⨯⨯⨯⨯=⨯==1961037.614.3410410442612-52)(ERj U IU R π13-4 如图所示,一内、外半径分别为1R 和2R 的金属圆筒,长度l ,其电阻率ρ ,若筒内外电势差为U ,且筒内缘电势高,圆柱体中径向的电流强度为多少 ? 解: rlr S r R π2d d d ρρ==12ln π2π2d 21R R lrlrR R R ρρ==⎰12lnπ2R R lU RU I ρ==13-5 一铜导线横截面积为42mm ,20s 内有80C 的电量通过该导线的某一横截面,已知铜内自由电子的数密度为-322105.8m ⨯,每个电子的电量为C -19101.6⨯,求电子的平均定向速率。
《大学物理A1》练习题 第一章 质点运动学姓名:__________ 学号:_________ 专业及班级:_________1. 某质点的运动方程为6533+-=t t x (SI),则该质点作( )(A)匀加速直线运动,加速度为正值; (B)匀加速直线运动,加速度为负值; (C)变加速直线运动,加速度为正值; (D)变加速直线运动,加速度为负值。
2.一质点沿直线运动,其运动方程为)(62SI t t x -=,则在t 由0至4s 的时间间隔内, 质点的位移大小为:( )A m 6;B m 8;C m 10;D m 12。
3.下列说法正确的是( )A. 在圆周运动中,加速度的方向一定指向圆心B. 匀速率圆周运动的速度和加速度都恒定不变C. 物体作曲线运动时,速度方向一定在运动轨道的切向方向,法向分速度恒等于零,因此其法向加速度也一定等于零D. 物体作曲线运动时,必定有加速度,加速度的法向分量一定不等于零4.某人以4km/h 的速率向东前进时,感觉风从正北吹来,如将速率增加一倍,则感觉风从东北方向吹来。
实际风速与风向为( )A. 4km/h ,从北方吹来B. 4km/h ,从西北方吹来C. 4√2km/h ,从东北方吹来D. 4√2km/h ,从西北方吹来5.沿半径为R 的圆周运动,运动学方程为 212t θ=+ (SI) ,则t时刻质点的法向加速度大小为n a = 。
6.在XY 平面内有一运动的质点,其运动方程为)(5sin 55cos 5SI j t i t r+=,则t 时刻其速度=v_____________________________。
7.灯距地面高度为h 1,一个人身高为h 2,在灯下以匀速率v 沿水平直线行走,如图所示.他的头顶在地上的影子M 点沿地面移动的速度为v M = 。
8.质点P 在水平面内沿一半径为1m 的圆轨道转动,转动的角速度ω与时间t 的关系为2kt =ω,已知t =2s 时,质点P 的速率为16m/s ,试求t=1s 时,质点P 的速率与加速度的大小。
第十三章 稳恒磁场
1. 如图1所示,截流导线在圆心处产生的磁感应强度的大小为[ ] (1)R I R I 83400μπμ+;(2)R I R I 83200μπμ+;(3)R I R I 83200μπμ−;(4)R I R
I 83400μπμ−.
图1
2. 将载流导线弯成图2所示的形状,则O 点磁感应强度的大小为[ ] (1)R I 20μ;(2)R I 40μ;(3)
R I 4)11(0π
μ−;(3)R I 4)11(0πμ+.
图2
3.一无限长载流导线弯成图3所示的形状,若测得圆心O 处的磁感应强度为零,则半径a 与
b 的比值应为[ ]
(1)ππ1+;(2)ππ1−;(3)1+ππ;(4)1−ππ
.
4.一无限长载流导线,弯成图4所示的形状,其中ABCD 段在xoy 平面内,BCD 是半径
为R 的半圆弧,DE 段平行于oz 轴,则圆心处的磁感应强度为[ ].
(1)
k R I R I j R I r r ⎟⎠⎞⎜⎝⎛+−444000μπμπμ;(2)k R I R I j R I r r ⎟⎠⎞⎜⎝⎛++444000μπμπμ (3)k R I R I j R I r r ⎟⎠⎞⎜⎝⎛−+444000μπμπμ;(4)
k R I R I j R I r r ⎟⎠⎞⎜⎝⎛−−444000μπμπμ
图3 图4 5.图5中6根无限长直导线互相绝缘,通过的电流均为I .区域Ⅰ、Ⅱ、Ⅲ、Ⅳ均为相等
的正方形,则指向纸面内的磁通量最大的区域为[ ].
(1)Ⅰ;(2)Ⅱ;(3)Ⅲ;(4)Ⅳ;
图5 图6
6.一根半径为R 的长直圆柱形导线中,均匀地通以稳恒电流I ,则通过图6所示的S 平面
的磁通量为[ ].
(1)πμ20ILR ;(2)202R IL πμ;(3)πμ40IL ;(4)πμ22
0ILR .
7.载流空心圆柱导体的内、外半径分别为a 和b ,电流在导体截面上均匀分布,则空间各
点的r B −曲线应为图7中的[ ]图.
(1) (2)
(3) (4) 8.半径为R 的长直金属圆柱体中,通过稳恒电流I ,电流均匀分布在截面上.若沿轴向挖
去半径为'R 的小圆柱,且空心部分的轴线与圆柱体的轴线相距为a ,如图8所示.则在o 和'o 处,磁感应强度的大小分别为[ ].
(1)0,0;(2)0,22R Ia π;
(3)202R Ia πμ, a R R I πμ2)(2'0;(4)a R
R I πμ2)(2'0,202R Ia πμ.
图8 9.图9中各有一半径相同的圆形回路1L 和2L ,回路内有电流1I 和2I ,其分布相同且均在
真空中,但回路2L 外还有电流3I ,1P
、2P 为两圆形回路上的对应点,则有[ ]. (1)l B l B L L r r r r ∫∫⋅=⋅21d d ,21P P B B =;(2)l B l B L L r r r r ∫∫⋅≠⋅21d d ,21P P B B =; (3)l B l B L L r r r r ∫∫⋅≠⋅21d d ,21P P B B ≠;(4)l B l B L L r r r r ∫∫⋅=⋅21d d ,21P P B B ≠;
图9
10.如图10所示,两无限长直导线分别通以电流I 2和I ,则下式成立的是[ ].
(1)回路1L ,I l B 2d 0μ=⋅∫r r ;(2)回路2L ,I l B 0d μ=⋅∫r r ;
(3)回路3L ,I l B 0d μ−=⋅∫r r ;(4)回路4L ,I l B 0d μ−=⋅∫r r .
图10 11.有三条无限长直导线在同一平面内,等距离并排安放,导线Ⅰ、Ⅱ、Ⅲ分别载有1A 、2A 、3A 同向电流,由于磁相互作用的结果,Ⅰ、Ⅱ、Ⅲ单位长度上分别受力1F r 、2F r 、3F r ,如图11所示.则1F r 与2F r 的比值为[ ].
(1)167;(2)85;(3)87;(4)45
.
图11 图12
12.将一直导线密绕成内半径为1R 、外半径为2R 的平面线圈,导线的直径为d ,并通以电
流I ,则此线圈的磁矩大小为[ ]. (1)I R R )(2122−π;(2)d I
R R 3)(3132−π;(3)d I R R 3)(2122−π;(4)d I
R R 3)(2122+π.
13.两平行放置的长直截流导线相距为d ,分别通有同向的电流I 和I 2,坐标系的选取如
图12所示.(1)2d x =处的磁感应强度的大小为 ,其方向为 ;(2)B
r 为零的点在x = 处.
14.载有电流I 的长直导线弯成直角,与之共面的一点P 在一条边的延长线上,与另一条
边的垂直距离为a ,电流的方向如图13所示,则P 点处磁感应强度的大小为 ,方向为 .
图13 图14 15.一块宽度为a 的无限长金属薄片,均匀地通有电流I ,P 点与薄片在同一平面内,到薄
片近边的距离为b ,如图14所示.则P 点出的磁感应强度的大小为__________.
16.如图15所示,两同心的半圆构成载有电流I 的回路,则在圆心处的磁感应强度的大小为__________,方向为________.
图15 图16
17.有一同轴电缆,如图16所示.则在1R r <的圆柱体导线内,磁感应强度的大小为
______.在3R r >的区域,磁感应强度的大小为_________.
图17 图18
18.真空中两圆形电流如图17所示,对于图中所给出的环路来说,安培环路定理的表示式
为:(1)=⋅∫l B L r r 1d ;(2)=⋅∫l B L r r 2d ;(3)=⋅∫l B L r r 3d ;
19.周长为L 的单匝线圈,通以电流I ,将此线圈放在匀强磁场中,磁力线与线圈平面平行,如图18所示,则作用于线圈上的磁力矩_________=m M r . 20.在图19所示的匀强磁场B r 中,有一半径为R 的半圆形平面载流线圈abc ,通过电流I .线圈因受磁力矩作用,从图中位置转过030角时,线圈所受磁力矩m M r =_____________
方向为__________.
图19
21、求各图中点P 处磁感应强度的大小和方向.
题21图
22、如图22所示,长直导线通有电流I ,求通过与长直导线共面的矩形面积CDEF 的磁通
量.
题22图 题23图
23、如图23所示,空心圆柱无限长导体内外半径分别为a 和 b ,导体内通有电流I ,且电
流在横截面上均匀分布,介质的影响可以忽略不计.求证导体内部(a <r <b )各点的磁感应强度由下式给出
()r a r a b I
B 222202−−=πμ 24、厚为d 2的无限大导体平板,其内有均匀电流平行于表面流动,电流密度为j ,求空间
磁感应强度的分布.
题24图 题25图
25、一圆线圈的半径为R ,载有电流I ,置于均匀磁场中,如图所示.在不考虑载流线圈本身激发的磁场的情况下,求线圈导线上的张力(已知线圈法线方向与B r 的方向相同).
26半径为a 、线电荷密度为λ(常量)的半圆,以角速度ω绕轴O O ′′′匀速旋转,如图所示.求: (1)在点O 产生的磁感应强度B r ;
(2)旋转的带电半圆的磁矩m P .
26题图。