汽车理论课程设计汽车制动性计算
- 格式:doc
- 大小:455.00 KB
- 文档页数:11
制动效率计算公式制动效率是衡量车辆制动性能的一个重要指标,而制动效率的计算公式则是我们理解和评估这一性能的关键工具。
咱先来说说制动效率到底是啥。
简单来讲,制动效率就是指车辆在制动过程中,实际产生的制动力与理论上可能产生的最大制动力的比值。
就好比你去参加考试,实际考的分数和满分的比例一样。
那制动效率的计算公式是啥呢?一般来说,制动效率可以用下面这个公式来计算:制动效率 = (实际制动力 / 理论最大制动力)× 100% 。
这里面,实际制动力就是车辆在制动时真正施加在车轮上的制动力,而理论最大制动力呢,是在理想条件下,车辆能够达到的最大制动力。
比如说,一辆车在制动时,实际测量得到的制动力是 8000N,而经过计算,理论上它能达到的最大制动力是 10000N ,那它的制动效率就是(8000 / 10000)× 100% = 80% 。
我记得有一次,我开车在路上,突然前面的车来了个急刹车。
我也赶紧踩刹车,那一瞬间,我的心都提到嗓子眼了,就怕刹不住追尾。
还好,车及时停住了。
后来我就琢磨,这得亏车的制动效率还行,不然真得出事儿。
从那以后,我就对制动效率这个事儿特别上心。
那影响制动效率的因素都有啥呢?首先就是制动系统本身的性能,比如说刹车片的质量、刹车盘的大小和材质等等。
就像一个运动员,他的装备好不好,直接影响他的发挥。
其次呢,车辆的载重也有影响。
想象一下,一个人背着重物跑步和不背重物跑步,速度和灵活性肯定不一样,车也是这个道理。
还有路面状况,在湿滑的路面上和干燥的路面上制动,效果能一样吗?在实际生活中,了解制动效率的计算公式对我们很有帮助。
比如你要买车,看看这个参数,能大概知道车的制动性能咋样。
或者在车辆保养的时候,知道这个,就能更好地判断制动系统是不是需要维修或者更换零件。
总之,制动效率计算公式虽然看起来有点复杂,但弄明白了对咱们的行车安全可是大有用处。
大家可别小瞧了这个公式,关键时刻,它能帮咱避免很多危险呢!。
制动器设计及计算实例制动器是一种用于车辆或机械设备上的重要安全装置,用于减速、停止或保持其运动状态。
其设计和计算涉及到多个方面的因素,包括制动力的大小、刹车盘的尺寸和材料、制动液的压力等。
下面将通过一个实例来介绍制动器的设计及计算。
假设我们需要设计一个汽车的制动器,首先我们需要确定以下几个参数:1. 汽车的质量:假设汽车的质量为1500kg;2.最大限制加速度:假设最大限制加速度为4m/s^2;3.停车的时间:假设停车的时间为3秒。
基于以上参数,我们可以计算出汽车需要的制动力:制动力=汽车质量×最大限制加速度= 1500kg × 4m/s^2=6000N接下来,我们需要设计制动盘的尺寸和材料。
制动盘的直径和厚度会影响其散热性能和制动力的传递效果。
一般而言,制动盘的直径越大,制动力就越好,但也会增加重量和成本。
制动盘的材料通常选择具有良好耐磨性和散热性能的金属材料,如铸铁或复合材料。
假设我们选择了铸铁制动盘,并给定以下参数:1. 制动盘的直径:假设制动盘的直径为300mm;2. 制动盘的厚度:假设制动盘的厚度为40mm;根据制动盘的直径和厚度,我们可以计算制动盘的转动惯量:转动惯量=(1/2)×制动盘的质量×(制动盘的直径/2)^2=(1/2)×制动盘的质量×(0.15m)^2根据实际情况,制动盘的质量需要根据制动盘的材料、直径和厚度来选择。
为了方便计算,假设制动盘的质量为20kg。
转动惯量= (1/2) × 20kg × (0.15m)^2= 0.45kg·m^2接下来,我们需要选择适当的制动液和计算所需的制动液压力。
制动液在制动器中起到传递力和控制制动器放松的作用。
制动液需要具有良好的抗压性、稳定性和耐高温性能。
假设我们选择了常用的DOT4制动液,并给定以下参数:1.制动液的抗压性比:假设制动液的抗压性比为10:1;2.需要的制动力:假设需要的制动力为6000N。
汽车理论课程设计制动力一、教学目标本节课的教学目标是让学生掌握汽车理论中制动力部分的基本概念、原理和计算方法。
具体包括以下三个方面的目标:1.知识目标:–了解制动力、摩擦力、重力、空气阻力等基本概念;–掌握制动力的大小计算公式及应用;–理解制动力在汽车行驶中的作用及其影响因素。
2.技能目标:–能够运用基本公式计算汽车的制动力;–能够分析实际行驶中制动力与摩擦力、重力、空气阻力之间的关系;–能够运用所学知识解决实际问题,如汽车制动距离的计算等。
3.情感态度价值观目标:–培养学生对汽车理论学科的兴趣和热情;–培养学生运用科学知识解决实际问题的能力;–培养学生团队协作、讨论交流的良好学习习惯。
二、教学内容根据教学目标,本节课的教学内容主要包括以下几个部分:1.制动力基本概念:介绍制动力、摩擦力、重力、空气阻力等基本概念,让学生理解这些力在汽车行驶中的作用。
2.制动力计算方法:讲解制动力的大小计算公式,并通过实例让学生学会运用公式计算汽车的制动力。
3.制动力影响因素:分析实际行驶中制动力与摩擦力、重力、空气阻力之间的关系,让学生了解各种因素对汽车制动力的影响。
4.实际问题分析:通过案例分析,让学生学会运用所学知识解决实际问题,如汽车制动距离的计算等。
为了达到本节课的教学目标,将采用以下几种教学方法:1.讲授法:讲解制动力基本概念、原理和计算方法,让学生掌握基础知识。
2.案例分析法:分析实际问题,让学生学会将所学知识应用于实际情境中。
3.讨论法:学生分组讨论,培养学生的团队协作能力和交流沟通能力。
4.实验法:安排实验室实践,让学生亲自动手操作,增强对制动力概念的理解。
四、教学资源为了支持本节课的教学内容和教学方法的实施,将准备以下教学资源:1.教材:选用权威、实用的汽车理论教材,为学生提供系统、科学的学习材料。
2.参考书:提供相关领域的参考书籍,拓展学生的知识视野。
3.多媒体资料:制作精美的PPT,生动展示制动力原理和实际应用。
序号: 汽车理论课程设计说明书题目:汽车制动性计算班级:_____________________姓名:________________________ 学号:____________________序号:________________________ 指导教师:_____________________目录1.题目要求 (1)2.计算步骤 (1)3.结论 (5)4.心得体会 (6)5.参考资料 (6)1 .题目要求1)根据所提供的数据,绘制:I 曲线,3线,f 、r 线组;2)绘制利用附着系数曲线;绘制出国家标准(GB 12676-1999汽车制动系统结构、性能和试验方法)要求的限制范围,计算并填写利用附着系数参数表1。
表13)2表24)对制动性进行评价。
5)此车制动是否满足标准 GB 12676-1999的要求?如果不满足需要采取什么附加措施(提出三种改进措施,并对每种措施的预期实施效果进行评价,包括成本、可行性 等等;要充分说明理由,包括公式和图)2 .计算步骤1)根据所提供的数据,绘制:I 曲线,3线,f 、r 线组;I 曲线公式F 21旦厂逛F 1空2,2h g \ GF 1hg 1将各条曲线放在同一坐标系中,满载时如图 1所示,空载时如图2所示:f 线组公式FXb2Xb 2hghgXb1Gbhgr 线组公式FXb2Xb 2hg FXb 1GaL~~h^图1满载时不同小值路面的制动过程分析311图2空载时不同小值路面的制动过程分析2)绘制利用附着系数曲线; 绘制出国家标准(GB 12676-1999汽车制动系统结构、性能和试验方法)要求的限制范围,计算并填写利用附着系数参数表 3。
FXb1Z匚,1 ,FL bzhgFXb21 Z1FZ 2La zhg利用附着系数曲线如图 3:1 0.9ne Q.70.60.5 0.40.3 0.20.1 0图3利用附着系数与制动强度的关系曲线表3不同制动强度下的利用附着系数,制动强度z 利用、 附着系数0.2 0.4 0.6 0.8 1f0.2433 0.4090 0.5291 0.6202 0.6917r0.1803 0.3947 0.6536 0.9728 1.3758仝载f0.1524 0.2873 0.4075 0.5154 0.6127前轴的利用附着系数公式后轴的利用附着系数公式0 0/02 D3 Q4 0.50.6070.609制动强度的前轴的制动效率为Ef制动效率曲线如图 4:图4前、后制动效率曲线表4不同附着系数下的制动效率附着系数 制动、 效率E (%) ,、0.2 0.4 0.6 0.8 1E f 0.78930.9681z / Z E r/ /0.93620.8715 0.8151仝载E f/ 7 / // E r0.81740.7810 0.74760.7170 0.68883)绘制制动效率曲线,计算并填写制动效率参数表4。
第一章制动参数选择及计算第一节汽车参数(符号以汽车设计为准)制动器设计中需要的重要参量:汽车轴距:L=1370mm车轮滚动半径:r r =295 mm汽车满载质量:m a=4100Kg汽车空载质量:m o=2600Kg满载时轴荷的分配:前轴负荷39%,后轴负荷61% 空载时轴荷的分配:前轴负荷47%,后轴负荷53% 满载时质心高度:hg =745mm空载时质心高度:hg'=850mm质心距前轴的距离:L1 =835mm L1'=726mm 质心距后轴的距离:L2 =535mm L2'=644mm 对汽车制动性有影响的重要参数还有:制动力及其分配系数、同步附着系数、制动强度、附着系数利用率、最大制动力矩与制动因数等。
第二节制动器的设计与计算一制动力与制动力矩分配系数0 水平路面满载行驶时,前、后轴的负荷计算对于后轴驱动的移动机械和车辆,在水平路面满载行驶时前后轴的最大负荷按下式计算(g=9.8N/kg)前轴的负荷F1=Ga(L2-ϕhg)/(L-ϕhg)=3830.8N后轴的负荷F2=GaL1/(L-ϕhg)=36349.2Nϕ--- 附着系数,沥青.混凝土路面,取0.6轴荷转移系数:前轴:m,1= F Z1/G1=0.24后轴:m,2= F Z1/G2=1.481、(汽车理论108页)水平路面满载行驶制动时,地面对前后车轮的法向反作用力(满载)F Z1= GL (L2+ϕgh)=4100×9.8÷1.370×(0.535+0.6×0.745)=28800.55NF Z2=GL (L1-ϕgh)=4100×9.8÷1.370×(0.835-0.6×0.745)=11379.45N 式中: G-- 汽车所受重力;L-- 汽车轴距;1L--汽车质心离前轴距离;L2--汽车质心离后轴距离;2B F和汽车的回转质量的惯性力矩,则任何角速度ω﹥0的车轮,其力矩平衡方程为Mμ-F b EMBED Equation.DSMT4 ϕ式中:Mμ--制动器对车轮作用的制动力矩,即制动器的摩擦力矩,其方向与车轮旋转方向相反,N﹒m;F b--地面作用于车轮上的制动力,即地面与轮胎之间的摩擦力,又称地面制动力,其方向与汽车行驶方向相反,N;R e--车轮有效半径,m令 F B=Mμ/R e并称之为制动器的制动力,它是在轮胎周缘克服制动器的摩擦力矩所需的力,因此又称为制动周缘力。
序号:汽车理论课程设计说明书题目:汽车制动性计算班级:姓名:学号:序号:指导教师:目录1.题目要求 (3)2.计算步骤 (4)3.结论 (8)4.改进措施 (9)5.心得体会 (9)6.参考资料 (9)1. 题目要求汽车制动性计算数据:1)根据所提供的数据,绘制:I 曲线,β线,f 、r 线组;2)绘制利用附着系数曲线;绘制出国家标准(GB 12676-1999汽车制动5)对制动性进行评价。
6)此车制动是否满足标准GB 12676-1999的要求?如果不满足需要采取什么附加措施(要充分说明理由,包括公式和图)?注:1、 符号中下标a 标示满载,如m a 、h ga 分别表示满载质量和满载质心高度2、 符号中下标0标示空载,如m 0、h g0分别表示空载质量和空载质心高度2. 计算步骤1)由前后轮同时抱死时前后制动器制动力的关系公式:绘出理想的前后轮制动器制动力分配曲线,即I曲线由β曲线公式绘出β曲线,由于空载时和满载时β相同,则β曲线相同。
f线组:当前轮抱死时,得:r线组:当后轮抱死时,得:空载时,将G=3980*9.8N,h=0.8,L=3.950m,a=2.200m,b=1.750m,φ=0.1,0.2,0.3,0.4,0.5,0.6,0.7带入公式放在一个坐标系内,绘出空载时r,f曲线:图1 空载时r,f,I线组满载时,将G=9000*9.8N,h=1.170m,L=3.950m,a=2.95m,b=1m,φ=0.1,0.2,0.3,0.4,0.5,0.6,0.7带入公式放在一个坐标系内,绘出空载时r,f曲线:图2 满载时r,f,I线组2)前轴利用附着系数后轴利用附着系数将数据带入可绘出利用附着系数与制动强度关系曲线:图3 附着系数曲线及国家标准范围则,z=0.428时,前后轴利用附着系数均为0.428,即无任何车轮抱死3)由制动效率公式图4 制动效率曲线4)①由制动距离公式得,当u=30km/h,φ=0.80时,空载时8.98.07059.092.2530301.002.06.312⨯⨯⨯+⨯+⨯=)(s =7.27m 满载时8.98.09119.092.2530301.002.06.312⨯⨯⨯+⨯+⨯=)(s =5.86m. ②求制动系前部管路损坏时汽车的制动距离s1,制动系后部管路损坏时汽车的制动距离s2。
序号:汽车理论课程设计说明书题目:汽车制动性计算班级:姓名:学号:序号:指导教师:目录1.题目要求 (1)2.计算步骤 (1)3.结论 (5)4.心得体会 (6)5.参考资料 (6)1. 题目要求1) 根据所提供的数据,绘制:I 曲线,β线,f 、r 线组;2) 绘制利用附着系数曲线;绘制出国家标准(GB 12676-1999汽车制动系统结构、性能和试验方法)要求的限制范围,计算并填写利用附着系数参数表1。
表1 不同制动强度下的利用附着系数3) 表2 不同附着系数下的制动效率4) 对制动性进行评价。
5) 此车制动是否满足标准GB 12676-1999的要求?如果不满足需要采取什么附加措施(提出三种改进措施,并对每种措施的预期实施效果进行评价,包括成本、可行性等等;要充分说明理由,包括公式和图)2. 计算步骤1) 根据所提供的数据,绘制:I 曲线,β线,f 、r 线组;I 曲线公式⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+-+=F h F h h g g g Gb G L b G F 11222421μμμ β线公式ββμμ-=121F Ff 线组公式hF h h F gXb ggXb GbL --=12ϕϕr 线组公式h F h h F gXb gg Xb L GaL ϕϕϕϕ+++-=12将各条曲线放在同一坐标系中,满载时如图1所示,空载时如图2所示:图1满载时不同φ值路面的制动过程分析图2空载时不同φ值路面的制动过程分析2) 绘制利用附着系数曲线;绘制出国家标准(GB 12676-1999汽车制动系统结构、性能和试验方法)要求的限制范围,计算并填写利用附着系数参数表3。
前轴的利用附着系数公式()h F F g z Xb fz b Lz+==111βϕ后轴的利用附着系数公式()()h FF g Z Xb rz a Lz--==1122βϕ利用附着系数曲线如图3:图3利用附着系数与制动强度的关系曲线表3 不同制动强度下的利用附着系数制动强度z 利用 附着系数0.20.40.60.81满载f ϕ0.2433 0.4090 0.5291 0.6202 0.6917 r ϕ 0.1803 0.3947 0.6536 0.9728 1.3758 空载f ϕ0.1524 0.2873 0.4075 0.5154 0.6127 r ϕ0.2474 0.5267 0.8445 1.2094 1.63273) 绘制制动效率曲线,计算并填写制动效率参数表4。
前轴的制动效率为LLb zh Eg f ffϕϕβ-==后轴的制动效率为()LL a zhE grrrϕϕβ+-==1制动效率曲线如图4:图4 前、后制动效率曲线表4 不同附着系数下的制动效率附着系数 制动效率E (%)0.20.4 0.6 0.8 1满载f E0.7893 0.9681r E 0.9362 0.8715 0.8151 空载f Er E0.8174 0.7810 0.7476 0.7170 0.68883. 结论 1.对制动性进行评价1)图3给出了GB 12676-1999法规对该货车利用附着系数与制动强度关系曲线要求的区域。
它表明这辆中型货车在制动强度≥0.3时空载后轴利用附着系数φr 与制动强度z 的关系曲线不能满足法规的要求。
实际上,货车若不配备具有变比值制动力分配特性的制动力调节装置,就无法满足法规提出的要求。
2)制动距离:假设汽车在φ=0.8的路面上车轮不抱死,取制动系反应时间s 02.0'2=τ,制动减速度上升时间s 2.0''2=τ。
根据公式a u b a a u s max200''2'292.2526.31+⎪⎪⎭⎫ ⎝⎛+=ττ 当行车制动正常时,若u=60Km/h ,经计算得:满载制动距离s=22.328m ;空载制动距离s=26.709m (均小于GB12676-1999 汽车制动系统结构、性能和试验方法标准13015.02v v s +==36.692m ),符合标准要求;当该车前轴制动管路失效时,若u=50Km/h ,经计算得:满载制动距离s=31.341m (小于GB12676-1999 汽车制动系统结构、性能和试验方法标准1153010015.02v v s ⋅+==79.964m );空载制动距离s=39.371m (小于GB12676-1999 汽车制动系统结构、性能和试验方法标准1153010015.02v v s ⋅+==94.457m ),都符合标准要求;当该车后轴制动管路失效时,若u=50Km/h ,经计算得:满载制动距离s=55.394m (小于GB12676-1999 汽车制动系统结构、性能和试验方法标准1153010015.02v v s ⋅+==79.964m );空载制动距离s=35.228m (小于GB12676-1999 汽车制动系统结构、性能和试验方法标准1153010015.02v v s ⋅+==94.457m )符合标准要求。
2.改进措施1) 加装比例阀或载荷比例阀等制动调节装置。
装比例阀或载荷比例阀等制动力调节装置,可根据制动强度、载荷等因素来改变前、后制动器制动力的比值,使之接近于理想制动力分配曲线,既接近ϕ=z.满足制动法规的要求。
这种方法不需改变车身结构,效果明显,成本小。
对汽车平顺性,通过性,操纵稳定性无影响。
2)空载后轮利用附着系数不符合要求。
根据公式:()()h FFgZXbrzaLz--==1122βϕ,减小前后轴距L,同时适当改变质心到前轴的距离a,可以减小后轮利用附着系数,使之符合要求。
轴距决定了汽车重心的位置,因此汽车轴距一旦改变,就必须重新进行总布置设计,特别是传动系和车身部分的尺寸。
同时轴距的改变也会引起前、后桥轴荷分配的变化,且如果轴距过长,就会使得车身长度增加,使其他性能改变,成本较高,可行性差。
3)空载时适当减小质心高度,减小后轮利用附着系数,减小汽车通过性,但平顺性增加,不容易发生侧倾。
4.心得体会本次《汽车理论》课程设计使我对制动性有了更深的理解,同时更熟练地掌握了Matlab 计算机软件的运用。
通过查看相应的国家标准,使我对汽车行业的制造及检测过程有了初步了解。
最后感谢老师对本次课程设计的指导,感谢同学对本次课程设计的帮助。
5.参考文献[1]余志生. 汽车理论[M]. 北京:机械工业出版社,1989.[2]GB-T 15089-2001 中华人民共和国国家标准. 机动车辆及挂车分类[S].[3]GB 12676-1999 中华人民共和国国家标准. 汽车制动系统结构、性能和试验方法[S].附程序:%copyright gejianyongclcclearclose all;g=9.8ma=9290%满载质量m0=4080%空载质量Ga=ma*g%满载重力G0=m0*g%空载重力hga=1.17%满载质心高度hg0=0.6%空载质心高度L=3.95%轴距ba=1%满载质心至后轴距离b0=1.85%空载质心至后轴距离aa=2.95%满载质心至前轴距离a0=2.1%空载质心至前轴距离B=0.38%制动力分配系数% f1前轮制动器制动力% f2a满载后轮理想制动器制动力%以下为满载时制动过程f1=0:10:60000;f2a=0.5*(Ga*((ba*ba+4*hga*L*f1/Ga).^0.5)/hga-(Ga*ba/hga+2*f1));%满载I曲线公式%f2Ba满载后轮实际制动器制动力f2Ba=f1*(1-B)/B;%满载B线figure(1)plot(f1/1000,f2a/1000,'k',f1/1000,f2Ba/1000,'k')%画出I曲线,B线%P附着系数for P=0.1:0.1:1fxbfa=(L-P*hga)*f1/P/hga-Ga*ba/hga;%fxbfa满载f线fxbfa1=fxbfa(fxbfa<=f2a);%取I曲线下方f线f1f=f1(fxbfa<=f2a);fxbra=-P*hga*f1/(L+P*hga)+P*Ga*aa/(L+P*hga);%fxbra满载r线fxbra1=fxbra(fxbra>=f2a);%取I曲线上方r线f1r=f1(fxbra>=f2a);hold onplot(f1f/1000,fxbfa1/1000,'k',f1r/1000,fxbra1/1000,'k')%画出f线axis([0 60 0 60])%axis squareend%title('满载时不同φ值路面的制动过程分析')xlabel('{\itf} 线组{\itF}_{μ1}/kN,{\itF}_{Xb1}/kN')ylabel('{\itr} 线组{\itF}_{μ2}/kN,{\itF}_{Xb2}/kN')%以下为空载时制动过程f1=0:10:30000;f20=0.5*(G0*((b0*b0+4*hg0*L*f1/G0).^0.5)/hg0-(G0*b0/hg0+2*f1));%空载I曲线公式%f2B0空载后轮实际制动器制动力f2B0=f1*(1-B)/B;%空载B线figure(2)plot(f1/1000,f20/1000,'k',f1/1000,f2B0/1000,'k')%画出I曲线,B线%P附着系数for P=0.1:0.1:1fxbf0=(L-P*hg0)*f1/P/hg0-G0*b0/hg0;%fxbf0空载f线fxbf01=fxbf0(fxbf0<=f20);%取I曲线下方f线f1f=f1(fxbf0<=f20);fxbr0=-P*hg0*f1/(L+P*hg0)+P*G0*a0/(L+P*hg0);%fxbr0空载r线fxbr01=fxbr0(fxbr0>=f20);%取I曲线上方r线f1r=f1(fxbr0>=f20);hold onplot(f1f/1000,fxbf01/1000,'k',f1r/1000,fxbr01/1000,'k')%画出f线axis([0 30 0 30])%axis squareend%title('空载时不同φ值路面的制动过程分析')xlabel('{\itf} 线组{\itF}_{μ1}/kN,{\itF}_{Xb1}/kN')ylabel('{\itr} 线组{\itF}_{μ2}/kN,{\itF}_{Xb2}/kN')%以下为利用附着系数与制动强度的关系z=0.01:0.01:1;%z=0.2:0.2:1%计算数据用Pfa=B*z*L./(ba+z*hga);%满载前轴利用附着系数Pra=(1-B)*z*L./(aa-z*hga);%满载后轴利用附着系数Pf0=B*z*L./(b0+z*hg0);%空载前轴利用附着系数Pr0=(1-B)*z*L./(a0-z*hg0);%空载后轴利用附着系数Pz=z;%理想利用附着系数Pl=(z+0.07)/0.85;%法规Pll=Pl(0.2<=Pl&Pl<=0.8);zl=z(0.2<=Pl&Pl<=0.8);figure(3)plot(z,Pfa,'k',z,Pra,'k',z,Pf0,'k--',z,Pr0,'k--',z,Pz,'k--','LineWidth',1.5) hold onplot(zl,Pll,'k')fplot('[z-0.08,z+0.08]',[0.15,0.3],'k')fplot('(z-0.02)/0.74',[0.3,1],'k')axis([0 1 0 1])%title('利用附着系数与制动强度的关系曲线')xlabel('制动强度{\itz/g}')ylabel('利用附着系数{\itφ}')%以下为制动效率与附着系数的关系曲线P=0:0.01:1;%P=0.2:0.2:1%计算数据用Ef=ba./L./(B-P*hga./L);Er=aa./L./((1-B)+P*hga./L);Er0=a0./L./((1-B)+P*hg0./L);figure(4)plot(P,Ef*100,P,Er*100,P,Er0*100,'color',[0 0 0])axis([0 1 0 100])%title('前、后制动效率曲线')xlabel('附着系数{\itφ}')ylabel('制动效率(%)')%以下为评价P=0.8%同步附着系数为0.8P0a=(L*B-ba)/hga%满载同步附着系数P00=(L*B-b0)/hg0%空载同步附着系数%计算知后轮先抱死v=60%正常行驶国标制动初速度sl=0.15*v+v*v/130%正常行驶国标制动距离vb=50%失效行驶国标制动初速度slba=0.15*vb+100*vb*vb/30/115%失效行驶满载国标制动距离版权所有葛建勇slb0=0.15*vb+100*vb*vb/25/115%失效行驶空载国标制动距离za=P*aa/(L*(1-B)+P*hga)%满载制动强度aamax=za*g%满载最大制动减速度z0=P*a0/(L*(1-B)+P*hg0)%空载制动强度a0max=z0*g%空载最大制动减速度sa=(0.02+0.2/2)*v/3.6+v*v/25.92/aamax%满载正常行驶制动距离计算公式s0=(0.02+0.2/2)*v/3.6+v*v/25.92/a0max%空载正常行驶制动距离计算公式B=0%前管路损坏后轮先抱死zaf=P*aa/(L*(1-B)+P*hga)%满载制动强度aafmax=zaf*g%满载最大制动减速度z0f=P*a0/(L*(1-B)+P*hg0)%空载制动强度a0fmax=z0f*g%空载最大制动减速度saf=(0.02+0.2/2)*v/3.6+v*v/25.92/aafmax%满载失效行驶制动距离计算公式s0f=(0.02+0.2/2)*v/3.6+v*v/25.92/a0fmax%空载失效行驶制动距离计算公式B=1%后管路损坏前轮先抱死zar=P*ba/(L*B-P*hga)%满载制动强度aarmax=zar*g%满载最大制动减速度z0r=P*b0/(L*B-P*hg0)%空载制动强度a0rmax=z0r*g%空载最大制动减速度sar=(0.02+0.2/2)*v/3.6+v*v/25.92/aarmax%满载失效行驶制动距离计算公式s0r=(0.02+0.2/2)*v/3.6+v*v/25.92/a0rmax%空载失效行驶制动距离计算公式9。