常用统计技术第二节方差分析(参考“质量统计技术
- 格式:ppt
- 大小:463.15 KB
- 文档页数:30
中级质量专业理论和实务-常用统计技术(总分171,考试时间90分钟)一、单项选择题(每题的备选项中,只有1个最符合题意)1. 现已知因子A有3个水平,在实验中每一水平下进行了4次重复实验,并求得因子与误差平方和分别为SA=58.35,Se=46.85。
在给定α=0.05的水平上因子A的显著性质为______。
A. 显著的B. 不显著的C. 总是显著的D. 无法判断2. 某单因子试验,因子A有r个水平,在水平A1下进行5次重复试验,在水平A2下进行6次重复试验,则总偏差平方和的自由度为______。
A. fT=28B. fT=11C. fT=10D. 以上都不对3. “正交表的行数n不小于各因子与交互作用的自由度之和加1”是用正交表安排试验的______。
A. 必要条件B. 充分条件C. 充分必要条件D. 不需要条件4. 在研究自变量X与因变量Y之间的线性相关关系时,常采用的图为______。
A. 散布图B. 直方图C. 控制图D. 其他图5. 已知A,B,C,D为二水平因子,且要考察A×C,B×D的交互作用,用正交表安排实验时,我们应选______。
A. L8(27)B. L16(215)C. L27(313)D. L4(23)6. 在单因子试验的方差分析中,引起总偏差平方和的数据波动的原因分为______。
A. 一类B. 二类C. 三类D. 多于三类7. 在单因子试验的基本假设中,除假定因子在r个水平的试验结果服从正态分布外,另一个基本假定是在各水平下______。
A. 各均值相等B. 各均值不等C. 各方差相等D. 各方差不等8. 在某项试验中考察4个二水平因子,有技术人员提出应考察因子A,B的交互作用,另有技术人员提出B与C因子问存在交互作用,则应使用正交表______。
A. L9(34)B. L8(27)C. L18(37)D. L12(211)9. 现有3台机器生产同规格的铝合金薄板,其厚度分别服从同方差的正态分布,从3台机器上各取5块板测量其厚度,对其进行方差分析,求得F=32.92,查F分布表知在α=0.05时临界值为3.89,则结论是______。
(1)t分布:设x1,x2,…,x n是来自正态总体N(μ,σ2)的一个样本,则有:~N(μ,),对样本均值施行标准化变换,则有:~N(0,1),当用样本标准s代替上式中的总体标准差σ,则上式u变量改为t变量,标准正态分布N(0,1)也随之改为“自由度为n-1的t分布”,记为t (n-1),即:~t(n-1).(2)χ2分布:自由度为n—1的χ2分布的概率密度函数在正半轴上呈偏态分布。
(3)F分布:设有两个独立的正态总体N(μ1,σ2)和N(μ2,σ2),它们的方差相等.又设x1,x2,…,x n是来自N(μ1,σ2)的一个样本;y1,y2,…,y m是来自N(μ2,σ2)的一个样本,两个样本相互独立。
它们的样本方差比的分布是自由度为n—1和m—1的F分布,其中n-1称为分子自由度或第1自由度;m—1称为分母自由度或第2自由度。
F分布的概率密度函数在正半轴上呈偏态分布.考点17:参数估计重点等级:※参数主要是指:①分布中的未知参数,如二项分布b(1,p)中的p,正态分布N(μ,σ2)中的μ,σ2或σ;②分布的均值E(X)、方差Var(X)等未知特征数;③其他未知参数,如某事件的概率P(A)等。
上述未知参数都需要根据样本和参数的统计含义选择适宜的统计量并作出估计。
参数估计有两种基本形式:点估计与区间估计.考点18:点估计重点等级:※※※※1.点估计优良性标准无偏性是表示估计量优良性的一个重要标准,只要有可能,应该尽可能选用无偏估计量,或近似无偏估计量。
有效性是判定估计量优良性的另一个标准。
2.求点估计的方法--矩法估计由于均值与方差在统计学中统称为矩,总体均值与总体方差属于总体矩,样本均值与样本方差属于样本矩.获得未知参数的点估计的方法称为矩法估计。
矩法估计简单而实用,所获得的估计量通常(尽管不总是如此)也有较好的性质。
但是应该注意到矩法估计不一定总是最有效的,而且有时估计也不唯一.3.正态总体参数的估计①正态均值μ无偏估计有两个,一个是样本均值,另一个是样本中位数;②正态方差σ2的无偏估计常用的只有一个,就是样本方差S2,即;③正态标准差σ的无偏估计也有两个,一个是对样本极差R=x(n)-x(1)进行修偏而得,另一个是对样本标准差s进行修偏而得,具体是:,。
质量统计技术第五章质量管理中常用的统计技术1、用来分析一个问题的特性与影响其特性的因素的图成为()P113A、因果图;B、系统图;C、矢线图;D、直方图2、在排列图上通常把累计比率为0~80%的因素成为()A、次要因素;B、主要因素;C、一般因素;D、重要因素3、_________是质量改进“分析问题原因”步骤中建立假设的有效工具。
()A、因果图;B、排列图;C、对策表;D、散布图4、关于因果图的绘制,下列说法不正确的是()A、通常先列出主骨,在逐层展开B、应在图中对可能的重要因素进行标识C、一张因果图可以同时解决几个具体问题D、绘制因果图可以与头脑风暴法结合使用解析:一张因果图只能解决一个具体问题,使用因果图应注意有多少质量特征,就要绘制多少因果图。
C。
5、作为常用的解决问题技巧,排列图最好的应用是()A、决定何时对过程做调整B、估计过程的分布范围C、评估其它解决技巧的结果D、区分主要和非主要问题解析:排列图的目的在于有效解决问题,其基本点是抓住“关键的少数”,即抓住主要原因。
所以排列图最好的应用是区分主要和非主要问题。
D。
6、数据的基本信息,例如分布的形状、中心位置、散步大小等,可以使用()来显示。
A、分层法;B、排列图;C、散布图;D、直方图解析:A项,分层法用于比较不同组的差异;B项,排列图用于区分现象的主要和非主要问题;C项,散布图用于研究两个相应变量是否存在相关关系;D项,根据直方图的形状,可以对总体初步分析,进而了解分布形状、中心位置、散步大小等。
D。
7、出现锯齿型直方图的原因可能是()A、与数据的分组有关,数据分组过多;B、过程中有趋势性变化的因素影响C、数据中混杂了少量其他过程的数据;D、数据经过挑选,剔除了部分数据解析:出现锯齿型直方图的两个:①作频数分布表时,数据分组过多;②测量方法有问题或读取的测量数据有误。
A。
8、某公司对顾客投诉数据进行分析与整理,找出服务质量存在的主要问题,最适宜的分析工具是()A、直方图;B、排列图;C、因果图;D、控制图解析:排列图的目的在于有效解决问题,其基本点是抓住“关键的少数”,即抓住问题的主要原因。
第二章 常用统计技术第一节 方差分析一、单项选择题(每题的备选项中,只有1个最符合题意)ZL1B0001.在单因子方差分析中,因子A 有3个水平,每个水平下各做4次重复试验,已算得因子A 的平方和S A =42,总平方和S T =69,则误差平方和S e =( )。
A.3B.9C.27D.18ZL1B0002.在单因子方差分析中,因子A 有4水平,各水平下的重复试验数分别为8,5,7,6。
根据实验结果已算得因子A 的平方和S A =167.53,误差平方和S e =337.17。
由此可算的统计量F 的值为( )。
A.2.73B.5.23C.3.64D.6.30ZL1B0003.在单因子方差分析方法中,已确认因子A 在显著性水平α=0.05下是显著因子,在不查分位数表的情况下,下列命题中正确的是( )。
A.在α=0.10下,A 是显著因子B.在α=0.10下,A 不是显著因子C.在α=0.01下,A 是显著因子D.在α=0.01下,A 不是显著因子ZL1B0004.因子的水平可以用( )形式表示。
A.A、B、CB.a、b、cC.A1、B2、C3D.a1、b2、c3ZL1B0005.在单因子方差分析中,每一个水平下的实验结果的分布假定为( )。
A.正态分布B.指数分布C.连续分布D.任意分布ZL1B0006.在单因子试验中,假定因子A有r个水平,可以看成有r个总体,如符合用单因子方差分析方法分析数据的假定时,所检验的原假设是( )。
A.各总体分布为正态B.各总体的均值相等C.各总体的方差相等D.各总体的变异系数相等ZL1B0007.在单因子实验的基本假设中,除假定因子在r 个水平的实验结果中服从正态分布外,另一个基本假定是在各水平下( )。
A.各均值相等B.各均值不等C.各方差相等D.各方差不等ZL1B0008.在单因子方差分析中,如果因子A 有r 个水平,在每一个水平下进行m 次试验,实验结果用ij y 表示,i=1,2,…,r ;j=1,2,…,m ;i y 表示第i 水平下实验结果的平均,y 表示实验结果的总平均,那么误差平方和为( )。