粘土水化
- 格式:pdf
- 大小:86.51 KB
- 文档页数:2
粘土岩水化膨胀因素试验研究摘要:在石油天然气钻井、基础工程钻掘及其他遇到泥岩、页岩、粘土等地层钻进时,常常会造成井壁失稳、井眼缩径、坍塌和储层损害等,通常我们把这些现象和膨胀联系起来,而在含粘土矿物较高的软弱岩层中,受到不同程度破坏的现象更为突出。
粘土水化膨胀的评价方法主要是吸水量法和膨胀量法,本文以膨胀量法为主,在模擬地层温度和压力的环境下,对粘土岩水化膨胀的因素进行了试验。
试验表明,在一定条件下,升高温度,增大粘土岩的水化膨胀速度,最终的膨胀量却是相同的;随着压力的增大,膨胀量会趋于变小。
关键词:粘土岩;水化膨胀;温度;压力1 室内试验研究1.1主要设备和材料自由膨胀率试验仪、岩石粉碎仪、电子天平和温度计,其中试验仪需要满足零到一百八十摄氏度的控温范围标准,并且控温灵敏度是正负一摄氏度。
电热烘箱的控温范围要求在零到三百摄氏度之间,电子天平的精度是0.0000。
原材料选用的是粘土岩及地层水。
1.2实验步骤在进行实验的过程中,需要按照相关标准操作,首先就要将粘土岩打磨到100目以内,或采用尺寸为0.15mm标准的孔筛进行筛料,再将打磨烘干好的粘土岩粉末置于天平上,称取8g的粉末作为实验用料,并采用压力机进行五分钟的0.01pa加压,最后再将它放到膨胀试验仪中,加入地层水,并测定4h 的线性膨胀率。
2 水化膨胀影响因素实验2.1与温度关系的实验在进行温度对水化膨胀影响实验的过程中,需要在常压的环境下设定不同的温度条件,并随着时间变化进行观察,最终得出试验数据和结论。
在实验中将温度设置为从20到100摄氏度依次递增的范围内,并模拟出地层水的环境,将实验材料放置其中随着时间推移观察变化,从图示可以看出,温度条件下粘土岩水化分散膨胀率的变化是极其显著的,尤其是在实验初始阶段的1h之内,随着时间的增加而变化的,温度愈高膨胀率越明显,在整个实验的过程中是一直呈现上升状态的,其中位于2h的实验阶段趋于平衡,之后随着实验时间的延长,变化的速度逐渐减慢并趋于相同。
储层的敏感性特征及开发过程中的变化摘要:由于储层岩石和流体的性质,储层往往存在多种敏感性,即速敏、水敏、盐敏、酸敏、碱敏、应力敏感性和温度敏感性等七种敏感性。
不同的敏感性产生的条件和产生的影响都有各自的特点。
本文主要从三个部分研究分析了储层的敏感性特征。
即:粘土矿物的敏感性;储层敏感性特征;储层敏感性在开发过程中的变化。
通过这三个方面的研究,希望能给生产实际提供理论依据,进而指导合理的生产。
关键词:粘土矿物;储层;敏感性1.粘土矿物的敏感性特征随着对储层研究进一步加深,除了进行常规的空隙结构和空隙度、渗透率、饱和度等的研究外,还必须对储层岩心进行敏感性分析,以确定储层与入井工作液接触时,可能产生的潜在危险和对储层可能造成伤害的程度。
由于各种敏感性多来至于砂岩中粘土矿物,因此它们的矿物组成、含量、分布以及在空隙中的产出状态等将直接影响储层的各种敏感性。
1.1 粘土含量在粒度分析中粒径小于5um者皆称为粘土,其含量即为粘土总含量。
当粘土矿物含量在1%~5%时,则是较好的油气层,粘土矿物超过10%的一般为较差的油气层[1]。
1.2 粘土矿物类型粘土矿物的类型较多,常见的有蒙皂石、高岭石、绿泥石、伊利石以及它们的混层粘土[2]。
粘土矿物的类型和含量与物源、沉积环境和成岩作用阶段有关。
不同类型的粘土矿物对流体的敏感性不同,因此要分别测定不同储集层出现的粘土矿物类型,以及各类粘土矿物的相对含量。
目前多彩采用X射线衍射法分析粘土矿物。
常见粘土矿物及其敏感性如表1所示。
1.3 粘土矿物的产状粘土矿物的产状对储层内油气运动影响较大,其产状一般分为散状(充填式)、薄层状(衬底状)和搭桥状[1]。
在三种粘土矿物类型中,以分散式储渗条件最好;薄层式次之;搭桥式由于孔喉变窄变小,其储渗条件最差。
除此之外,还有高岭石叠片状,伊/蒙混层的絮凝状等,而且集中粘土矿物的产状类型也不是单一出现的,有时是以某种类型为主,与其它几种类型共存。
《泥浆工艺原理》复习资料第一章——钻井液概论1.钻井液:指油气钻井过程中以其多种功能满足钻井工作需要的各种循环流体的总称。
钻井液功用:(1)携带和悬浮岩屑(2)稳定井壁和平衡地层压力(3)冷却和润滑钻头、钻具(4)传递水动力。
2.密度(1)低密度活性固相(粘土):2.2g cm-3 2.3g cm-3(2)低密度惰性固相(钻屑):2.5 g cm-3 2.7 g cm-3(平均:=2.6g cm-3)(3)钻井液密度低密度:g cm-3中高密度:1.8 g cm-3 2.5g cm-3高密度:2.5g cm-3 3.0 g cm-3超高密度: 3.0 g cm-3(4)加重材料API重晶石:=4.2 g cm-3石灰石粉:2.7g cm-3 2.9 g cm-3铁矿粉:4.9 g cm-3 5.3 g cm-3钛铁矿粉:4.5 g cm-3 5.1 g cm-3方铅矿:7.4 g cm-37.7 g cm-3(5)无机处理剂纯碱:2.5 g cm-3烧碱:2.0—2.2 g cm-33.钻井液密度作用(1)稳定井壁,防井塌。
(2)实现近平衡钻井技术,减少压持效应,提高机械钻速。
(3)平衡地层压力,防止井喷、井漏和钻井液受地层流体污染。
(4)钻开油气层,合理选择钻井液密度,减少钻井液对产层的伤害。
4.实际应用中,大多数钻井液pH控制在8—11之间,维持一个较弱的碱性环境。
酚酞变色点:pH=8.3左右;甲基橙变色点:pH=4.3左右。
常温下:10%Na2CO3(aq) pH=11.1;Ca(OH)2(饱和aq) pH=12.1 ;10%NaOH(aq) pH=12.9;5. 钻井液组成①分散介质+分散相+化学处理剂②连续相+不连续相③液相+固相+化学处理剂6.钻井液含砂量:钻井液中不能通过200目筛的砂粒体积占钻井液体积的百分数。
一般砂含.【即粒径74的砂粒占钻井液总体积的百分数】第二章——粘土矿物和粘土胶体化学基础1.相:物质物理化学性质完全相同的均匀部分。
水泥的组成以及水化过程水泥是一种重要的建材,广泛应用于建筑、道路、桥梁等工程领域。
它是由多种化合物组成,主要包括硅酸盐、铝酸盐和铁酸盐。
水泥的主要成分是硅酸盐胶凝材料,它们通过水化反应形成硬化的胶凝体。
本文将详细介绍水泥的组成及水化过程。
水泥的主要成分包括石灰石(CaCO3)和黏土矿物(如粘土、混合土、伊利石等),其中石灰石主要含有钙氧化物(CaO)和二氧化碳(CO2),而黏土矿物主要含有硅酸盐和铝酸盐。
在制造水泥时,通常会从石灰石中煅烧出一种称为石膏(CaSO4·2H2O)的物质,作为添加剂添加到水泥中,以控制水泥的凝结时间。
在水化过程中,水泥的主要成分将与水发生反应,形成胶凝体。
水泥水化反应的主要产物是硅酸盐凝胶和氢氧化钙,它们共同促使胶凝体的形成。
水泥的水化过程可分为以下几个阶段:1.溶解阶段:水泥与水接触后,其中的硬制物(如硅酸盐矿物)溶解于水中。
这一过程会释放出热量,称为水泥的热性质。
2.氢氧化钙形成阶段:硅酸盐矿物溶解后,钙离子(Ca2+)与水中的氢氧根离子(OH-)反应生成氢氧化钙(Ca(OH)2)。
氢氧化钙是水泥水化过程中的副产物之一3.凝胶形成阶段:氢氧化钙与水中的硅酸根离子(SiO3-)反应生成硅酸钙凝胶(CSH),或与铝酸根离子(AlO3-)反应生成铝酸钙凝胶(C-A-H)。
这些凝胶物质使水泥糊状物凝结。
4.晶体形成阶段:水泥水化反应的晚期,硅酸钙凝胶进一步与水中的硅酸根离子和铝酸根离子反应生成二者的混合凝胶。
这些凝胶物质在水泥中形成晶体结构,增强了水泥的硬度和强度。
除了硅酸钙凝胶和铝酸钙凝胶,水泥的水化产物还包括氢氧化铝(Al(OH)3)和硫酸钙(CaSO4·2H2O)等副产物。
然而,这些副产物对于水泥的强度和稳定性来说并不重要。
为了更加深入地揭示粘土水化、分散、造浆的本质,掌握泥浆性能调节的基本胶体化学原理,引入扩散双电层理论对粘土-水界面的行为机理进行分析。
(一)双电层成因与结构由于粘土颗粒在碱性水溶液中带负电荷(在端部则多数带正电荷),必然要吸附与粘土颗粒带电符号相反的离子--阳离子到粘土颗粒表面附近(界面上的浓集),形成粘土颗粒表面的一层负电荷与反离子的正电荷相对应的电层,以保持电的中性(平衡)。
粘土颗粒吸附阳离子使阳离子在粘土颗粒表面浓集的同时,由于分子热运动和浓度差,又引起阳离子脱离界面的扩散运动,粘土颗粒对阳离子的吸附及阳离子的扩散运动两者共同作用的结果,在粘土颗粒与水的界面周围阳离子呈扩散状态分布,即形成扩散双电层。
更值得指出的现象是,这种扩散层本质性地分成两部分-吸附层与扩散层,其结构如图11-6所示。
1. 吸附层吸附层是指靠近粘土颗粒表面较近的一薄层水化阳离子,其厚度一般只有几个Ǻ。
这一薄层水化阳离子,由于与粘土颗粒表面距离近,阳离子的密度大,静电吸引力强,被吸附的阳离子与粘土颗粒一起运动难以分离。
2. 扩散层扩散层是吸附层外围起直到溶液浓度均匀处为止(离子浓度差为零)由水化阳离子及阴离子组成的较厚的离子层。
这部分阳离子由于本身的热运动,自吸附层外围开始向浓度较低处扩散,因而与粘土颗粒表面的距离较远,静电引力逐渐减弱(呈二次方关系减弱),在给泥浆体系接入直流电源时,这层水化离子能与粘土颗粒一起向图11-6 粘土表面的扩散双电层电源正极运动而相反向电源负极运动。
扩散层中阳离子分布是不均匀的,靠近吸附层多,而远离吸附层则逐渐减少,扩散层的厚度,依阳离子的种类和浓度的不同,约为10~00Ǻ。
3. 滑动面它是吸附层和扩散层之间的一个滑动面。
这是由于吸附层中的阳离子与粘土颗粒一起运动,而扩散层中的阳离子则有一滞后现象而呈现的滑动面。
4. 热力电位E它是粘土颗粒表面与水溶液中离子浓度均匀处之间的电位差。
热力电位的高低,取决于粘土颗粒所带的负电量。
中国石油大学(北京)远程教育学院《油田化学》复习题一、名词解释。
1、晶格取代:晶格中发生离子取代而晶体结构不变称为晶格取代。
2、稠化时间:水与水泥混合后稠度达到100Bc所需的时间。
3、体积波及系数:驱油剂波及到的油层体积与整个油层体积之比。
4、注水调剖:为了发挥中、低渗透层的作用,提高注入水的波及系数,调整注水油层的吸水剖面。
5、人工井壁:对于已出砂地层,在砂层的亏空处,做一个由固结的颗粒物质所组成的有足够渗透率的防砂屏障。
6、双液法:就是向油层注入由隔离液隔开两种可相互发生反应液体,分别作第一、第二反应液。
当将这两种液体向油层内部推至一定距离,隔离液将变薄不起作用两种液体就可发生反应,产生堵塞主要发生在高渗透层。
7、聚合物:由一种或几种低分子化合物聚合而成的产物。
8、表面活性剂HLB值:表面活性剂的亲水能力与亲油能力的平衡关系。
9、渗透水化:粘土层间阳离子浓度大于溶液中阳离子浓度,水向粘土晶层间渗透引起层间距增大。
或者电解质浓度差引起的水化。
10、临界胶束浓度:表面活性剂形成胶束的最低浓度称为临界胶束浓度。
11、单体:合成高分子的原料称单体。
12、乳状液:一种液体以细小液滴分散在另外一种互不相溶的液体中所形成的分散体系,称为乳状液。
13、缩聚反应:有许多相同或不同的低分子化合为高分子但同时有新的低分子析出的过程。
14、水泥浆减阻剂:减阻剂又称分散剂,紊流引观粘度,有利于水泥在低压低速进入紊流状态,提高注水泥质量和驱替效率。
15、铝氧八面体:是由一个铝与六个氧(或羟基)配位而成。
16、晶层:由于单元晶格的大小相近似,四面体片和八面体片很容易沿C轴迭合而成为同一的结构层,这样的结构层称为单元结构层,简称晶层。
17、聚合度:生成聚合物的单体单元数。
18、表面活性剂:少量存在就能降低水的表面张力的物质。
19、单液法:指向油层注入一种液体,这种液体所带的物质或随后变成的物质可封堵高渗透层或大孔道称为单液法。
黏土水泥浆中水泥初始水化历程研究陈振国;徐润;孙光;宋雪飞【摘要】利用水泥水化热测量系统(直接法),研究黏土水泥浆的初始水化历程。
通过对不同配比浆液的测试,分析各因素对黏土水泥浆中水泥水化的影响。
试验结果表明:黏土水泥浆中水玻璃对水泥水化的促进作用主要发生在最初的24h内。
由高密度黏土浆配成的黏土水泥浆液中,水泥水化速率略小。
理论分析得出黏土颗粒中,活性物质与水泥水化产物氢氧化钙的反应,一定程度促进水泥水化和结石体强度的增长。
【期刊名称】《建井技术》【年(卷),期】2012(000)006【总页数】3页(P30-32)【关键词】黏土水泥浆;注浆;水化热;研究【作者】陈振国;徐润;孙光;宋雪飞【作者单位】天地科技建井研究院,北京100013 煤矿深井建设技术国家工程实验室,北京100013;天地科技建井研究院,北京100013 煤矿深井建设技术国家工程实验室,北京100013;天地科技建井研究院,北京100013 煤矿深井建设技术国家工程实验室,北京100013;天地科技建井研究院,北京100013 煤矿深井建设技术国家工程实验室,北京100013【正文语种】中文【中图分类】TD265.42在煤矿立井地面预注浆中,黏土水泥浆为主要的注浆材料。
黏土水泥浆由粘土、水泥、添加剂和水组成。
黏土水泥浆在凝结过程中,发生从流态到固态所产生的粘性、塑性、弹性的连续演变,无明显的初凝、终凝[1]。
水泥作为浆液中最主要的胶凝材料,其加量的多少决定了结石体的强度大小。
而其水化反应速率则影响了浆液的固化速率。
利用水泥水化热测量系统(直接法),分析黏土水泥浆中各因素对水泥水化的影响。
这对黏土水泥浆的研究和进一步发展具有重要意义。
1 试验1.1 试验仪器及材料仪器:自制水泥水化热测量系统(直接法);量筒;空调;泥浆比重计。
材料:基准水泥;模数为3.3的水玻璃40Be′;朱集西矿立井地面预注黏土水泥浆用的黏土。
1.2 试验方法利用朱集西矿立井地面预注黏土水泥浆用黏土配制密度为1.17和1.11g/cm3的黏土浆。
粘土矿物的水化机理摘要粘土矿物作为一种重要的地球材料,具有广泛的应用价值。
其水化机理是研究粘土矿物水化过程中非常重要的一环,对于理解粘土矿物的性质和行为具有重要意义。
本文将深入探讨粘土矿物的水化机理,并通过Markdown文本格式详细介绍。
粘土矿物的概述粘土矿物是一类由层状结构组成的细颗粒矿物,主要由硅酸盐矿物组成。
其结构由两个硅酸盐层夹杂着一个或多个层状阳离子(通常是氢离子、镁离子或铝离子)而构成。
粘土矿物具有较大的比表面积和较强的吸附性能,因此在土壤科学、地质学和材料科学等领域具有广泛的应用。
粘土矿物的水化过程粘土矿物的水化是指粘土矿物与水或水溶液接触后发生的结构和性质的变化过程。
水化过程中,水分子会进入粘土矿物的层间隙,与层状阳离子发生相互作用,并引发粘土矿物结构的变化。
粘土矿物的水化过程可分为两个阶段:吸附水和结合水。
吸附水吸附水是指从粘土矿物表面吸附到层状阳离子表面的水分子。
这些水分子与粘土矿物表面形成氢键,并且与层状阳离子之间的距离较远。
吸附水的存在使得粘土矿物具有一定的吸附性能,可以吸附和释放溶液中的离子和分子。
结合水结合水是指从吸附水中挤压出来的水分子,它们与粘土矿物中的层状阳离子形成氢键,并且与层状阳离子之间的距离较近。
结合水的存在导致粘土矿物的层间距离增加,从而使得粘土矿物的体积膨胀。
结合水的含量和性质决定了粘土矿物的性质和行为。
水化反应水化是通过粘土矿物的吸附水和结合水与其他溶液中的离子和分子发生反应而进行的。
这些反应可以引发粘土矿物结构的变化,如层间阳离子的置换、粘土矿物层间的离子交换等。
水化反应还可以导致粘土矿物中部分晶体结构的解理和变形。
粘土矿物的水化机理粘土矿物的水化机理主要包括两个方面:吸附机理和结合机理。
吸附机理粘土矿物的吸附机理涉及到水分子与粘土矿物表面相互作用的过程。
水分子与粘土矿物表面的氢键作用一般分为两类,即吸附到氧上的吸附水和吸附到铝或镁上的吸附水。
吸附到氧上的吸附水与层状阳离子之间的相互作用较弱,容易释放。