随机准备金-拔靴法bootstrapping方法
- 格式:pdf
- 大小:1.30 MB
- 文档页数:43
统计中的Bootstrap 方法是指什么?与Monte Carlo 方法有什么联系与区别?【JackDiamond的回答(73票)】:风马牛不相及,举个简单的例子(关于一个分布的平均值)来帮你理解bootstrap 和Monte Carlo,比如现在有一个分布F...1. Bootstrap: 如果我无法知道F的确切分布,手上仅有一组从F中iid抽样的样本(X_1, ..., X_n),我想检验“F的均值是否为0”。
看起来这个不可能,因为我只有一个ar{X}的点估计,而并不知道ar{X}的分布。
Bootstrap的魔术是现在我把(X_1, ..., X_n)这个样本当做总体,从中(有放回地)重新抽样,重抽样样本大小仍为n,那么每一次重抽样就可以得到一个“样本均值”,不断地重抽样我就得到了一个ar{X}的“分布”。
这样接下来我就可以构造confidence interval并做检验了。
虽然实践中bootstrap的重抽样步骤都是用Monte Carlo方法来模拟重抽样样本统计量的分布,但是严格地说这个分布原则上可以精确计算。
而如果待估统计量比较简单,bootstrap的结果有时甚至可以直接用(X_1, ..., X_n)的某种统计量表示出来,从而并不需要真正地“重抽样”。
当然实际应用中绝大多数时候重抽样分布的解析表达式都会太复杂,所以用模拟代替计算。
(关于bootstrap的更多讨论见此答案下的评论,特别是Lee Sam提的问题)2. Monte Carlo: 如果我知道F的确切分布,现在想计算mean(F),但是F的形式太复杂(或者我这人太懒);另一方面我又知道如何从F中抽样,于是就抽一个样本出来,拿样本均值充数。
一般来说bootstrap干的事大都跟这个例子中干的事差不多,而Monte Carlo的应用要广泛和多元化得多了。
所以两者连“区别”都谈不上,就是两码事。
【赵卿元的回答(20票)】:谢邀。
bootstrap检验法Bootstrap检验法1. 前言假设你有一个样本数据集合,你想要知道这个数据集的某些特征(比如均值、中位数、标准差、相关系数等)是否显著不同于其它数据集的这些特征,那么你可以使用假设检验。
经典的假设检验(如t检验、ANOVA、卡方检验等)需要满足一些假设前提条件,比如正态分布、方差齐性等。
如果这些前提条件得不到满足,则假设检验的结果可能会出现误差。
Bootstrap检验法是一种非参数检验方法,不需要满足前提条件,因此可以在不确定数据分布的情况下,对统计量进行检验,从而得出更加鲁棒的结果。
本文将介绍Bootstrap检验法的原理、应用场景以及示例代码,帮助读者更好地理解和应用该检验方法。
2. 原理Bootstrap检验法基于自助法(Bootstrap)的思想。
自助法是一种经验估计的方法,它通过从原始数据集中有放回地抽取n个样本,生成一个新的数据集,重复抽样m次得到m个样本,再对这m个样本进行统计量的计算,形成该统计量分布的样本估计。
Bootstrap检验法则是基于自助法生成的m个样本估计,对所感兴趣的两个样本进行比较的非参数检验。
通常使用百分位数法进行Bootstrap检验。
该方法将两个样本生成的m 个统计量分布进行合并,计算出合并后的统计量分布的百分位数,得到该百分位数两侧的统计量分布,以此作为假设检验的P值。
3. 应用场景Bootstrap检验法可用于比较两个数据集随机变量的各种统计量,比如均值、中位数、标准差、相关系数等。
适用于以下场景:1)样本量较小的情况。
2)数据集分布无法确定的情况。
3)数据集不满足方差齐性等前提条件的情况。
4. 示例代码以下代码演示如何使用Python的Scipy库进行Bootstrap检验:```pythonfrom scipy import statsimport numpy as np# 生成两个不同分布的样本数据集data1 = stats.norm.rvs(loc=2, scale=1, size=100)data2 = stats.norm.rvs(loc=3, scale=1, size=50)# 计算两个样本的均值差值diff_mean = np.mean(data1) - np.mean(data2)# 执行自助抽样n=10000次num_samples = 10000diff_mean_samples = np.empty(num_samples)for i in range(num_samples):bootstrap1 = np.random.choice(data1, size=100, replace=True)bootstrap2 = np.random.choice(data2, size=50, replace=True)diff_mean_samples[i] = np.mean(bootstrap1) - np.mean(bootstrap2)# 计算Bootstrap检验的p值p_value = (np.sum(diff_mean_samples >= diff_mean) +np.sum(diff_mean_samples <= -diff_mean)) / num_samplesprint('Bootstrap检验的p值为:', p_value)```上述代码中,首先生成了两个不同的数据集`data1`和`data2`,分别对应了两个分布。
Bootstrapping算法,指的就是利用有限的样本资料经由多次重复抽样,重新建立起足以代表母体样本分布之新样本。
bootstrapping的运用基于很多统计学假设,因此假设的成立与否会影响采样的准确性。
统计学中,bootstrapping可以指依赖于重置随机抽样的一切试验。
bootstrapping可以用于计算样本估计的准确性。
对于一个采样,我们只能计算出某个统计量(例如均值)的一个取值,无法知道均值统计量的分布情况。
但是通过自助法(自举法),我们可以模拟出均值统计量的近似分布。
有了分布很多事情就可以做了(比如说有你推出的结果来进而推测实际总体的情况)。
bootstrapping方法的实现很简单,
(1)采用重抽样技术从原始样本中抽取一定数量(自己给定)的样本,此过程允许重复抽样。
(2)根据抽出的样本计算给定的统计量T。
(3)重复上述N次(一般大于1000),得到N个统计量T。
(4)计算上述N个统计量T的样本方差,得到统计量的方差。
优点:简单易于操作。
缺点:bootstrapping的运用基于很多统计学假设,因此假设的成立与否会影响采样的准确性。
统计学中的Bootstrap方法引言统计学是一门研究如何收集、整理、分析和解释数据的学科。
在统计学中,Bootstrap方法是一种常用的统计推断方法,它可以通过重复抽样来评估统计量的抽样分布。
本文将介绍Bootstrap方法的原理、应用和优点。
一、Bootstrap方法的原理Bootstrap方法是由Bradley Efron于1979年提出的一种非参数统计推断方法。
它的基本思想是通过从原始样本中有放回地进行随机抽样,形成多个“伪样本”,然后利用这些“伪样本”来估计统计量的抽样分布。
具体步骤如下:1. 从原始样本中有放回地抽取n个样本观测值,形成一个“伪样本”;2. 重复步骤1,生成B个“伪样本”;3. 对每个“伪样本”,计算统计量的值;4. 利用这些统计量的值构建抽样分布。
二、Bootstrap方法的应用Bootstrap方法在统计学中有广泛的应用,以下是一些常见的应用领域:1. 参数估计:Bootstrap方法可以用于估计参数的抽样分布和置信区间。
通过从原始样本中重复抽样,可以得到参数的分布情况,从而估计参数的置信区间。
2. 假设检验:Bootstrap方法可以用于假设检验,特别是在小样本情况下。
通过生成多个“伪样本”,可以计算统计量的抽样分布,并进行假设检验。
3. 回归分析:Bootstrap方法可以用于回归分析中的参数估计和模型选择。
通过对原始样本进行重复抽样,可以得到回归参数的抽样分布,从而进行模型的评估和选择。
4. 非参数统计推断:Bootstrap方法是一种非参数统计推断方法,可以用于估计分布函数、密度函数等非参数统计量的抽样分布。
三、Bootstrap方法的优点Bootstrap方法相对于传统的统计推断方法有以下优点:1. 不依赖于分布假设:Bootstrap方法是一种非参数方法,不需要对数据的分布进行假设。
这使得它在实际应用中更加灵活和适用。
2. 考虑了样本的不确定性:Bootstrap方法通过重复抽样,考虑了样本的不确定性。
稳健性检验方法稳健性检验是指在统计学中用来检验模型的稳定性和鲁棒性的一种方法。
在实际应用中,由于数据的不确定性和复杂性,我们需要对模型进行稳健性检验,以确保模型的可靠性和有效性。
本文将介绍稳健性检验的基本原理、常用方法以及实际应用。
一、稳健性检验的基本原理。
稳健性检验的基本原理是通过对模型的参数进行一定的扰动,来检验模型对数据的变化和异常值的敏感程度。
在实际应用中,我们经常会遇到数据的异常值、缺失值等问题,这些问题可能会对模型的参数估计产生影响。
稳健性检验可以帮助我们评估模型对这些问题的鲁棒性,从而提高模型的可靠性和泛化能力。
二、稳健性检验的常用方法。
1. Bootstrapping(自助法)。
Bootstrapping是一种常用的稳健性检验方法,它通过对原始数据进行重抽样来估计参数的分布。
在每次重抽样中,我们可以得到一个新的参数估计值,通过对这些值的分布进行分析,可以评估模型对数据的变化和异常值的敏感程度。
2. Robust regression(鲁棒回归)。
Robust regression是一种通过对残差进行加权来减小异常值对参数估计的影响的方法。
它可以有效地降低异常值对模型的影响,提高模型的稳健性。
3. Sensitivity analysis(敏感性分析)。
敏感性分析是一种通过对模型参数进行一定范围内的变化来评估模型的稳健性的方法。
通过对参数进行逐步调整,我们可以了解模型对参数变化的敏感程度,从而评估模型的稳健性。
三、稳健性检验的实际应用。
稳健性检验在实际应用中具有重要的意义。
在金融领域,由于金融数据的复杂性和波动性,我们经常需要对模型进行稳健性检验,以确保模型对市场波动和异常事件的鲁棒性。
在医学领域,稳健性检验也被广泛应用于临床试验和流行病学研究中,以评估模型对异常数据和缺失数据的处理能力。
总之,稳健性检验是保证模型可靠性和有效性的重要手段。
通过对模型的稳健性进行评估,我们可以更好地理解模型对数据的敏感程度,从而提高模型的预测能力和泛化能力。
bootstrap法Bootstrap法是一种常用的统计学方法,它可以用来评估统计学中的参数估计和假设检验的准确性。
Bootstrap法最初由布拉德利·埃夫隆和皮特·哈尔在1979年提出,并在之后的几十年里得到了广泛的应用。
本文将介绍Bootstrap法的基本原理、应用场景以及实现方法。
一、Bootstrap法的原理Bootstrap法的基本思想是通过从样本中重复抽取数据来估计统计量的分布。
具体而言,Bootstrap法包括以下步骤:1. 从原始数据样本中随机抽取一个固定数量的样本(通常与原始样本大小相同),并将其作为一个新的样本。
2. 重复步骤1多次,通常是1000次或更多次。
3. 对每个新样本计算统计量(如均值、方差、中位数等)。
4. 将所有计算出的统计量按升序排列。
5. 根据需要计算出置信区间和标准误等统计量。
Bootstrap法的核心在于重复抽样。
通过从原始数据样本中重复随机抽样,我们可以获得更准确的统计量估计和假设检验结果。
在某些情况下,原始数据可能不符合正态分布或其他假设检验的前提条件。
Bootstrap法可以通过生成新的样本来解决这些问题。
二、Bootstrap法的应用场景Bootstrap法可以用于各种统计学应用中,包括参数估计、假设检验、回归分析、时间序列分析等。
以下是Bootstrap法的一些常见应用场景:1. 参数估计:Bootstrap法可以用来估计统计量的标准误和置信区间,如均值、中位数、方差、相关系数等。
2. 假设检验:Bootstrap法可以用来检验假设检验的显著性,如两个总体均值是否相等、回归系数是否显著等。
3. 回归分析:Bootstrap法可以用来估计回归系数的标准误和置信区间,以及模型的预测误差等。
4. 时间序列分析:Bootstrap法可以用来估计时间序列模型的参数和预测误差,以及分析时间序列的置信区间和假设检验结果等。
三、Bootstrap法的实现方法Bootstrap法的实现方法相对简单,可以使用各种编程语言和软件包来实现。
Bootstrap 方法简介1 Bootstrap 抽样方法Bootstrap 方法是Efron 在 1977 年提出的一种数据处理方法,其本质上是对已知数据的再抽样。
Bootstrap 的数学原理大致如下:1(,,)n T T T =是来自总体分布函数为()F T 的独立同分布随机样本。
()n F T 是由样本T 得到的分布函数(在产品可靠性分析中,()n F T 一般是指数函数或多参数weibull 函数),由()n F T 得到的参数估计ˆˆ()F θθ=,它可以作为样本参数θ的准确值。
再从新总体()nF T 中抽取与样本T 相同的伪样本1(,,)m m T T T =,一般取m n =。
用伪样本m T 求出参数θ的估计值。
重复操作M 次(一般取1000M =)可得到M 个基于伪样本m T 而得到的θ估计值[4]。
Bootstrap 方法在应用中,重复抽样带来的误差不可避免。
误差主要来源于样本数据的抽样误差和从样本分布中的再抽样误差。
对于再抽样误差,只要 Bootstrap 再抽样样本数充分大,由样本分布所得的再抽样误差就会趋于消失,Bootstrap 估计的所有误差就会接近于抽样误差[5] 。
Bootstrap 方法根据抽样方式的不同可分为参数和非参数两种。
非参数方法主要用于在不知道抽样函数服从什么分布情况下,对经验分布不做过多的假设,把试验数据按从小到大排序获得经验分布,然后从中抽取伪样本的一种方法;参数方法主要用于经验分布已知情况下,当试验数据分布明确时,运用参数方法比运用非参数方法效率更高[6]。
由于多方面的原因,使得收集到的故障间隔时间数据中常含有分离群数据,这些数据会导致估计精度降低。
但是,对于高可靠度的现代机电产品来说收集到的每一个数据都来之不易,所以不易轻易舍去。
因此,可以应用改进的参数 Bootstrap 方法,具体过程如下:(1) 将试验样本数据12(,,,)n X X X X =从小到大排序,每次从中去掉一个样本 i X ,剩下1n -个样本用传统方法建模,得出样本分布函数(1)()n i F T -的估计参数值ˆm 和ˆη。