函数的表示法
- 格式:doc
- 大小:29.50 KB
- 文档页数:3
函数的表示方法★知识梳理一、函数的三种表示法:图象法、列表法、解析法1.图象法:就是用函数图象表示两个变量之间的关系; 2.列表法:就是列出表格来表示两个变量的函数关系; 3.解析法:就是把两个变量的函数关系,用等式来表示。
二、分段函数在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。
★重、难点突破重点:掌握函数的三种表示法-----图象法、列表法、解析法,分段函数的概念 难点:分段函数的概念,求函数的解析式重难点:掌握求函数的解析式的一般常用方法: (1)若已知函数的类型(如一次函数、二次函数),则用待定系数法; (2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; 问题1.已知二次函数)(x f 满足564)12(2+-=+x x x f ,求)(x f 方法一:换元法令)(12R t t x ∈=+,则21-=t x ,从而)(955216)21(4)(22R t t t t t t f ∈+-=+-⋅--= 所以)(95)(2R x x x x f ∈+-= 方法二:配凑法因为9)12(5)12(410)12(564)12(222++-+=+-+==+-=+x x x x x x x f 所以)(95)(2R x x x x f ∈+-= 方法三:待定系数法因为)(x f 是二次函数,故可设c bx ax x f ++=2)(,从而由564)12(2+-=+x x x f 可求出951=-==c b a 、、,所以)(95)(2R x x x x f ∈+-=(3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f 问题2:已知函数)(x f 满足x xf x f 3)1(2)(=+,求)(x f 因为 x xf x f 3)1(2)(=+① 以x 1代x 得 xx f x f 13)(2)1(⋅=+②由①②联立消去)1(x f 得)0(2)(≠-=x x xx f ★热点考点题型探析考点1:用图像法表示函数[例1] (09年广东南海中学)一水池有2个进水口, 1个出水口,一个口的进、出水的速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:进水量 出水量 蓄水量(1)0点到3点只进水不出水;(2)3点到4点不进水只出水;(3)4点到6点不进水不出水.则一定不正确...的论断是 (把你认为是符合题意的论断序号都填上) . [解题思路]根据题意和所给出的图象,对三个论断进行确认即可。
第19讲函数的表示法【学习目标】函数的表示法是八年级数学上学期第十八章内容,主要对函数的三个表示法进行讲解,重点是实际问题的函数表示法,难点是数形结合思想的应用的归纳总结.通过这节课的学习为我们后期学习函数的应用提供依据.【基础知识】1、解析法:用等式来表示一个变量与另一个变量之间函数关系的方法,这个等式称为函数的解析式(或函数关系式).简单明了,能从解析式了解函数与自变量之间的关系,便于理论上的分析与研究,但求对应值时需要逐个计算,且有的函数无法用解析式表示.2、列表法:用表格形式来表示一个变量与另一个变量之间函数关系的方法;从表格中直接找到自变量对应的函数值,查找方便,但无法将自变量与函数值的全部对应值都列出来,且难以看出规律.3、图像法:用图像来表示一个变量与另一个变量之间函数关系的方法;函数与自变量的对应关系、函数的变化情况及趋势能够很直观地显示出来,但从图像上找自变量与函数的对应值一般只能是近似的,且只能反映出变量间关系的一部分而不是全体.4.三种表示法的相互联系与转化:由函数的解析式画函数的图像,一般分为“列表、描点、连线”三个步骤,通常称作描点作图法;同样,函数图像中点的坐标或表格中自变量与函数的对应值,也是函数解析式所表示的方程的一个解.【考点剖析】考点一:解析法例1.已知汽车驶出A站3千米后,以40千米∕小时的速度行驶了40分,请将这段时间内汽车与A站的距离S(km)表示成t(时)的函数.【难度】★【答案】223033S t tæö=+££ç÷èø.【解析】路程=速度×时间,可知汽车行驶路程s与t的关系即为40s t=,由此汽车与A站的距离2333S s t=+=+,本题注意函数自变量取值范围,汽车运动时间为40分,单位换算即为23h,由此可得23t££.【总结】考查函数解析式的求法,根据实际问题中相关等量关系结合题意即可进行计算,注意函数定义域.例2.若某人以每分钟100米速度匀速行走,那么用行走的时间x (分)表示行走的路程y (米)的解析式为______________,这样行走20公里需要__________小时.【难度】★【答案】100y x =,103.【解析】路程=速度×时间,可知行走路程y 与x 的关系即为100y x =,行走20公里,注意单位换算,令100201000x =´,解得200x =,10200min 3h =.【总结】考查函数解析式的求法,根据实际问题中相关等量关系结合题意即可进行计算,注意题目中的单位统一,进行单位换算.例3.已知物体有A 向B 作直线运动,A 与B 之间的距离为20千米,求运动的速度v (千米/时)与所用时间t (小时)的函数解析式.【难度】★【答案】20v t=.【解析】路程=速度×时间,得速度=路程÷时间,即路程一定的情况下,运动速度与运动时间成反比,则运动速度与所用时间关系即为20v t =.【总结】考查函数解析式的求法,根据实际问题中相关等量关系结合题意即可进行计算.例4.两个变量x 、y 满足:(2)(1)3x y -+=,则用变量x 来表示变量y 的解析式为________________.【难度】★★【答案】52xy x -=-.【解析】由(2)(1)3x y -+=,即得312y x +=-,则有35122xy x x -=-=--.【总结】利用等式的性质进行变形即可.例5.若点P (x ,y )在第二、四象限的角平分线上,则用变量x 来表示变量y 的函数解析式为_______________.【难度】★★【答案】y x =-.【解析】点P (x ,y )在二、四象限角平分线上,则角平分线与坐标轴夹角即为45°,过点P向坐标轴作垂线,即可得y x =,点在二、四象限,根据象限内点的正负性可知y x =-.【总结】二、四象限的角平分线表示直线y x =-,一、三象限的角平分线表示直线y x =.例6.一司机驾驶汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.(1)当他按原路匀速返回时,求汽车速度v(千米/小时)与时间t(小时)之间的函数关系式;(2)如果该司机匀速返回时,用了4.8小时,求返回的速度.【难度】★★【答案】(1)480vt=;(2)100/km h.【解析】(1)路程=速度×时间,得速度=路程÷时间,即路程一定的情况下,运动速度与运动时间成反比,根据题意可得返回路程与去的行程相同,即为806480km´=,则运动速度与所用时间关系即为480vt =;(2)令 4.8t=,则有480100/4.8v km h ==.【总结】考查函数解析式的求法,根据实际问题中相关等量关系结合题意即可求出函数关系,根据题意代值计算即可.例7.收割机的油箱里盛油65kg,使用时,平均每小时耗油6kg(1)如果收割机工作了4小时,那么油箱还剩多少千克的油?(2)如果油箱里用掉36千克油,那么使用收割机工作的时间为多少小时?(3)写出油箱里剩下的油y与使用收割机时间t之间的函数关系式?(4)在此函数关系式中,求函数定义域.【难度】★★【答案】(1)41kg;(2)6h;(3)665y t=-+;(4)656t££.【解析】(1)654641kg-´=;(2)3666h¸=;(3)收割机用油量=平均耗油量×工作时间,可知收割机耗油量即为6t,即得剩余油量656y t=-;(4)实际问题中,xy³ìí³î,即得函数定义域为656t££.【总结】考查函数解析式的求法,根据实际问题中相关等量关系结合题意即可进行计算,注意函数定义域.考点二:列表法例1.两个变量之间的依赖关系用列表来表达的,这种表示函数的方法叫做_______.【难度】★【答案】列表法【总结】考查函数的表示法中列表法的概念.例2.一位学生在乘坐磁悬浮列车从龙阳路站到上海浦东国际机场途中,记录了列车运行速度的变化情况,如下表:时间t(分)01 1.52345 5.5678速度v(千米/时)01462173003003003003002811210根据表中提供的信息回答下列问题:(1)在哪一段时间内列车的速度逐渐加快?(2)在哪一段时间内列车是匀速行驶的?在这一段时间内列车走了多少路程?(3)在哪一段时间内列车的速度逐渐减慢?【难度】★【答案】(1)0~2分钟时间段;(2)2~5.5分钟时间段,列车走了17.5千米;(3)5.5~8分钟时间段.【解析】分析图表可知,自变量是表示的时间t,函数表示的速度v,图表表示的是函数v 和自变量t之间的依赖关系,观察表格可知:(1)速度逐渐加快的是0~2分钟时间段;(2)匀速行驶的是2~5.5分钟时间段,注意单位换算,这段时间持续75.52 3.5min120h -==,列车行程即为730017.5120km´=;(3)速度逐渐减慢的是5.5~8分钟时间段.【总结】考查列表法表示函数关系,考查读表能力,注意观察表格中变量和变量之间的联系.例3.一种豆子在市场上出售,豆子的总售价与所售豆子的数量之间的数量关系如下表:所售豆子数量x(千克)00.51 1.52 2.53 3.54售价y(元)012345678(1)上表反映的变量是_____和____,_______是自变量,________是因变量,_____随_____的变化而变化,_____是______的函数.(2)若出售2.5千克豆子,售价应为_____元.(3)根据你的预测,出售_____千克豆子,可得售价21元(4)请写出售价与所售豆子数量的函数关系式________________.【难度】★【答案】(1)x,y,x,y,y,x,y,x;(2)5;(3)10.5;(4)2y x=.【解析】(1)根据变量和函数的相关定义,即可判定x 和y 是变量,其中x 是自变量,y 是因变量,y 随x 的变化而变化,y 是x 的函数;(2)查看上表可知 2.5x =,5y =;(3)根据上表,可知每1kg 豆子的价格应为2元,21元可购得21210.5kg ¸=豆子;(4)依据上表,可知豆子的单价为2元,根据总价=单价×数量,可知售价与所售豆子关系式为:2y x =.【总结】把握相关定义,根据实际问题等量关系可求出函数解析式作出相应判断.例4.按照我国的税法规定,个人所得税的缴纳方法是:月收入不超过3500元,免缴个人所得税;超过3500元不超过5000元,超出部分需缴纳5%的个人所得税;例如下表:月收入(元)30003200360041004500月缴付个人所得税(元)53050试写出月收入在3500元到5000元之间的个人缴纳的所得税y (元)与月收入x (元)之间的函数解析式,并求出月收入为4800元的职工每月需缴纳的个人所得税.(x 为正整数)【难度】★★【答案】()5%3500y x =-,65元.【解析】月收入在3500元到5000元之间,超过3500元,超过部分即为()3500x -元,这一部分要缴纳5%个人所得税,可知缴税额()5%3500y x =-;令4800x =,即得()5%4800350065y =´-=元.【总结】纳税问题,要弄清楚是哪一部分需要缴税,以及对应的缴税比例,各个部分相加即为所应缴税额.例5.一根弹簧不挂重物时长10厘米,当弹簧挂上质量为xkg 的重物时,其长度用y 表示,测得有关的数据如下表:(1)写出弹簧总长度y (cm )随所挂重物质量x (kg )变化的关系式;所挂重物的质量x (kg )1234……弹簧的长度y (cm )10+0.510+1.010+1.510+2.0……(2)若弹簧所挂重物的质量为10千克,则弹簧的长度是多少?(3)所挂重物的质量为多少千克时,弹簧的长度是18cm?【难度】★★【答案】(1)0.510y x=+;(2)15cm;(3)16kg【解析】(1)根据上表可知弹簧原长,即不挂重物时长度为10cm,随着挂上重物,弹簧伸长的长度与所挂重物质量成正比,重物质量每增加1kg,弹簧长度增加0.5cm,所挂重物质量xkg,弹簧伸长长度为0.5xcm,弹簧总长度y=弹簧原长+弹簧伸长长度0.510x+;(2)令10x=,0.5101015y cm=´+=;(3)令0.51018x=.y x=+=,解得16【总结】弹簧在弹性形变范围内伸长量与所挂重物质量成正比,注意观察表格,分清弹簧原长和伸长量的变化规律.考点三:图像法例1.填空:1、两个变量之间的依赖关系用图像来表达的,这种表示函数的方法叫做____________;2、_____________、_____________、_____________是表示函数的三种常用方法;【难度】★【答案】1、图像法;2、解析法、列表法、图像法.【总结】考查函数的三种表示方法及相关概念.例2.图中是某水池有水Q立方米与排水时间t小时的函数图像.试根据图像,回答下列问题:(1)抽水前,水池内有水________立方米;(2)抽水10小时后,水池剩水________立方米;(3)剩水400立方米时,已抽水_________小时;(4)写出Q与t的函数关系式______________.【难度】★【答案】(1)1000;(2)750;(3)24;(4)()251000040Q t t =-+££【解析】(1)直线与纵轴交点,即0t =时,1000Q =,可知水池有水31000m ;(2)根据函数图像,40h 正好把水排干,可知每小时排水量为310002540m =,则10小时后剩水量为310002510750m -´=;(3)剩水3400m 时,排水时间为10004002425h -=;(4)每小时排水量为325m ,排干为止,由此可知Q 与t 的函数关系式即为251000Q t =-+,其中0t Q ³ìí³î,即得:040t ££.【总结】考查函数倾斜程度的意义,本题中表示每小时排水量,在作图精确的前提下也可根据函数图像确定对应函数值.例3.已知A 城与B 城相距200千米,一列火车以每小时60千米的速度从A 城驶向B 城,求:(1)火车与B 城的距离S (千米)与行驶的时间t (小时)的函数关系式;(2)t (小时)的取值范围;(3)画出函数的图象.【难度】★【答案】(1)20060S t =-;(2)1003t ££;【解析】(1)根据路程=速度×时间,可知火车驶离A 城的距离即为60tkm ,火车与B 城的距离20060S t =-;(2)根据行程和时间的意义,可知0200600t t ³ìí-³î,即得:t 的取值范围为1003t ££;(3)图像只是其中一部分,注意取值范围.【总结】考查利用一般的等量关系来建立函数关系式解决问题,即把题目中的各个相关量分别列清楚然后进行相应计算.例4.如图是甲、乙两人的行程函数图,根据图像回答:(1)谁走的快?(2)求甲、乙两个函数解析式,并写出自变量的取值范围.(3)当4t =时,甲、乙两人行程差多少?【难度】★【答案】(1)甲;(2)甲:5s t =,乙:103s t =;(3)203km .【解析】(1)根据甲、乙行程函数图像,可知甲2h 走10km ,乙3h 走10km ,可知105/2v km h ==甲,10/3v km h =乙,可知甲走的快;(2)根据路程=速度×时间,即可知甲的函数解析式为5s t =,乙函数解析式为103s t =,其中自变量取值范围均为0t ³;(3)4t =时,5420s km =´=甲,1040433s km =´=甲,即得甲乙行程差为:40202033km -=.【总结】考查函数倾斜程度的意义,本题中表示速度.例5.小明早晨从家骑车到学校,先上坡后下坡,行程情况如图所示,若返回时,上、下坡的速度不变,则小明从学校骑车回家用的时间是多少?【难度】★★【答案】37.2min .【解析】由图像可知小明上坡速度为3.60.2/min 18km =,下坡速度为9.6 3.60.5/min 3018km -=-,返回时,先走上坡路,上坡时间为9.6 3.630min 0.2-=,后走下坡路,下坡时间为3.67.2min 0.5=,即所用总时间为307.237.2min +=.【总结】考查函数倾斜程度的意义,本题中表示速度,注意返程时上坡变下坡,下坡变上坡.例6.为缓解用电紧张的矛盾,某电力公司特制定了新的用电收费标准,每月用电量x (单位:千瓦时)与应付电费y (单位:元)的关系如图所示.(1)根据图像,请求出当050x ££时,y 与x 的函数关系式.(2)请回答:①若每月用电量不超过50千瓦时,收费标准是多少?②若每月用电量超过50千瓦时,收费标准是多少?【难度】★★【答案】(1)0.5y x =;(2)①0.5元/千瓦时;②0.9元/千瓦时.【解析】(1)050x ££时,y 与x 是正比例关系,过点()5025,,由此可得:0.5y x =;(2)①用电不超过50千瓦时,收费标准为250.550=元/千瓦时;②用电超过50千瓦时,收费标准为70250.910050-=-元/千瓦时.【总结】考查分段计费函数中直线倾斜程度的意义,本题中表示电费单价.例7.甲、乙两人同时从A地前往相距5千米的B地.甲骑自行车,途中修车耽误了20分钟,甲行驶的路程S(千米)关于时间t(分钟)的函数图像如图所示;乙慢跑所行的路程S(千米)关于时间t(分钟)的函数解析式为1(060)12S t t=££.(1)在图中画出乙慢跑所行的路程关于时间的函数图像;(2)甲修车后行驶的速度是每分钟_________千米;(3)甲、乙两人在出发后,中途_________分钟时相遇.【难度】★★【答案】(1)虚线图像即为所求;(2)320;(3)24.【解析】(1)函数图像是一条经过原点的直线,终点与甲相同,即如图所示虚线图像;(2)甲修车后20min行驶523km-=,即得甲速度为3/min 20km;(3)由图像可知甲骑自行车速度较快,甲乙在甲修车期间相遇,即此时乙的行程为2km,令2s=,即得24t=.【总结】考查解读函数图像的能力,同时考查函数倾斜程度的意义,本题中表示速度,倾斜程度变化即速度发生变化.例8.汽车由天津驶往相距120千米的北京,S(千米)表示汽车离开天津的距离,t(小时)表示汽车行驶的时间.如图所示(1)汽车用几小时可到达北京?速度是多少?(2)汽车行驶1小时,离开天津有多远?(3)当汽车距北京20千米时,汽车出发了多长时间?【难度】★★【答案】(1)4h,30/km h;(2)30km;(3)103h.【解析】(1)由图像可知汽车4h行驶120km,即到达北京,汽车速度为120430/km h¸=;(2)汽车速度为30/km h,即得行程与时间函数关系式为30s t=,令1t=,得30s=;(3)距北京20km,即行程为12020100km-=,令100s=,解得103t=.【总结】考查函数图像倾斜程度的意义,本题表示汽车速度.例9.一农民带了若干千克土豆进城销售,为了方便他带了一些零钱备用,按市场价售出一些后,又降价出售,售出土豆千克数x与手中持有的钱数y(含备用零钱)的关系式如下图所示,结合图像解答下列问题:(1)农民自带的零钱是多少?(2)降价前每千克土豆的出售价格是多少?(3)降价后他按每千克0.4元将剩余的土豆售完,这时他手里的钱(含备用零钱)是26元,问他一共带了多少千克土豆?【难度】★★【答案】(1)5元;(2)0.5/kg 元;(3)45kg .【解析】(1)由函数图像可知,未售出土豆时,农民身上有5元钱,即自带了5元零钱;(2)降价前,农民卖出30千克土豆,身上的钱增加到20元,即卖得20515-=元,由此可得土豆单价为1530¸=0.5/kg 元;(3)最终农民身上有26元,即可得降价后土豆卖得26206-=元,则降价的土豆数量为60.415kg ¸=,则农民带的土豆总量为301545kg +=.【总结】考查函数图像倾斜程度的意义,本题表示土豆单价,同时考查分段函数的计算.【过关检测】一、单选题1.(2020·上海市静安区实验中学八年级课时练习)函数1y k x =和2k y x=(120k k <且12k k <)的图象大致是( )A .B .C .D .【答案】B【分析】根据反比例函数图象、正比例函数图象分析解答.【详解】由条件12120k k k k <<、可知,12 0,0k k <>,当1 0k <时1y k x =的图像经过第二、四象限,当20k >时2k y x=的图像经过第一、三象限,故选B .【点睛】本题考查反比例函数图象、正比例函数图象的特征,熟记图象与比例系数k 的关系.2.(2020·上海市静安区实验中学八年级课时练习)一水池蓄水20 m 3,打开阀门后每小时流出5 m 3,放水后池内剩余的水量Q(m 3)与放水时间t(时)的函数关系用图象表示为( )A .(A )B .(B )C .(C )D .(D )【答案】D 【分析】由生活经验可知:水池里的水,打开阀门后,会随着时间的延续,而随着减少.池内剩下的水的立方数Q (m 3)与放水时间t (时)都应该是非负数.由此即可解答.【详解】选项A ,图象显示,放水后池内剩下的水的立方数Q(m 3)随着放水时间t (时)的延续而增长,选项A 错误;选项B ,图象显示,打开阀门后池内剩下的水的立方数Q 的量不变,选项B 错误;选项C ,图象显示,放水后池内剩下的水的立方数Q(m 3)随着放水时间t (时)的延续而减少,但是,池中原有的蓄水量超出了20 m 3,选项C 错误;选项D ,图象显示,放水后池内剩下的水的立方数Q(m 3)随着放水时间t (时)的延续而减少,选项D 正确.故选D .【点睛】本题主要考查了一次函数图象,根据实际情况确定图象是解题的基本思路.3.(2020·上海市静安区实验中学八年级课时练习)某次物理实验中,测得变量V 和m 的对应数据如下表,则这两个变量之间的关系最接近下列函数中的( )m 123456V2.41 4.910.3317.2125.9337.02A .21V m =+B .2V m =C .31V m =-D .2V m=.【答案】A 【分析】观察这几组数据,找到其中的规律,然后再答案中找出与之相近的关系式.【详解】解:有四组数据可找出规律,2.41-1=1.41,接近12;4.9-1=3.9,接近22;10.33-1=9.33,接近32;17.21-1=16.21,接近42;25.93-1=24.93,接近52;37.02-1=36.02,接近62;故m与v之间的关系最接近于v=m2+1.故选:A.【点睛】本题是开放性题目,需要找出题目中的两未知数的律,然后再答案中找出与之相近的关系式.二、填空题4.(2018·上海八年级期末)已知函数f(x)=,那么f(0)=_____.【答案】﹣.【分析】把x=0代入函数解析式进行计算即可得解.【详解】f(0)==﹣故答案为:﹣.【点睛】本题考查了函数值的知识,将自变量的取值代入函数解析式即可求得答案.5.(2017·上海市青浦区金泽中学八年级期末)如果f(x)=2x2﹣1,那么f_____.【答案】9.【分析】把自变量【详解】将x代入f(x)=2x2﹣1得:f2×5﹣1=9,故答案为:9.【点睛】本题考查函数值,二次根式的化简求值.6.(2019·上海八年级课时练习)把2x﹣y=3写成y是x的函数的形式为 _________ .【答案】y=2x﹣3【分析】通过移项即可将其变为y是x的函数的形式.【详解】解:2x﹣y=3,移项得y=2x﹣3.故答案为:y=2x﹣3.【点睛】本题主要考查函数的一般形式.y=kx+b (k≠0)是一次函数的解析式,图像是一条直线,斜率是k ,截距是b.7.(2018·上海市闵行区上虹中学)已知常值函数f(x)=3.那么f(7)=_____.【答案】3.【分析】根据常值函数的意义,即可得到答案.【详解】解:∵f(x)是常值函数,且f(x)=3,∴f(7)=3;故答案为:3.【点睛】本题考查了常值函数的意义,解题的关键是掌握常值函数的意义,无论x 取何值,函数值都是3.8.(2020·上海市静安区实验中学八年级课时练习)如图,某港湾某日受台风“默沙”的影响,其风力变化记录如图,根据图像完成下列各题.(1)风力持续增强了______小时.(2)风力最高达到_______ 级.(3)风力从_______点开始明显减弱.【答案】20 12 20【分析】根据图象进行解答即可.【详解】由图象可知,从0点到20点图象呈上升趋势,在20点达到最高,然后图象开始下降,∴风力持续增强了20小时,最高达到12级,从20点开始明显下降.故答案为:20;12;20.【点睛】本题考查了变量之间的关系-图象法,读懂图象是解题的关键.9.(2017·上海)当x_________有意义.【答案】≤1【解析】∴10x -³,解得,1x £.故答案为:≤1.10.(2020·上海市格致初级中学八年级期中)已知函数f (x )=1x x -,则f)=_____.【答案】【分析】将x =【详解】解:∵f (x )=1x x -,∴f,故答案为:.【点睛】本题考查求函数值,及分母有理化,理解求函数值的方法及分母有理化是解题关键.11.(2020·上海市静安区实验中学八年级课时练习)函数2y ax =的部分对应值如下表:x…1-012…y …202b…根据表格回答:(1)a =_________,b = ________;(2)函数的解析式为 _________,定义域是 ________;(3)请再举一些对应值,猜测该函数的图像关于________轴对称.【答案】2 8 22y x = 一切实数 y【分析】(1)把x=-1,y=2代入2y ax =,得a=2,可得22y x =,把x=2,y=b 代入22y x =中,得b=8;(2)由(1)可得函数解析式,定义域是一切实数;(3)当x=-2,x=-3,x=3时,分别计算出对应的y 值,然后观察数据即可得到结论.【详解】(1)把x=-1,y=2代入2y ax =,得a=2,∴函数解析式为:22y x =,把x=2,y=b 代入22y x =中,得b=8,故答案为:a=2,b=8.(2)函数的解析式为22y x =,定义域是一切实数,故答案为:22y x =,一切实数.(3)当x=-2时,y=8;当x=-3时,y=18;当x=3时,y=18;可得该函数的图像关于y 轴对称.故答案为:y .【点睛】本题主要考查了二次函数2y ax =的图象和性质,熟练掌握其图象和性质是解题的关键.三、解答题12.(2020·上海市静安区实验中学八年级课时练习)“十一”黄金周的某一天,小王全家上午8时自驾小汽车从家里出发,到“番茄农庄”游玩,小汽车离家的距离s (千米)与小汽车离家后时间t (时)的关系可以用图中的折线表示,根据图像提供的有关信息,解答下列问题:(1)“番茄农庄”离家________千米;(2)小王全家在“番茄农庄”游玩了________小时;(3)去时小汽车的平均速度是________千米/小时;(4)回家时小汽车的平均速度是________千米/小时.【答案】(1)180;(2)4;(3)90;(4)60【分析】(1)根据s 轴上的最高点即可确定答案;(2)根据s 轴上不变的时间即可解答;(3)根据去时路程除以去的时间即得答案;(4)根据图象上14-15时所走的路程解答即可.【详解】解:(1)由图可知:“番茄农庄”离家180千米;(2)14-10=4小时,所以小王全家在“番茄农庄”游玩了4小时;(3)()18010890¸-=千米/小时,所以去时小汽车的平均速度是90千米/小时;(4)由图象可得:14-15时,汽车行驶了(180-120)=60千米,所以回家时小汽车的平均速度是60千米/小时.故答案为:180;4;90;60.【点睛】本题考查了函数的图象,读懂图象提供的信息、正确理解横、纵坐标的含义是解题的关键.13.(2018·上海市西南模范中学八年级月考)一辆汽车在某次行驶过程中,油箱中的剩余油量y (升)与行驶路程x (千米)之间是一次函数关系,其部分图象如图所示.(1)求y 关于x 的函数关系式;(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?【答案】(1)该一次函数解析式为y=﹣110x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【分析】(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.【详解】(1)设该一次函数解析式为y=kx+b ,将(150,45)、(0,60)代入y=kx+b 中,得1504560k b b +=ìí=î,解得:11060k b ì=-ïíï=î,∴该一次函数解析式为y=﹣110x+60;(2)当y=﹣110x+60=8时,解得x=520,即行驶520千米时,油箱中的剩余油量为8升.530﹣520=10千米,油箱中的剩余油量为8升时,距离加油站10千米,∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法,弄清题意是解题的关键.。
2023函数的表示法contents •函数的基本概念•函数的图像表示法•函数的表格表示法•函数的解析表示法•三种表示法的比较目录01函数的基本概念1函数的定义23函数是一种特殊的关系,它把输入值(或自变量)映射到输出值(或因变量)。
函数是一种关系函数定义了输入值和对应的输出值,即函数确定了输入值所对应的输出值。
函数定义了输入和输出函数通常由数学表达式表示,可以用于解决各种数学问题。
函数是数学表达式的组成部分符号表示法使用函数符号来表示函数,例如 $f(x) = x^2$ 表示一个函数,其中 $f$ 是函数符号,$x$ 是自变量,$x^2$ 是因变量。
表格表示法使用表格来表示函数,表格中列出输入值和对应的输出值。
图表示法使用图形来表示函数,图形的纵坐标表示输出值,横坐标表示自变量。
函数的表示方法函数的基本性质对于任意一个自变量,函数都有唯一确定的输出值与之对应。
确定性函数的输出值必须在一定范围内,即函数的值域是有界的。
有界性函数在一定区间内单调递增或单调递减,即因变量随自变量的增大(或减小)而增大(或减小)。
单调性对于任意两个自变量,如果它们的和也是自变量,那么函数的和等于两个自变量的和分别带入函数求得的结果的和。
可加性02函数的图像表示法首先确定函数的定义域,即自变量的取值范围。
函数图像的绘制确定函数定义域根据函数解析式,在坐标系中描点、连线,画出函数的图像。
画出函数图像检查所画图像是否符合函数解析式,确保准确性。
检查图像准确性图像的平移与伸缩图像的平移根据平移规则,将函数图像沿x轴或y轴方向移动一定距离。
图像的伸缩根据伸缩规则,将函数图像沿x轴或y轴方向放大或缩小一定倍数。
平移与伸缩的结合根据需要,可以将图像先平移再伸缩,或先伸缩再平移。
函数的奇偶性和周期性函数的奇偶性根据奇偶性定义,判断函数图像关于原点对称还是关于y轴对称。
函数的周期性根据周期性定义,判断函数图像是否具有重复出现的规律。
函数性质的应用了解函数具有的性质对解题和应用的帮助。
函数的表示法
1.函数的表示方法:解析法、列表法、图象法.
①解析法就是把两个变量的函数关系,用一个数学表达式来表示,这个等式叫做函数的解析表达式,简称解析式.
②列表法就是列出表格来表示两个变量之间的函数关系.
③图象法就是用函数的图象表示两个变量之间的函数关系.
2.分段函数
在函数定义域内,对于自变量x的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.
对分段函数的概念必须注意:
(1)分段函数是一个函数,不要把它误认为是几个函数;
(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.
(3)分段函数的图象是由几个不同的部分组成,作分段函数的图象时,应根据不同定义域上的不同解析式分别作出.
3.映射
(1)A到B的映射与B到A的映射往往不同;
(2)集合A中每一个元素在集合B中必有唯一的元素和它对应(允许B中元素没有被A中元素对应);
(3)A中元素与B中元素,可以是“一对一”,“多对一”不能是“一对多”.
(4)函数是集合A,B为非空数集的一种特殊映射,映射是函数概念的推广
题型一映射概念的理解
例1:(1)在下列对应关系中,哪些能构成A到B的映射?,
(2)设集合P={x|0≤x≤4},Q={y|0≤y≤2},下列的对应不表示从P到Q的映射的是()
A.f:,y=x
B.f:xy=x
C.f:xy=x
D.f:x→y=
点评:在映射中,集合A的“任一元素”,在集合B中都有“唯一”的对应元素,不会出现一对多的情形.只能是“多对一”或“一对一”形式.
变式迁移1:判断下列对应关系哪些是从集合A到集合B的映射.
(1)A=
(2)A=R,B=对应关系f:
(3)A=Z,B=Q,对应关系f:
(4)A=,对应关系f:。
变式迁移2:下列对应是否是从A到B的映射,能否构成函数?
(1)A=R,B=R,f:x;
(2)A=,B=;
(3)A=[0,+],B=R,f:x
(4)A={x|x是平面内的矩形},B={x|x是平面内的圆},f:作矩形的外接圆.
题型二分段函数的图象及应用
例2:求下列函数的图象及值域:
y=;
点评:本例利用图象法求函数值域,其关键是准确作出分段函数的图象.由于分段函数在定义域的不同区间内解析式不一样,因此画图象时要特别注意区间端点处对应点的实虚之分.变式迁移:作出下列各函数的图象:
(1)y=1-x,x∈Z;(2)y=|x-1| (x∈R).
例3:分段函数的求值问题;
已知函数f(x)=
(1)求f[f()]的值;(2)若f(a)=3,求a的值.
变式迁移:设f(x)=若f(a)>a,求实数a的取值范围。
例4:分段函数的实际应用
在运距不超过500公里以内投寄快递包裹,首重不超过1 000克需付邮资5元,5 000克以内续重每500克需付邮资2元,5 001克以上续重500克需付邮资1元.一件重x克的包裹需付邮资y元,请写出在运距不超过500公里以内投寄快递包裹需付邮资y元与包裹重量x克(0<x≤4 000)之间的函数表达式,求出函数的值域,并作出函数的图象.
变式迁移:某地出租车的出租费为4千米以内(含4千米),按起步费收10元,超过4千米按每千米加收1元,超过20千米(不含20千米)每千米再加收0.2元,若将出租车费设为y,所走千米数设为x,试写出y=f(x)的表达式,画出其图象.
题型三求函数解析式
例5: 图中的图象所表示的函数的解析式为()
A.y=|x-1| (0≤x≤2)B.y=|x-1| (0≤x≤2)
C.y=-|x-1| (0≤x≤2)D.y=1-|x-1| (0≤x≤2)
变式迁移:已知函数y=f(x)的图象是下图中的两条射线和抛物线的一部分组成,求函数的解析式.
点评:图中给定的图象实际上是一个分段函数的图象,对各段函数解析式进行求解时,一定要注意其区间的端点.
例6:(1)已知f(x)=x2+1,求f(2x+1)的解析式.
(2)已知:f(+1)=x+2,求f(x)的解析式;
(3)已知f(x)=ax2+bx+c,若f(0)=0,且f(x+1)=f(x)+x+1,求f(x).
变式迁移;(1)已知f(2x+1)=x2+1,求f(x)的解析式.
(2) 已知f(x2+2)=x4+4x2,求f(x)的解析式.
一、选择题,
1.已知集合M={0≤x≤6},P={y|0≤y≤3},则下列对应关系中,不能构成M到P的映射的是()
A.f:x →y=x B.f:x→y=x C. f:x→y=x D.f:x→y=x
2.已知f(x)=x2+px+q满足f(1)=f(2)=0,则f(-1)的值为()
A.5 B.-5 C.6 D.-6
3.已知f(x)=,g(x)=,则当x<0时,f[g(x)]为(),
A.-x B.-x2 C.x D.x2,
4.函数f(x)=x+的图象是()
5.若f(1-2x)=(x≠0),那么f等于()
A.1 B.3 C.15 D.30
6.f(x)是一次函数,2f(2)-3f(1)=5,2f(0)-f(-1)=1,则f(x)等于()
A.3x+2 B.3x-2 C.2x+3 D.2x-3
二、填空题
7.已知f(x)=,则f(f(f(-1)))的值是__________.,
8.已知函数f(n)=,其中n∈N,则f(8)=________.
9.已知函数F(x)=f(x)+g(x),其中f(x)是x的正比例函数,g(x)是x的反比例函数,且F=16,F(1)=8,则F(x)的解析式为____________.
9.已知f(x)=则不等式xf(x)+x≤2的解集是__________.
10.动点P从边长为1的正方形ABCD的顶点A出发顺次经过B、C、D再回到A,设x表示P点的行程,f(x)表示PA的长,求f(x)的解析式.。