2018年中考数学复习第一部分考点研究第三单元函数第11课时一次函数的实际应用62
- 格式:doc
- 大小:299.50 KB
- 文档页数:15
第一部分考点研究第二单元方程(组)与不等式(组)第11课时一次函数的实际应用浙江近9年中考真题精选(2009-2017)类型一阶梯费用问题(绍兴2考)1.(2017绍兴18题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?第1题图2.(2013绍兴18题8分)某市出租车的计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.第2题图类型二水流量、人流量问题(绍兴2016.19)3.(2016绍兴19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.第3题图4.(2013衢州23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值;(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第4题图类型三行程问题(杭州2015.23,绍兴2考)5.(2015绍兴18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?第5题图6.(2016丽水21题8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?第6题图7.(2014绍兴18题8分)已知甲、乙两地相距90 km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车.图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?第7题图8.(2015衢州23题10分)高铁的开通,给衢州市民出行带来了极大的方便,五·一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?第8题图9.(2015杭州23题12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图①所示.方成思考后发现了图①的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地.若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?第9题图类型四 分配类最优方案问题(温州2次)10.(2016湖州22题10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t .①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?11.(2015温州22题10分)某农业观光园计划将一块面积为900 m 2的园圃分成A 、B 、C 三个区域,分别种甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株,已知B 区域面积是A 的2倍,设A 区域面积为x(m 2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.类型五方案选取12.(2017衢州21题8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第12题图根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你帮助小明计算并选择哪个出游方案合算.答案1.解:(1)由图象得,当用水量为18立方米时,应交水费为45元;(3分)(2)由81元>45元,得用水量超过18立方米,设函数表达式为y=kx+b(x>18),∵直线y=kx+b过点(18,45),(28,75),∴⎩⎪⎨⎪⎧18k +b =4528k +b =75,解得⎩⎪⎨⎪⎧k =3b =-9,(5分) ∴y =3x -9(x >18),(6分)当y =81时,3x -9=81,解得x =30.答:这个月用水量为30立方米.(8分)2.解:(1)由图象得:出租车的起步价是8元;(2分)设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b 12=5k +b , 解得⎩⎪⎨⎪⎧k =2b =2, 故y 与x 的函数解析式为y =2x +2(x >3);(4分)(2)当y =32时,32=2x +2,解得x =15,答:这位乘客乘车的里程是15 km.(8分)3.解:(1)由题图可知暂停排水时间为30分钟(半小时).(1分)排水孔的排水速度为900÷3=300 m 3/h ;(3分)(2)由题图可知排水1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 m 3, 设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b ,把(2,450),(3.5,0)代入得⎩⎪⎨⎪⎧450=2k +b ,0=3.5k +b ,(6分) 解得⎩⎪⎨⎪⎧b =1050k =-300,∴当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =-300t +1050.(8分)4.解:(1)由图象知,640+16a -2×14a =520,所以a =10;(2分)(2)设过(10,520)和(30,0)的直线解析式为y =kx +b ,得⎩⎪⎨⎪⎧10k +b =52030k +b =0,解得⎩⎪⎨⎪⎧k =-26b =780, 因此y =-26x +780,当x =20时,y =260,即检票到第20分钟时,候车室排队等候检票的旅客有260人;(6分)(3)设需同时开放n 个检票口,由题意知:14n ×15≥640+16×15(7分)解得:n ≥4421, ∵n 为整数,∴n 最小=5.答:至少需要同时开放5个检票口.(10分)5.解:(1)由题图可知小敏去超市途中的速度是3000÷10=300 (米/分);在超市逗留的时间:40-10=30(分).答:小敏去超市途中的速度是300米/分,在超市逗留了30分.(2)设小敏返家过程中的函数解析式为y =kx +b (k ≠0),把点(40,3000),(45,2000)代入上式,得⎩⎪⎨⎪⎧40k +b =300045k +b =2000, 解得⎩⎪⎨⎪⎧k =-200b =11000, ∴小敏返家过程中的函数解析式为y =-200x +11000,当y =0时,-200x +11000=0,解得x =55.答:小敏上午8:55分返回到家.6.解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟,∴a =0.3×35=10.5(千米).(2分)(2)①∵线段OA 经过点O (0,0),A (35,10.5),∴OA 的函数解析式是s =0.3t(0≤t≤35).∴当s =2.1时,0.3t =2.1,解得t =7.(3分)∵该运动员从第一次过C 点到第二次过C 点所用的时间为68分钟,∴该运动员从起点到第二次过C 点共用的时间是7+68=75(分钟).∴AB 经过(35,10.5),(75,2.1)两点.(4分)设AB 所在直线的函数解析式是s =kt +b ,∴⎩⎪⎨⎪⎧35k +b =10.575k +b =2.1,解得⎩⎪⎨⎪⎧k =-0.21b =17.85,(5分) ∴AB 所在直线的函数解析式是s =-0.21t +17.85.(6分)②∵该运动员跑完赛程所用的时间即为直线AB 与x 轴交点横坐标的值.∴当s =0时,-0.21t +17.85=0,解得t =85.∴该运动员跑完赛程用时85分钟.(8分)7.解:(1)由题图可知,A 比B 后出发1小时;(2分)B 的速度为60÷3=20 km/h ;(4分)(2)由题图可知点D (1,0),C (3,60),E (3,90),设直线OC 的解析式为s =kt ,则3k =60,解得k =20,∴直线OC 的解析式为s =20t ,设直线DE 的解析式为s =mt +n ,则⎩⎪⎨⎪⎧m +n =03m +n =90,解得⎩⎪⎨⎪⎧m =45n =-45, ∴直线DE 的解析式为s =45t -45,(6分)联立两函数解析式,得⎩⎪⎨⎪⎧s =20t s =45t -45, 解得⎩⎪⎨⎪⎧t =95s =36,∴在B 出发后95小时,两人相遇.(8分) 8.解:(1)根据函数图象可知,从衢州到杭州火车东站的距离为240千米,坐高铁共用时1小时,∴高铁的平均速度为240千米/小时;(2分)(2)由(1)知高铁的速度为240千米/小时,∴当颖颖出发0.5小时时,离衢州的距离为120千米,此时乐乐已出发1.5小时, 设乐乐离衢州的距离与乘车的时间之间的函数关系式为y =kt ,则有120=1.5k ,解得k =80,故y =80t ,(5分)当t =2时,y =80×2=160,从图象可知:衢州到游乐园的距离为216千米,∵216-160=56(千米),∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米;(7分)(3)当y =216时,t =2.7,18分钟=0.3小时,∵216÷(2.7-0.3)=90(千米/小时),∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.(10分)9.解:(1)由题图①可知B 、C 、D 三点的坐标,B (1.5,0)、C (73,1003)、D (4,0). 设直线BC 解析式为y =kt +b(k≠0),把B 、C 两点坐标分别代入得:⎩⎪⎨⎪⎧1.5k +b =073k +b =1003 ,解得⎩⎪⎨⎪⎧k =40b =-60,∴直线BC 的解析式为y =40t -60 (1.5≤t ≤73).(2分)设直线CD 解析式为y =k′t +b ′(k ′≠0),把C(73,1003)、D (4,0)两点坐标分别代入得⎩⎪⎨⎪⎧73k′+b′=10034k′+b′=0, 解得:⎩⎪⎨⎪⎧k′=-20b′=80,∴直线CD 的解析式为y =-20t +80(73≤t ≤4).(4分)(2)由直线CD 的解析式为y =-20t +80, 可得乙的速度为20 km/h. ∴A 点坐标为(1,20),(5分)由题图①可知,两人的距离y 满足20<y <30必是在第一次相遇之后到第二次相遇这段时间之内, 当20<y <30时, 20<40t -60<30 ① 20<-20t +80<30 ②(6分) 解①得:2<t <2.25, 解②得:2.5<t <3.∴当2<t <2.25和2.5<t <3 时,有20<y <30.(7分) (3)由直线BC 的解析式:y =40t -60,则乙在出发1.5小时后,两人之间的差距以每小时1003÷(73-1.5)=40 km 的速度拉开,又v 乙=20 km/h ,∴v 甲=20+40=60 km/h.(8分) ∴s 甲=60(t -1)=60t -60(1≤t ≤73),s 乙=20t(0≤t ≤4).(9分)在直角坐标系中画出它们的图象如解图.第9题解图(4)由前述题意可知:乙出发4小时可以从M 地到达N 地, ∵v 乙=20 km/h ,∴M 到N 的总路程为20×4=80 km , 当丙出发43小时,s 乙=20×43=803km ,∴s 丙=80-803=1603km ,∴v 丙=1603÷43=40 km/h.∴丙距M 地的距离为(80-40 t ) km ,若丙与甲相遇,则80-40 t=60t-60,解方程得t=1.4小时.(12分)10.解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,(2分)解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(4分)(2)①由题意得,t+4t+3(100-3t)=200,(7分)解得t=25(符合题意).答:t的值是25.(8分)②由题意得,提供养老床位y=t+4t+3(100-3t),其中10≤t≤30,y=-4t+300.因为k=-4<0,所以y随着t的增大而减小.当t=10时,y的最大值为300-4×10=260(个).当t=30时,y的最小值为300-4×30=180(个).答:建成后最多提供养老床位260个,最少提供养老床位180个.(10分)11.解:(1)若A区域的面积为x m2,则B区域的面积为2x m2,C区域的面积为(900-3x) m2,y=3x+12x+12(900-3x)=-21x+10800;(3分)(2)当y=6600时,-21x+10800=6600,解得x=200,∴2x=400,900-3x=300.答:A区域的面积为200 m2,B区域的面积为400 m2,C区域的面积为300 m2;(6分) (3)设甲、乙、丙三种花卉的单价分别为a元、b元、c元,由题意可知,⎩⎪⎨⎪⎧a +b +c =45600a +2400b +3600c =84000, 整理得b =5(19-c )3,∵a 、b 、c 为正整数, ∴a 、b 、c 可能取的值如下表,又∵a 、b 、c 的差不超过10, ∴a =20,b =15,c =10,(8分) ∵B 区域的面积为400 m 2,最大,∴种植面积最大的花卉总价为400×6×15=36000(元). 答:种植面积最大的花卉总价为36000元.(10分) 12.解:(1)由题意可知y 1=k 1x +80,(1分) 且图象过点(1,95), 则有95=k 1+80, ∴k 1=15,∴y 1=15x +80(x ≥0),(2分) 由题意易得y 2=30x (x ≥0).(4分) (2)当y 1=y 2时,解得x =163;(5分)当y 1>y 2时,解得x <163;(6分)当y 1<y 2时,解得x >163.(7分)∴当租车时间为163小时,选择甲、乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.(8分)(也可求出x =163之后,观察函数图象得到结论.)。
【知识归纳】一、一次函数和一元一次方程的关系一次函数y =kx +b 的函数值为0时,相应的自变量的值即为方程kx +b =0的 ;若从图象上来看,则可看做函数y =kx +b 的图象与x 轴的交点的 ,即为方程kx +b =0的解.二、一次函数和一元一次不等式的关系任何一元一次不等式都可以转化为类似ax +b >0或ax +b <0的形式,所以解一元一次不等式可以看做:当一次函数y =ax +b 的值大(小)于0时,求自变量相应的取值范围;反之,求一次函数y =ax +b 的值何时大(小)于0时,只要求出不等式ax +b >0或ax +b <0的解集即可.①如图1,一次函数b kx y +=的图象与x 轴交于点(x 0,0).当它在x 轴上方的部分时,对应不等式为 ,其解为 ;当它在x 轴下方的部分时,对应不等式为 ,其解为 .图1图21x+b 1② 如图2,一次函数111b x k y +=与222b x k y +=的图象交点的横坐标为x 0.当222b x k y +=的图象在111b x k y +=上方的部分时,对应不等式为 ,其解为 ;当222b x k y +=的图象在111b x k y +=下方的部分时,对应不等式为 ,其解为 .二、一次函数的实际应用(1)通过图象获取信息通过观察一次函数的图象获取有用的信息是我们在日常生活中经常遇到的问题,要掌握这个重点在于对函数图象的观察和分析,观察函数图象时,首先要看 分别代表的是什么,也就是观察图象反映的是哪两个变量之间的关系.观察图象获取信息时,一定要注意图象上的特殊点,这些特殊点对我们解决问题有很大的帮助.(2)一次函数图象的应用一次函数和正比例函数是我们接触到的最简单的函数,它们的图象和性质在现实生活中有着广泛的应用.在实际问题中,当自变量的取值范围受到一定的限制时,函数y =kx +b(k ≠0)的图象就不再是一条直线.要根据实际情况进行分析,其图象可能是 等等.【知识归纳答案】一、一次函数和一元一次方程的关系:解;横坐标.二、一次函数和一元一次不等式的关系为kx+b >0,其解为x >x 0;为kx+b <0,其解为x <x 0.③ k 2x+b 2>k 1x+b 1,其解为x >x 0;当222b x k y +=的图象在111b x k y +=下方的部分时,对应不等式为k 2x+b 2<k 1x+b 1,其解为x <x 0.二、一次函数的实际应用(1)通过图象获取信息:横轴、纵轴(2)一次函数图象的应用:射线、线段或折线等等.真题解析一.选择题(共6小题)1.对于函数y=2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >0【考点】F5:一次函数的性质.【分析】根据一次函数的性质进行计算即可.【解答】解:A 、把x=1代入解析式得到y=1,即函数图象经过(1,1),不经过点(1,0),故本选项错误;B 、函数y=2x ﹣1中,k=2>0,则该函数图象y 值随着x 值增大而增大,故本选项错误;C 、函数y=2x ﹣1中,k=2>0,b=﹣1<0,则该函数图象经过第一、三、四象限,故本选项错误;D 、当x >1时,2x ﹣1>1,则y >1,故y >0正确,故本选项正确.故选:D .2.一次函数y=(m﹣2)x+3的图象如图所示,则m的取值范围是()学科网A.m<2 B.0<m<2 C.m<0 D.m>2【考点】F7:一次函数图象与系数的关系.【分析】根据图象在坐标平面内的位置关系知m﹣2<0,据此可以求得m的取值范围.【解答】解:如图所示,一次函数y=(m﹣2)x+3的图象经过第一、二、四象限,∴m﹣2<0,解得m<2.故选A.3.如图,直线y=x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为()A.(﹣3,0)B.(﹣6,0)C.(﹣,0)D.(﹣,0)【考点】F8:一次函数图象上点的坐标特征;PA:轴对称﹣最短路线问题.【分析】(方法一)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,结合点C、D′的坐标求出直线CD′的解析式,令y=0即可求出x的值,从而得出点P的坐标.(方法二)根据一次函数解析式求出点A、B的坐标,再由中点坐标公式求出点C、D的坐标,根据对称的性质找出点D′的坐标,根据三角形中位线定理即可得出点P为线段CD′的中点,由此即可得出点P的坐标.【解答】解:(方法一)作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.学科网令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2).∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2).设直线CD′的解析式为y=kx+b,∵直线CD′过点C(﹣3,2),D′(0,﹣2),∴有,解得:,∴直线CD′的解析式为y=﹣x﹣2.令y=﹣x﹣2中y=0,则0=﹣x﹣2,解得:x=﹣,∴点P的坐标为(﹣,0).故选C.(方法二)连接CD,作点D关于x轴的对称点D′,连接CD′交x轴于点P,此时PC+PD值最小,如图所示.令y=x+4中x=0,则y=4,∴点B的坐标为(0,4);令y=x+4中y=0,则x+4=0,解得:x=﹣6,∴点A的坐标为(﹣6,0).∵点C、D分别为线段AB、OB的中点,∴点C(﹣3,2),点D(0,2),CD∥x轴,∵点D′和点D关于x轴对称,∴点D′的坐标为(0,﹣2),点O为线段DD′的中点.又∵OP∥CD,∴点P为线段CD′的中点,∴点P的坐标为(﹣,0).故选C.学科网4.已知点(﹣1,y1),(4,y2)在一次函数y=3x﹣2的图象上,则y1,y2,0的大小关系是()A.0<y1<y2B.y1<0<y2C.y1<y2<0 D.y2<0<y1【考点】F8:一次函数图象上点的坐标特征.【分析】根据点的横坐标利用一次函数图象上点的坐标特征,即可求出y1、y2的值,将其与0比较大小后即可得出结论.【解答】解:∵点(﹣1,y1),(4,)在一次函数y=3x﹣2的图象上,∴y1=﹣5,y2=10,∵10>0>﹣5,∴y1<0<y2.故选B.5.公式L=L0+KP表示当重力为P时的物体作用在弹簧上时弹簧的长度,L0代表弹簧的初始长度,用厘米(cm)表示,K表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是()A.L=10+0.5P B.L=10+5P C.L=80+0.5P D.L=80+5P【考点】FH:一次函数的应用.【分析】A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,由此即可得出结论.【解答】解:∵10<80,0.5<5,∴A和B中,L0=10,表示弹簧短;A和C中,K=0.5,表示弹簧硬,∴A选项表示这是一个短而硬的弹簧.故选A.6.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,图中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min 到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:①打电话时,小东和妈妈的距离为1400米;②小东和妈妈相遇后,妈妈回家的速度为50m/min;③小东打完电话后,经过27min到达学校;④小东家离学校的距离为2900m.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【考点】FH:一次函数的应用.【分析】①由当t=0时y=1400,可得出打电话时,小东和妈妈的距离为1400米,结论①正确;②利用速度=路程÷时间结合小东的速度,可求出小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③由t的最大值为27,可得出小东打完电话后,经过27min到达学校,结论③正确;④根据路程=2400+小东步行的速度×(27﹣22),即可得出小东家离学校的距离为2900m,结论④正确.综上即可得出结论.【解答】解:①当t=0时,y=1400,∴打电话时,小东和妈妈的距离为1400米,结论①正确;②2400÷(22﹣6)﹣100=50(m/min),∴小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③∵t的最大值为27,∴小东打完电话后,经过27min到达学校,结论③正确;④2400+(27﹣22)×100=2900(m),∴小东家离学校的距离为2900m,结论④正确.综上所述,正确的结论有:①②③④.故选D.学科网二.填空题(共6小题)7.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1<y2(填“>”,“<”或“=”)【考点】F8:一次函数图象上点的坐标特征.【分析】根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1<x2即可得出y1<y2,此题得解.【解答】解:∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1<x2,∴y1<y2.故答案为:<.8.如图,点A1(1,)在直线l1:y=x上,过点A1作A1B1⊥l1交直线l2:y=x 于点B1,A1B1为边在△OA1B1外侧作等边三角形A1B1C1,再过点C1作A2B2⊥l1,分别交直线l1和l2于A2,B2两点,以A2B2为边在△OA2B2外侧作等边三角形A2B2C2,…按此规律进行下去,则第n个等边三角形A n B n C n的面积为.(用含n的代数式表示)【考点】F8:一次函数图象上点的坐标特征;KK:等边三角形的性质.【分析】由点A1的坐标可得出OA1=2,根据直线l1、l2的解析式结合解直角三角形可求出A1B1的长度,由等边三角形的性质可得出A1A2的长度,进而得出OA2=3,通过解直角三角形可得出A2B2的长度,同理可求出A n B n的长度,再根据等边三角形的面积公式即可求出第n个等边三角形A n B n C n的面积.【解答】解:∵点A1(1,),∴OA1=2.∵直线l1:y=x,直线l2:y=x,∴∠A1OB1=30°.在Rt△OA1B1中,OA1=2,∠A1OB1=30°,∠OA1B1=90°,∴A1B1=OB1,∴A 1B 1=.∵△A 1B 1C 1为等边三角形,∴A 1A 2=A 1B 1=1,∴OA 2=3,A 2B 2=.同理,可得出:A 3B 3=,A 4B 4=,…,A n B n =,∴第n 个等边三角形A n B n C n 的面积为×A nB n 2=.故答案为: .9.如图,直线y=x 上有点A 1,A 2,A 3,…A n +1,且OA 1=1,A 1A 2=2,A 2A 3=4,A n A n +1=2n 分别过点A 1,A 2,A 3,…A n +1作直线y=x 的垂线,交y 轴于点B 1,B 2,B 3,…B n +1,依次连接A 1B 2,A 2B 3,A 3B 4,…A n B n +1,得到△A 1B 1B 2,△A 2B 2B 3,△A 3B 3B 4,…,△A n B n B n +1,则△A n B n B n +1的面积为 (22n ﹣1﹣2n ﹣1) .(用含有正整数n 的式子表示)【考点】F8:一次函数图象上点的坐标特征.【分析】由直线OA n 的解析式可得出∠A n OB n =60°,结合A n A n +1=2n 可求出A n B n 的值,再根据三角形的面积公式即可求出△A n B n B n +1的面积.【解答】解:∵直线OA n 的解析式y=x ,∴∠A n OB n =60°.∵OA1=1,A1A2=2,A2A3=4,A n A n+1=2n,∴A1B1=,A2B2=3,A3B3=7.设S=1+2+4+…+2n﹣1,则2S=2+4+8+…+2n,∴S=2S﹣S=(2+4+8+…+2n)﹣(1+2+4+…+2n﹣1)=2n﹣1,∴A n B n=(2n﹣1).∴=A n B n•A n A n+1=×(2n﹣1)×2n=(22n﹣1﹣2n﹣1).故答案为:(22n﹣1﹣2n﹣1).10.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是②③.(写出所有正确说法的序号)①当x=1.7时,[x]+(x)+[x)=6;②当x=﹣2.1时,[x]+(x)+[x)=﹣7;③方程4[x]+3(x)+[x)=11的解为1<x<1.5;④当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有两个交点.【考点】FF:两条直线相交或平行问题;18:有理数大小比较;CB:解一元一次不等式组.【分析】根据题意可以分别判断各个小的结论是否正确,从而可以解答本题.【解答】解:①当x=1.7时,[x]+(x)+[x)=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时,[x]+(x)+[x)=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x<1.5时,4[x]+3(x)+[x)=4×1+3×2+1=4+6+1=11,故③正确;④∵﹣1<x<1时,∴当﹣1<x<﹣0.5时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当﹣0.5<x<0时,y=[x]+(x)+x=﹣1+0+x=x﹣1,当x=0时,y=[x]+(x)+x=0+0+0=0,当0<x<0.5时,y=[x]+(x)+x=0+1+x=x+1,当0.5<x<1时,y=[x]+(x)+x=0+1+x=x+1,∵y=4x,则x﹣1=4x时,得x=;x+1=4x时,得x=;当x=0时,y=4x=0,∴当﹣1<x<1时,函数y=[x]+(x)+x的图象与正比例函数y=4x的图象有三个交点,故④错误,故答案为:②③.11.如图,在平面直角坐标系xOy中,直线y=﹣x+m分别交x轴,y轴于A,B 两点,已知点C(2,0).(1)当直线AB经过点C时,点O到直线AB的距离是;(2)设点P为线段OB的中点,连结PA,PC,若∠CPA=∠ABO,则m的值是12.【考点】FI:一次函数综合题.【分析】(1)把点C的坐标代入函数解析式求得m的值;然后结合一次函数解析式求得A、B的坐标,然后利用等积法求得点O到直线AB的距离是;(2)典型的“一线三等角”,构造相似三角形△PCD∽△APB,对m的取值分析进行讨论,在m<0时,点A在x轴的负半轴,而此时,∠APC>∠OBA=45°,不合题意;故m>0.由相似比求得边的相应关系.【解答】解:(1)当直线AB经过点C时,点A与点C重合,当x=2时,y=﹣2+m=0,即m=2,所以直线AB 的解析式为y=﹣x +2,则B (0,2).∴OB=OA=2,AB=2.设点O 到直线AB 的距离为d ,由S △OAB =OA 2=AB•d ,得4=2d ,则d=. 故答案是:.(2)作OD=OC=2,连接CD .则∠PDC=45°,如图,由y=﹣x +m 可得A (m ,0),B (0,m ).所以OA=OB ,则∠OBA=∠OAB=45°.当m <0时,∠APC >∠OBA=45°,所以,此时∠CPA >45°,故不合题意.所以m >0.因为∠CPA=∠ABO=45°,所以∠BPA +∠OPC=∠BAP +∠BPA=135°,即∠OPC=∠BAP ,则△PCD ∽△APB ,所以=,即=,解得m=12.故答案是:12.12.当m=﹣3,0,﹣时,函数y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数.【考点】F1:一次函数的定义.【分析】根据二次项的系数为零,可得一次函数.【解答】解:①由y=(m+3)x2m+1+4x﹣5(x≠0)是一次函数,得m+3=0.解得m=﹣3;②,解得m=0;③2m+1=0,解得:m=﹣;综上所述,当m=﹣3,0,﹣时,y=(m﹣3)x2m+1+4x﹣5是一次函数.故答案为:﹣3,0,﹣.三.解答题(共7小题)13.如图,在平面直角坐标系xOy中,过点A(﹣2,0)的直线交y轴正半轴于点B,将直线AB绕着点顺时针旋转90°后,分别与x轴、y轴交于点D、C.(1)若OB=4,求直线AB的函数关系式;(2)连接BD,若△ABD的面积是5,求点B的运动路径长.【考点】F9:一次函数图象与几何变换;O4:轨迹.【分析】(1)依题意求出点B坐标,然后用待定系数法求解析式;(2)设OB=m,则AD=m+2,根据三角形面积公式得到关于m的方程,解方程求得m的值,然后根据弧长公式即可求得.【解答】解:(1)∵OB=4,∴B(0,4)∵A(﹣2,0),设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=2x+4;(2)设OB=m,则AD=m+2,∵△ABD的面积是5,∴AD•OB=5,∴(m+2)•m=5,即m2+2m﹣10=0,解得m=﹣1+或m=﹣1﹣(舍去),∵∠BOD=90°,∴点B的运动路径长为:×2π×(﹣1+)=π.14.直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD=.【考点】F9:一次函数图象与几何变换;F3:一次函数的图象.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,方法一、∵直线l绕点A顺时针旋转90°得到l2,∴∠BAD=90°,∴∠CAD+∠OAB=90°,又∵∠OAB+∠ABO=90°,∴∠CAD=∠ABO,∴tan∠CAD=tan∠ABO==;方法二:∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.15.为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了2分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n﹣m=30分钟.【考点】FH:一次函数的应用.【分析】(1)根据路程与速度、时间的关系,首先求出C、B两点的坐标,即可解决问题;(2)根据C、D两点坐标,利用待定系数法即可解决问题;(3)求出原计划步行到达图书馆的时间为n,即可解决问题.【解答】解:(1)步行速度:300÷6=50m/min,单车速度:3×50=150m/min,单车时间:3000÷150=20min,30﹣20=10,∴C(10,0),∴A到B是时间==2min,∴B(8,0),∴BC=2,∴小亮在家停留了2分钟.故答案为2.(2)设y=kx+b,过C、D(30,3000),∴,解得,∴y=150x﹣1500(10≤x≤30)(3)原计划步行到达图书馆的时间为n分钟,n==60n﹣m=60﹣30=30分钟,故答案为30.16.如图,是一种斜挎包,其挎带由双层部分、单层部分和调节扣构成.小敏用后发现,通过调节扣加长或缩短单层部分的长度,可以使挎带的长度(单层部分与双层部分长度的和,其中调节扣所占的长度忽略不计)加长或缩短.设单层部分的长度为xcm,双层部分的长度为ycm,经测量,得到如下数据:(1)根据表中数据的规律,完成以下表格,并直接写出y关于x的函数解析式;(2)根据小敏的身高和习惯,挎带的长度为120cm时,背起来正合适,请求出此时单层部分的长度;(3)设挎带的长度为lcm,求l的取值范围.【考点】FH:一次函数的应用.【分析】(1)观察表格可知,y是x的一次函数,设y=kx+b,利用待定系数法即可解决问题;(2)列出方程组即可解决问题;(3)由题意当y=0,x=150,当x=0时,y=75,可得75≤l≤150.【解答】解:(1)观察表格可知,y是x的一次函数,设y=kx+b,则有,解得,∴y=﹣x+75.(2)由题意,解得,∴单层部分的长度为90cm.(3)由题意当y=0,x=150,当x=0时,y=75,∴75≤l≤150.17.为了推进我州校园篮球运动的发展,2017年四川省中小学生男子篮球赛于2月在西昌成功举办.在此期间,某体育文化用品商店计划一次性购进篮球和排球共60个,其进价与售价间的关系如下表:(1)商店用4200元购进这批篮球和排球,求购进篮球和排球各多少个?(2)设商店所获利润为y(单位:元),购进篮球的个数为x(单位:个),请写出y与x之间的函数关系式(不要求写出x的取值范围);(3)若要使商店的进货成本在4300元的限额内,且全部销售完后所获利润不低于1400元,请你列举出商店所有进货方案,并求出最大利润是多少?【考点】FH:一次函数的应用;9A:二元一次方程组的应用;CE:一元一次不等式组的应用.【分析】(1)设购进篮球m个,排球n个,根据购进篮球和排球共60个且共需4200元,即可得出关于m、n的二元一次方程组,解之即可得出结论;(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据总利润=单个利润×购进数量,即可得出y与x之间的函数关系式;(3)设购进篮球x个,则购进排球(60﹣x)个,根据进货成本在4300元的限额内且全部销售完后所获利润不低于1400元,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,取其整数即可得出各购进方案,再结合(2)的结论利用一次函数的性质即可解决最值问题.【解答】解:(1)设购进篮球m个,排球n个,根据题意得:,解得:,答:购进篮球40个,排球20个.(2)设商店所获利润为y元,购进篮球x个,则购进排球(60﹣x)个,根据题意得:y=x+(70﹣50)(60﹣x)=5x+1200,∴y与x之间的函数关系式为:y=5x+1200.(3)设购进篮球x个,则购进排球(60﹣x)个,根据题意得:,解得:40≤x≤.∵x取整数,∴x=40,41,42,43,共有四种方案,方案1:购进篮球40个,排球20个;方案2:购进篮球41个,排球19个;方案3:购进篮球42个,排球18个;方案4:购进篮球43个,排球17个.∵在y=5x+1200中,k=5>0,∴y随x的增大而增大,∴当x=43时,可获得最大利润,最大利润为5×43+1200=1415元.18.在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距480千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x (小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?【考点】FH:一次函数的应用.【分析】(1)根据图1,根据客车、货车离服务区的初始距离可得甲乙两地距离;(2)根据图象中的数据可以求得3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式;(3)分两种情况讨论,当邮政车去甲地的途中会有某个时间邮政车与客车和货车的距离相等;当邮政车从甲地返回乙地时,货车与客车相遇时,邮政车与客车和货车的距离相等.【解答】解:(1)360+120=480(千米)故答案为:480;(2)设3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式为y2=kx+b,由图象可得,货车的速度为:120÷3=40千米/时,则点B的横坐标为:3+360÷40=12,∴点P的坐标为(12,360),,得,即3小时后,货车离服务区的路程y2与行驶时间x之间的函数关系式为y2=40x ﹣120;6=60千米/时,(3)v客=360÷v邮=360×2÷8=90千米/时,设当邮政车去甲地的途中时,经过t小时邮政车与客车和货车的距离相等,120+(90﹣40)t=360﹣(60+90)tt=1.2(小时);设当邮政车从甲地返回乙地时,经过t小时邮政车与客车和货车的距离相等,40t+60t=480解得t=4.8,综上所述,经过1.2或4.8小时邮政车与客车和货车的距离相等.19.一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶,两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示,请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式(不要求写出自变量的取值范围).【考点】FH:一次函数的应用.【分析】(1)根据图象可知甲城和乙城之间的路程为180千米,设卡车的速度为x千米/时,则轿车的速度为(x+60)千米/时,由B(1,0)可得x+(x+60)=180可得结果;(2)根据(1)中所得速度可得卡车和轿车全程所用的时间,利用卡车所用的总时间减去轿车来回所用时间可得结论;(3)根据s=180﹣120×(t﹣0.5﹣0.5)可得结果.【解答】解:(1)甲城和乙城之间的路程为180千米,设卡车的速度为x千米/时,则轿车的速度为(x+60)千米/时,由B(1,0)得,x+(x+60)=180解得x=60,∴x+60=120,∴轿车和卡车的速度分别为120千米/时和60千米/时;(2)卡车到达甲城需180÷60=3(小时)轿车从甲城到乙城需180÷120=1.5(小时)3+0.5﹣1.5×2=0.5(小时)∴轿车在乙城停留了0.5小时,点D的坐标为(2,120);(3)s=180﹣120×(t﹣0.5﹣0.5)=﹣120t+420.。
第一部分考点研究第二单元方程(组)与不等式(组)第11课时一次函数的实际应用浙江近9年中考真题精选(2009-2017)类型一阶梯费用问题(绍兴2考)1.(2017绍兴18题8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?第1题图2.(2013绍兴18题8分)某市出租车的计费方法如图所示,x(km)表示行驶里程,y(元)表示车费,请根据图象回答下面的问题:(1)出租车的起步价是多少元?当x>3时,求y关于x的函数解析式;(2)若某乘客有一次乘出租车的车费为32元,求这位乘客乘车的里程.第2题图类型二水流量、人流量问题(绍兴2016.19)3.(2016绍兴19题8分)根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完,游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.第3题图4.(2013衢州23题10分)“五·一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分钟)的关系如图所示.(1)求a的值;(2)求检票到第20分钟时,候车室排队等候检票的旅客人数;(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问检票一开始至少需要同时开放几个检票口?第4题图类型三行程问题(杭州2015.23,绍兴2考)5.(2015绍兴18题8分)小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中,小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?第5题图6.(2016丽水21题8分)2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回终点万地广场西门.设该运动员离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:(1)求图中a的值;(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次过C点到第二次过C点所用的时间为68分钟.①求AB所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?第6题图7.(2014绍兴18题8分)已知甲、乙两地相距90 km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车.图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?第7题图8.(2015衢州23题10分)高铁的开通,给衢州市民出行带来了极大的方便,五·一期间,乐乐和颖颖相约到杭州市的某游乐园游玩,乐乐乘私家车从衢州出发1小时后,颖颖乘坐高铁从衢州出发,先到杭州火车东站,然后转乘出租车去游乐园(换车时间忽略不计),两人恰好同时到达游乐园,他们离开衢州的距离y(千米)与乘车时间t(小时)的关系如图所示.请结合图象解决下面问题:(1)高铁的平均速度是每小时多少千米?(2)当颖颖到达杭州火车东站时,乐乐距离游乐园还有多少千米?(3)若乐乐要提前18分钟到达游乐园,问私家车的速度必须达到多少千米/小时?第8题图9.(2015杭州23题12分)方成同学看到一则材料:甲开汽车,乙骑自行车从M地出发沿一条公路匀速前往N地.设乙行驶的时间为t(h),甲乙两人之间的距离为y(km),y与t 的函数关系如图①所示.方成思考后发现了图①的部分正确信息:乙先出发1 h;甲出发0.5小时与乙相遇;…….请你帮助方成同学解决以下问题:(1)分别求出线段BC,CD所在直线的函数表达式;(2)当20<y <30时,求t 的取值范围;(3)分别求出甲,乙行驶的路程s 甲,s 乙与时间t 的函数表达式,并在图②所给的直角坐标系中分别画出它们的图象;(4)丙骑摩托车与乙同时出发,从N 地沿同一条公路匀速前往M 地.若丙经过43h 与乙相遇,问丙出发后多少时间与甲相遇?第9题图类型四 分配类最优方案问题(温州2次)10.(2016湖州22题10分)随着某市养老机构(养老机构指社会福利院、养老院、社区养老中心等)建设稳步推进,拥有的养老床位数不断增加.(1)该市的养老床位数从2013年底的2万个增长到2015年底的2.88万个.求该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率;(2)若该市某社区今年准备新建一养老中心,其中规划建造三类养老专用房间共100间,这三类养老专用房间分别为单人间(1个养老床位),双人间(2个养老床位),三人间(3个养老床位).因实际需要,单人间房间数在10至30之间(包括10和30),且双人间的房间数是单人间的2倍,设规划建造单人间的房间数为t .①若该养老中心建成后可提供养老床位200个,求t 的值;②求该养老中心建成后最多提供养老床位多少个?最少提供养老床位多少个?11.(2015温州22题10分)某农业观光园计划将一块面积为900 m 2的园圃分成A 、B 、C 三个区域,分别种甲、乙、丙三种花卉,且每平方米栽种甲3株或乙6株或丙12株,已知B 区域面积是A 的2倍,设A 区域面积为x(m 2).(1)求该园圃栽种的花卉总株数y关于x的函数表达式;(2)若三种花卉共栽种6600株,则A,B,C三个区域的面积分别是多少?(3)已知三种花卉的单价(都是整数)之和为45元,且差价均不超过10元,在(2)的前提下,全部栽种共需84000元,请写出甲、乙、丙三种花卉中,种植面积最大的花卉总价.类型五方案选取12.(2017衢州21题8分)“五·一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.第12题图根据以上信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为y1元,租用乙公司的车所需费用为y2元,分别求出y1、y2关于x的函数表达式.(2)请你帮助小明计算并选择哪个出游方案合算.答案1.解:(1)由图象得,当用水量为18立方米时,应交水费为45元;(3分)(2)由81元>45元,得用水量超过18立方米,设函数表达式为y=kx+b(x>18),∵直线y=kx+b过点(18,45),(28,75),∴⎩⎪⎨⎪⎧18k +b =4528k +b =75,解得⎩⎪⎨⎪⎧k =3b =-9,(5分) ∴y =3x -9(x >18),(6分)当y =81时,3x -9=81,解得x =30.答:这个月用水量为30立方米.(8分)2.解:(1)由图象得:出租车的起步价是8元;(2分)设当x >3时,y 与x 的函数关系式为y =kx +b ,由函数图象,得⎩⎪⎨⎪⎧8=3k +b 12=5k +b , 解得⎩⎪⎨⎪⎧k =2b =2, 故y 与x 的函数解析式为y =2x +2(x >3);(4分)(2)当y =32时,32=2x +2,解得x =15,答:这位乘客乘车的里程是15 km.(8分)3.解:(1)由题图可知暂停排水时间为30分钟(半小时).(1分)排水孔的排水速度为900÷3=300 m 3/h ;(3分)(2)由题图可知排水1.5 h 后暂停排水,此时游泳池的水量为900-300×1.5=450 m 3, 设当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =kt +b ,把(2,450),(3.5,0)代入得⎩⎪⎨⎪⎧450=2k +b ,0=3.5k +b ,(6分) 解得⎩⎪⎨⎪⎧b =1050k =-300,∴当2≤t ≤3.5时,Q 关于t 的函数表达式为Q =-300t +1050.(8分)4.解:(1)由图象知,640+16a -2×14a =520,所以a =10;(2分)(2)设过(10,520)和(30,0)的直线解析式为y =kx +b ,得⎩⎪⎨⎪⎧10k +b =52030k +b =0,解得⎩⎪⎨⎪⎧k =-26b =780, 因此y =-26x +780,当x =20时,y =260,即检票到第20分钟时,候车室排队等候检票的旅客有260人;(6分)(3)设需同时开放n 个检票口,由题意知:14n ×15≥640+16×15(7分)解得:n ≥4421, ∵n 为整数,∴n 最小=5.答:至少需要同时开放5个检票口.(10分)5.解:(1)由题图可知小敏去超市途中的速度是3000÷10=300 (米/分);在超市逗留的时间:40-10=30(分).答:小敏去超市途中的速度是300米/分,在超市逗留了30分.(2)设小敏返家过程中的函数解析式为y =kx +b (k ≠0),把点(40,3000),(45,2000)代入上式,得⎩⎪⎨⎪⎧40k +b =300045k +b =2000, 解得⎩⎪⎨⎪⎧k =-200b =11000, ∴小敏返家过程中的函数解析式为y =-200x +11000,当y =0时,-200x +11000=0,解得x =55.答:小敏上午8:55分返回到家.6.解:(1)∵从起点到紫金大桥的平均速度是0.3千米/分钟,用时35分钟,∴a =0.3×35=10.5(千米).(2分)(2)①∵线段OA 经过点O (0,0),A (35,10.5),∴OA 的函数解析式是s =0.3t(0≤t≤35).∴当s =2.1时,0.3t =2.1,解得t =7.(3分)∵该运动员从第一次过C 点到第二次过C 点所用的时间为68分钟,∴该运动员从起点到第二次过C 点共用的时间是7+68=75(分钟).∴AB 经过(35,10.5),(75,2.1)两点.(4分)设AB 所在直线的函数解析式是s =kt +b ,∴⎩⎪⎨⎪⎧35k +b =10.575k +b =2.1,解得⎩⎪⎨⎪⎧k =-0.21b =17.85,(5分) ∴AB 所在直线的函数解析式是s =-0.21t +17.85.(6分)②∵该运动员跑完赛程所用的时间即为直线AB 与x 轴交点横坐标的值.∴当s =0时,-0.21t +17.85=0,解得t =85.∴该运动员跑完赛程用时85分钟.(8分)7.解:(1)由题图可知,A 比B 后出发1小时;(2分)B 的速度为60÷3=20 km/h ;(4分)(2)由题图可知点D (1,0),C (3,60),E (3,90),设直线OC 的解析式为s =kt ,则3k =60,解得k =20,∴直线OC 的解析式为s =20t ,设直线DE 的解析式为s =mt +n ,则⎩⎪⎨⎪⎧m +n =03m +n =90,解得⎩⎪⎨⎪⎧m =45n =-45, ∴直线DE 的解析式为s =45t -45,(6分)联立两函数解析式,得⎩⎪⎨⎪⎧s =20t s =45t -45, 解得⎩⎪⎨⎪⎧t =95s =36,∴在B 出发后95小时,两人相遇.(8分) 8.解:(1)根据函数图象可知,从衢州到杭州火车东站的距离为240千米,坐高铁共用时1小时,∴高铁的平均速度为240千米/小时;(2分)(2)由(1)知高铁的速度为240千米/小时,∴当颖颖出发0.5小时时,离衢州的距离为120千米,此时乐乐已出发1.5小时, 设乐乐离衢州的距离与乘车的时间之间的函数关系式为y =kt ,则有120=1.5k ,解得k =80,故y =80t ,(5分)当t =2时,y =80×2=160,从图象可知:衢州到游乐园的距离为216千米,∵216-160=56(千米),∴当颖颖到达杭州火车东站时,乐乐距离游乐园还有56千米;(7分)(3)当y =216时,t =2.7,18分钟=0.3小时,∵216÷(2.7-0.3)=90(千米/小时),∴乐乐要提前18分钟到达游乐园,私家车的速度必须达到90千米/小时.(10分)9.解:(1)由题图①可知B 、C 、D 三点的坐标,B (1.5,0)、C (73,1003)、D (4,0). 设直线BC 解析式为y =kt +b(k≠0),把B 、C 两点坐标分别代入得:⎩⎪⎨⎪⎧1.5k +b =073k +b =1003 ,解得⎩⎪⎨⎪⎧k =40b =-60,∴直线BC 的解析式为y =40t -60 (1.5≤t ≤73).(2分)设直线CD 解析式为y =k′t +b ′(k ′≠0),把C(73,1003)、D (4,0)两点坐标分别代入得⎩⎪⎨⎪⎧73k′+b′=10034k′+b′=0, 解得:⎩⎪⎨⎪⎧k′=-20b′=80,∴直线CD 的解析式为y =-20t +80(73≤t ≤4).(4分)(2)由直线CD 的解析式为y =-20t +80, 可得乙的速度为20 km/h. ∴A 点坐标为(1,20),(5分)由题图①可知,两人的距离y 满足20<y <30必是在第一次相遇之后到第二次相遇这段时间之内, 当20<y <30时, 20<40t -60<30 ① 20<-20t +80<30 ②(6分) 解①得:2<t <2.25, 解②得:2.5<t <3.∴当2<t <2.25和2.5<t <3 时,有20<y <30.(7分) (3)由直线BC 的解析式:y =40t -60,则乙在出发1.5小时后,两人之间的差距以每小时1003÷(73-1.5)=40 km 的速度拉开,又v 乙=20 km/h ,∴v 甲=20+40=60 km/h.(8分) ∴s 甲=60(t -1)=60t -60(1≤t ≤73),s 乙=20t(0≤t ≤4).(9分)在直角坐标系中画出它们的图象如解图.第9题解图(4)由前述题意可知:乙出发4小时可以从M 地到达N 地, ∵v 乙=20 km/h ,∴M 到N 的总路程为20×4=80 km , 当丙出发43小时,s 乙=20×43=803km ,∴s 丙=80-803=1603km ,∴v 丙=1603÷43=40 km/h.∴丙距M 地的距离为(80-40 t ) km ,若丙与甲相遇,则80-40 t=60t-60,解方程得t=1.4小时.(12分)10.解:(1)设该市这两年(从2013年底到2015年底)拥有的养老床位数的平均年增长率为x,由题意可列出方程2(1+x)2=2.88,(2分)解得x1=0.2=20%,x2=-2.2(不合题意,舍去).答:该市这两年拥有的养老床位数的平均年增长率为20%.(4分)(2)①由题意得,t+4t+3(100-3t)=200,(7分)解得t=25(符合题意).答:t的值是25.(8分)②由题意得,提供养老床位y=t+4t+3(100-3t),其中10≤t≤30,y=-4t+300.因为k=-4<0,所以y随着t的增大而减小.当t=10时,y的最大值为300-4×10=260(个).当t=30时,y的最小值为300-4×30=180(个).答:建成后最多提供养老床位260个,最少提供养老床位180个.(10分)11.解:(1)若A区域的面积为x m2,则B区域的面积为2x m2,C区域的面积为(900-3x) m2,y=3x+12x+12(900-3x)=-21x+10800;(3分)(2)当y=6600时,-21x+10800=6600,解得x=200,∴2x=400,900-3x=300.答:A区域的面积为200 m2,B区域的面积为400 m2,C区域的面积为300 m2;(6分) (3)设甲、乙、丙三种花卉的单价分别为a元、b元、c元,由题意可知,⎩⎪⎨⎪⎧a +b +c =45600a +2400b +3600c =84000, 整理得b =5(19-c )3,∵a 、b 、c 为正整数, ∴a 、b 、c 可能取的值如下表,又∵a 、b 、c 的差不超过10, ∴a =20,b =15,c =10,(8分) ∵B 区域的面积为400 m 2,最大,∴种植面积最大的花卉总价为400×6×15=36000(元). 答:种植面积最大的花卉总价为36000元.(10分) 12.解:(1)由题意可知y 1=k 1x +80,(1分) 且图象过点(1,95), 则有95=k 1+80, ∴k 1=15,∴y 1=15x +80(x ≥0),(2分) 由题意易得y 2=30x (x ≥0).(4分) (2)当y 1=y 2时,解得x =163;(5分)当y 1>y 2时,解得x <163;(6分)当y 1<y 2时,解得x >163.(7分)∴当租车时间为163小时,选择甲、乙公司一样合算;当租车时间小于163小时,选择乙公司合算;当租车时间大于163小时,选择甲公司合算.(8分)(也可求出x =163之后,观察函数图象得到结论.)。