匀速圆周运动的特点
- 格式:docx
- 大小:36.87 KB
- 文档页数:2
圆周运动的规律及其应用一、 匀速圆周运动的基本规律1.匀速圆周运动的定义:作 的物体,如果在相等时间内通过的 相等,则物体所作的运动就叫做匀速圆周运动。
2.匀速圆周运动是:速度 不变, 时刻改变的变速运动;是加速度 不变, 时刻改变的变加速运动。
3.描述匀速圆周运动的物理量 线速度:r Tr t s v ωπ===2,方向沿圆弧切线方向,描述物体运动快慢。
角速度:Tt πθω2== 描述物体转动的快慢。
转速n :每秒转动的圈数,与角速度关系n πω2= 向心加速度: v r rv a ωω===22描述速度方向变化快慢,其方向始终指向圆心。
向心力:向心力是按 命名的力,任何一个力或几个力的合力只要它的 是使物体产生 ,它就是物体所受的向心力.向心力的方向总与物体的运动方向 ,只改变线速度 ,不改变线速度 .==ma F v m r m rv m ωω==22。
二、 匀速圆周运动基本规律的应用【基础题】例1:上海锦江乐园新建的“摩天转轮”,它的直径达98m ,世界排名第五,游人乘坐时,转轮始终不停地匀速转动,每转一周用时25min.下列说法中正确的是 ( )A . 每时每刻,每个人受到的合力都不等于零 B. 每个乘客都在做加速度为零的匀速运动C. 乘客在乘坐过程中对座位的压力始终不变D. 在乘坐过程中每个乘客的线速度保持不变【同步练习】1.一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是( )A .线速度B . 角速度C .向心加速度D .合外力2.质量一定的物体做匀速圆周运动时,如所需向心力增为原来的8倍,以下各种情况中可能的是( )A. 线速度和圆半径增大为原来的2倍B. 角速度和圆半径都增大为原来的2倍C. 周期和圆半径都增大为原来的2倍D. 频率和圆半径都增大为原来的2倍3.用细线将一个小球悬挂在车厢里,小球随车一起作匀速直线运动。
当突然刹车时,绳上的张力将( )A. 突然增大B. 突然减小C. 不变D. 究竟是增大还是减小,要由车厢刹车前的速度大小与刹车时的加速度大小来决定4.汽车驶过半径为R 的凸形桥面,要使它不至于从桥的顶端飞出,车速必须小于或等于( )A. 2RgB. RgC. Rg 2D. Rg 35.做匀速圆周运动的物体,圆半径为R ,向心加速度为a ,则以下关系式中不正确的是( )A. 线速度aR v =B. 角速度R a =ωC. 频率R a f π2=D. 周期aR T π2= 6.一位滑雪者连同他的滑雪板共70kg ,他沿着凹形的坡底运动时的速度是20m/s ,坡底的圆弧半径是50m ,试求他在坡底时对雪地的压力。
4描述匀速圆周运动的物理量必记知识点一、匀速圆周运动(1)定义:质点沿圆周运动,若在相等的时间内通过的弧长相等,若在相等的时间内通过的弧长相等,这种运动就叫匀速圆周运这种运动就叫匀速圆周运动.(2)运动学特征:角速度、周期和频率都是不变的;而线速度、向心加速度都是大小不变,方向时刻在变.所以,匀速圆周运动是变速运动、,是变加速运动,是变力作用下的曲线运动.所以匀速圆周中的“匀速”是指匀速率的意思,而不是指速度不变. 二、描述匀速圆周运动快慢的物理量(1)线速度:描述质点沿圆周运动的快慢,是矢量.①大小:ts v =,s 是质点在时间t 内走过的弧长.单位:m /s .②方向:沿圆弧上该点的切线方向.(2)角速度:描述质点绕圆心转动的快慢.定义式:tj w =,(j 是质点和圆心的连线在时间t 内转过的角度.单位:rad /s .)(3)周期T :做匀速圆周运动的质点运动一周所用的时间.单位:s .(4)频率f :做匀速圆周运动的质点在单位时间内沿圆周走过的圈数,也叫转速.叫频率时单位是Hz ,叫转速时(用n 表示)单位是r /s .(转/秒) 三、v 、ω、T 、f 之间的内在关系:fR R T Rt sv p w p 22==== f Rv T t p p j w 22==== fvR T 122===wpp (注意:ω、T 、f 三个量中任意一个确定,另外两个量也就确定了.) 四、v 、ω、T 、f 之间的外在关系:①任何两个(或两个以上)的物体,如果绕同一根轴转动(或者绕同一圆心做圆周运动),那么它们的角速度ω、周期T 、频率f 必相等.②任何两个通过皮带相连接的转轮(或两个相吻合的齿轮).当轮子转动时,皮带上的任意点与两轮边缘上的任何点的线速度v 大小必相等. 五、向心加速度:描述线速度方向改变的快慢,是矢量. ①大小:ww .22v R Rv a ===. ②方向:总是指向圆心,时刻在变化.典型题一、慨念应用题型1、如图所示,为皮带传动装置,右轮半径为r ,a 为它边缘上的一点,左侧是大轮轴,大轮半径为4r ,小轮半径为2r ,b 为小轮上一点,b 到小轮中心距离为r ,c .d 分别位于小轮和大轮的边缘上,若在传动中不打滑,则 ( ) A .a 点与b 点线速度大小相等B .a 点与b 点角速度大小相等C .a 点与c 点线速度大小相等D .a 点与d 点向心加速度大小相等2、如图所示的皮带传动装置中,右边两轮是连在一起同轴转动,图中三轮半径的关系为:r 1=2r 2,r 3=1.5r 1,A 、B 、C 三点为三个轮边缘上的点,皮带不打滑,则A 、B 、C 三点的线速度之比为 .角速度之比为 .周期之比为 .3、如图所示,在轮B 上固定有同轴小轮A ,轮B 通过皮带带动轮C ,皮带和两轮之间无相对滑动,A 、B 、C 三轮的半径依次为r 1、r 2和r 3,绕在A 轮边的绳子一端固定在A 轮边缘上,另一端系有重物P .当重物P 以速度v 匀速下落时,C 轮转动的角速度为 .4、如图所示,甲、乙两球做匀速圆周运动,向心加速度随半径变化.由图象可以知 道 ( ) A .甲球运动时,线速度大小保持不变B .甲球运动时,角速度大小保持不变C .乙球运动时,线速度大小保持不变D .乙球运动时,角速度大小保持不变 二、由圆周运动的周期性引起的多解问题 5、如图所示,、如图所示,一直径为一直径为d 纸质圆筒以角速度ω绕轴O 高速转动,现有一颗子弹沿直径穿过圆筒,若子弹在圆筒转动不到半周时,在筒上留下a 、b 两个弹孔,已知a0、b0间夹角为j ,则子弹的速率为 ( ) A .pwj 2d B .jw dC .jp w -2d D .jp w -d6、如图所示的装置可测量子弹的飞行速度,在一根轴上相隔S=1m 处安装两个平行的薄圆盘,使轴带动两圆盘以n=3000r /min 匀速转动,飞行的子弹平行于轴沿一直线穿过两圆盘,即在盘上留下两个孔,现测得两小孔所在半径间的夹角为300,子弹飞行速度大小可能是下述的 ( ) A .500m /s B .600m /s C .700m /s D .800m /s 7、如图所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一小球,要使球与盘只碰一次,且落点为B ,则小球的初速度v = ,圆盘转动的角速度ω= 。
第2讲 圆周运动一、知能要点1、匀速圆周运动、角速度、线速度、向心加速度 (1)、匀速圆周运动①定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动。
②特点:加速度大小不变,方向始终指向圆心,是变加速运动。
③条件:合外力大小不变、方向始终与速度方向垂直且指向圆心。
(2)、描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:定义、意义公式、单位 线速度(v)①描述圆周运动的物体运动快慢的物理量 ②是矢量,方向和半径垂直,和圆周相切 ①v =Δs Δt =2πrT②单位:m/s 角速度(ω)①描述物体绕圆心转动快慢的物理量 ②中学不研究其方向①ω=ΔθΔt =2πT②单位:rad/s周期(T)和转速(n)或频率(f) ①周期是物体沿圆周运动一周的时间 ②转速是物体单位时间转过的圈数,也叫频率①T =2πrv单位:s②n 的单位:r/s 、r/min ,f 的单位:Hz 向心加速度(a)①描述速度方向变化快慢的物理量 ②方向指向圆心①a =v 2r =rω2②单位:m/s 22①、作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小。
②、大小:F =m v 2r =mω2r =m 4π2T2r =mωv =4π2mf 2r 。
③、方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力。
④、来源:向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供。
3、离心现象①定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动。
②本质:做圆周运动的物体由于本身的惯性,总有沿着切线方向飞出去的趋势。
③受力特点当F =mrω2时,物体做匀速圆周运动; 当F =0时,物体沿切线方向飞出;当F <mrω2时,物体逐渐远离圆心,F 为实际提供的向心力,如图所示。
[考点01] 圆周运动的运动学问题1.描述圆周运动的物理量2.匀速圆周运动(1)定义:如果物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.1.对公式v =ωr 的理解 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 2.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 3.常见的传动方式及特点同轴转动皮带传动齿轮传动装置A 、B 两点在同轴的一个圆盘上两个轮子用皮带连接,A 、B 两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A 、B 两点分别是两个齿轮边缘上的点角速度、周期相同线速度大小相等典例1(圆周运动物理量的分析和计算)(2023·罗平县·月考)小红同学在体验糕点制作“裱花”环节时,她在绕中心匀速转动的圆盘上放置一块直径8英寸(20 cm)的蛋糕,在蛋糕边缘每隔4 s 均匀“点”一次奶油,蛋糕转动一周正好均匀“点”上15点奶油.下列说法正确的是( )A .圆盘转动的转速为2π r/minB .圆盘转动的角速度大小为π30 rad/sC .蛋糕边缘的线速度大小为π3m/sD .蛋糕边缘的奶油半个周期内的平均速度为0 答案 B解析 由题意可知,圆盘转动的周期为T =15×4 s =60 s =1 min ,则圆盘转动的转速为1 r/min ,A 错误;圆盘转动的角速度为ω=2πT =2π60 rad/s =π30 rad/s ,B 正确;蛋糕边缘的线速度大小为v =rω=0.1×π30 m/s =π300 m/s ,C 错误;蛋糕边缘的奶油半个周期内的平均速度约为v=2r T 2=0.230 m/s =1150 m/s ,故D 错误. 典例2(圆周传动问题)(多选)如图所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动,三个轮的半径关系是r A =r C =2r B .若皮带不打滑,则A 、B 、C 三轮边缘上a 、b 、c 三点的( )A.角速度之比为2∶1∶2B.线速度大小之比为1∶1∶2C.周期之比为1∶2∶2D.转速之比为1∶2∶2 答案 BD解析 A 、B 两轮通过皮带传动,皮带不打滑,则A 、B 两轮边缘的线速度大小相等;B 、C 两轮固定在一起绕同一轴转动,则B 、C 两轮的角速度相等. a 、b 比较:v a =v b由v =ωr 得:ωa ∶ωb =r B ∶r A =1∶2 b 、c 比较:ωb =ωc由v =ωr 得:v b ∶v c =r B ∶r C =1∶2 所以ωa ∶ωb ∶ωc =1∶2∶2v a ∶v b ∶v c =1∶1∶2,A 错误,B 正确; 由ω=2πn 知,n a ∶n b ∶n c =1∶2∶2,D 正确; T =1n,故T a ∶T b ∶T c =2∶1∶1,C 错误.典例3(圆周运动的多解问题)如图所示,一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘L ,且对准圆盘上边缘的A 点水平抛出(不计空气阻力,重力加速度为g ),初速度为v 0,飞镖抛出的同时,圆盘绕垂直圆盘过盘心O 的水平轴匀速转动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )A.d =L 2g v20B.ω=π(2n +1)v 0L (n =0,1,2,3…)C.v 0=ωd2D.ω2=g π2(2n +1)2d(n =0,1,2,3…)答案 B解析 依题意飞镖做平抛运动的同时,圆盘上A 点做匀速圆周运动,恰好击中A 点,说明A 正好在最低点被击中,平抛的时间t =Lv 0,可得ω=(2n +1)πt =π(2n +1)v 0L (n =0,1,2,3…),v 0=Lω(2n +1)π(n =0,1,2,3…),B 正确;平抛的竖直位移为d ,则d =12gt 2=12g (L v 0)2=gL 22v 20,故A 、C错误;ω2=π2(2n +1)2v 20L 2=π2(2n +1)2g2d (n =0,1,2,3…),故D 错误.1.火车以60 m/s 的速率驶过一段圆弧弯道,某乘客发现放在水平桌面上的指南针在10 s 内匀速转过了10°.在此10 s 时间内,火车( ) A .运动位移为600 m B .加速度为零 C .角速度约为1 rad/s D .转弯半径约为3.4 km 答案 D解析 由Δs =v Δt 知,弧长Δs =600 m 是路程而不是位移,A 错误;火车在弯道内做曲线运动,加速度不为零,B 错误;由10 s 内匀速转过10°知,角速度ω=ΔθΔt =10°360°×2π10 rad/s =π180 rad/s ≈0.017 rad/s ,C 错误;由v =rω知,r =v ω=60π180m ≈3.4 km ,D 正确. 2.如图所示为“南昌之星”摩天轮,它的转盘直径为153米,转一圈的时间大约是30分钟.乘客乘坐观光时,其线速度大约为( )A .5.0 m/sB .1.0 m/sC .0.50 m/sD .0.27 m/s答案 D解析 半径R =1532m ,周期T =30 min =1 800 s ,根据匀速圆周运动各物理量间的关系可得v =ωR =2πTR ,代入数据得v ≈0.27 m/s ,故选D.3.(2021·全国甲卷·15)“旋转纽扣”是一种传统游戏.如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现.拉动多次后,纽扣绕其中心的转速可达50 r/s ,此时纽扣上距离中心 1 cm 处的点向心加速度大小约为( )A .10 m/s 2B .100 m/s 2C .1 000 m/s 2D .10 000 m/s 2答案 C解析 根据匀速圆周运动的规律,此时ω=2πn =100π rad/s ,向心加速度a =ω2r ≈1 000 m/s 2,故选C.4.(2023·泰州市·期中)甲、乙两物体都做匀速圆周运动,甲的转动半径为乙的一半,当甲转过60°时,乙在这段时间内正好转过45°,则甲、乙两物体的线速度大小之比为( ) A .1∶4 B .4∶9 C .2∶3 D .9∶16 答案 C解析 当甲转过60°时,乙在这段时间内正好转过45°,由角速度的定义式ω=ΔθΔt 有:ω1ω2=60°45°=43,甲的转动半径为乙的一半,根据线速度与角速度的关系式v =rω可得:v 1v 2=ω1r 1ω2r 2=43×12=23,故选项C 正确,A 、B 、D 错误. 5.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R 和r ,且R =3r ,A 、B 分别为两轮边缘上的点,则皮带运动过程中,关于A 、B 两点,下列说法正确的是( )A .向心加速度大小之比a A ∶aB =1∶3 B .角速度大小之比ωA ∶ωB =3∶1C .线速度大小之比v A ∶v B =1∶3D .在相同的时间内通过的路程之比为s A ∶s B =3∶1 答案 A解析由于两轮为皮带传动,A、B线速度大小相等,由a n=v2r可知,a n与r成反比,所以向心加速度大小之比a A∶a B=1∶3,故A正确,C错误;由ω=vr可知,ω与r成反比,所以角速度大小之比ωA∶ωB=1∶3,故B错误;由于A、B的线速度大小相等,在相同的时间内通过的路程相等,所以s A∶s B=1∶1,故D错误.6.(多选)(2023·辽宁省·质检)在如图所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,关于小齿轮边缘的A点和大齿轮边缘的B点,()A.A点和B点的线速度大小之比为1∶1B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1D.以上三个选项只有一个是正确的答案AC解析题图中三个齿轮边缘线速度相等,A点和B点的线速度大小之比为1∶1,由v=ωr 可得,线速度一定时,角速度与半径成反比,A点和B点角速度之比为3∶1,选项A、C 正确,选项B、D错误.7.如图所示是一辆自行车,A、B、C三点分别为自行车轮胎和前后两齿轮外沿上的点,其中R A=2R B=5R C,下列说法中正确的是()A.ωB=ωCB.v C=v AC.2ωA=5ωBD.v A=2v B答案C解析B轮和C轮是链条传动,v B=v C,根据v=ωR,得5ωB=2ωC,故A错误;由于A轮和C轮同轴,故两轮角速度相同,根据v=ωR,得v A=5v C,故B错误;因v A=5v C,v A=ωA R A,v C=v B=ωB R B,故v A=5v B,2ωA=5ωB,故C正确,D错误.8.某新型自行车,采用如图甲所示的无链传动系统,利用圆锥齿轮90°轴交,将动力传至后轴,驱动后轮转动,杜绝了传统自行车“掉链子”问题.如图乙所示是圆锥齿轮90°轴交示意图,其中A 是圆锥齿轮转轴上的点,B 、C 分别是两个圆锥齿轮边缘上的点,两个圆锥齿轮中心轴到A 、B 、C 三点的距离分别记为r A 、r B 和r C (r A ≠r B ≠r C ).下列有关物理量大小关系正确的是( )A.B 点与C 点的角速度:ωB =ωCB.C 点与A 点的线速度:v C =r Br A v AC.B 点与A 点的线速度:v B =r Ar B v AD.B 点和C 点的线速度:v B >v C 答案 B解析 B 点与C 点的线速度相等,由于r B ≠r C ,所以ωB ≠ωC ,故A 、D 错误;B 点的角速度与A 点的角速度相等,所以v B r B =v A r A ,即v B =r Br A v A ,故C 错误;B 点与C 点的线速度相等,所以v C =v B =r Br Av A ,故B 正确.9.(2022·南通市高一期末)如图所示为旋转脱水拖把,拖把杆内有一段长度为25 cm 的螺杆通过拖把杆下段与拖把头接在一起,螺杆的螺距(相邻螺纹之间的距离)d =5 cm ,拖把头的半径为10 cm ,拖把杆上段相对螺杆向下运动时拖把头就会旋转,把拖把头上的水甩出去. 某次脱水时,拖把杆上段1 s 内匀速下压了25 cm ,该过程中拖把头匀速转动,则( )A .拖把杆向下运动的速度为0.1π m/sB .拖把头边缘的线速度为π m/sC .拖把头转动的角速度为5π rad/sD .拖把头的转速为1 r/s 答案 B解析 拖把杆向下运动的速度v 2=lt=0.25 m/s ,故A 错误;拖把杆上段1 s 内匀速下压了25 cm ,则螺杆转动5圈,即拖把头的转速为n =5 r/s ,则拖把头转动的角速度ω=2πn =10π rad/s 拖把头边缘的线速度v 1=ωR =π m/s ,故B 正确,C 、D 错误.10.(2023·嘉兴市·期中)如图为车牌自动识别系统的直杆道闸,离地面高为1 m 的细直杆可绕O 在竖直面内匀速转动.汽车从自动识别线ab 处到达直杆处的时间为3.3 s ,自动识别系统的反应时间为0.3 s ;汽车可看成高1.6 m 的长方体,其左侧面底边在aa ′直线上,且O 到汽车左侧面的距离为0.6 m ,要使汽车安全通过道闸,直杆转动的角速度至少为( )A.π4 rad/sB.3π4 rad/sC.π6 rad/sD.π12 rad/s 答案 D解析 由题意可知,在汽车行驶至a ′b ′时,横杆上a ′上方的点至少要抬高1.6 m -1 m =0.6 m ,即横杆至少转过π4,所用时间为t =3.3 s -0.3 s =3 s ,则角速度ω=θt =π12 rad/s ,故选D.11.(多选)如图所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( )A.线速度大小之比为3∶3∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.周期之比为2∶3∶3 答案 AD解析 A 轮、B 轮靠摩擦传动,边缘点线速度相等,故v a ∶v b =1∶1,根据公式v =rω,有ωa ∶ωb =3∶2,根据ω=2πn ,有n a ∶n b =3∶2,根据T =2πω,有T a ∶T b =2∶3;B 轮、C轮是同轴转动,角速度相等,故ωb ∶ωc =1∶1,根据v =rω,有v b ∶v c =3∶2,根据ω=2πn ,有n b ∶n c =1∶1,根据T =2πω,有T b ∶T c =1∶1,联立可得v a ∶v b ∶v c =3∶3∶2,ωa ∶ωb ∶ωc=3∶2∶2,n a ∶n b ∶n c =3∶2∶2,T a ∶T b ∶T c =2∶3∶3,故A 、D 正确,B 、C 错误. 12.两个小球固定在一根长为L 的杆的两端,绕杆上的O 点做圆周运动,如图所示.当小球1的速度大小为v 1时,小球2的速度大小为v 2,则O 点到小球2的距离是( )A.L v 1v 1+v 2B.L v 2v 1+v 2C.L (v 1+v 2)v 1D.L (v 1+v 2)v 2答案 B解析 两球在同一杆上,旋转的角速度相等,均为ω,设两球的转动半径分别为r 1、r 2,则r 1+r 2=L .又知v 1=ωr 1,v 2=ωr 2,联立得r 2=L v 2v 1+v 2,B 正确.13.(多选)如图所示,直径为d 的纸筒以角速度ω绕中心轴匀速转动,将枪口垂直指向圆筒轴线,使子弹穿过圆筒,结果发现圆筒上只有一个弹孔,若忽略空气阻力及子弹自身重力的影响,则子弹的速度可能是( )A.dωπB.dω2πC.dω3π D.dω4π答案 AC解析 由题意知圆筒上只有一个弹孔,说明子弹穿过圆筒时,圆筒转过的角度应满足θ=(2k +1)π(k =0,1,2…),子弹穿过圆筒所用的时间t =d v =θω,则子弹的速度v =dω(2k +1)π(k =0,1,2…),故选项A 、C 正确.14.如图所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一小球,不计空气阻力,重力加速度为g ,要使球与盘只碰一次,且落点为B ,求小球的初速度v 及圆盘转动的角速度ω的大小.答案 Rg2h2n πg2h(n =1,2,3…) 解析 设球在空中运动时间为t ,此圆盘转过θ角,则 R =v t ,h =12gt 2故初速度大小v =R g 2hθ=n ·2π(n =1,2,3…) 又因为θ=ωt则圆盘角速度ω=n ·2πt=2n πg2h(n =1,2,3…).15.(多选)(2023·江西南昌·校考)如图所示,靠在一起的M 、N 两转盘靠摩擦传动,两盘均绕过圆心的竖直轴转动,M 盘的半径为r ,N 盘的半径R=2r ,A 为M 盘边缘上的一点,B 、C 为N 盘直径的两个端点,当O '、A 、B 、C 共线时(如图所示的位置),从O '的正上方P 点以初速度v 0地沿O O '方向水平抛出一小球,小球落至圆盘C 点,重力加速度为g ,则下列5r0,1,2),可以落0,1,2),可知当的角速度为M ω=.若小球抛出时到O 下落的时间2t =1,2,3),可以落在2,3)可知当的角速度为''M 2ωω==。
匀速圆周运动知识点解析1.匀速圆周运动的定义(1)轨迹是圆周的运动叫圆周运动。
(2)质点沿圆周运动,如果在相同时间里通过的弧长相等,这种运动叫匀速圆周运动。
(3)匀速圆周运动是最简单的圆周运动形式,也是最基本的曲线运动之一。
(4)匀速圆周运动是一种理想化的运动形式。
许多物体的运动接近这种运动,具有一定的实际意义。
一般圆周运动,也可以取一段较短的时间(或弧长)看成是匀速圆周运动。
2.周期(1)物体做匀速圆周运动时,运动一周所用的时间。
(2)周期用符号T表示,单位是秒。
(3)周期是反映重复性运动的运动快慢的物理量。
它从另一个角度描述了物体的运动。
3.线速度(1)物体做匀速圆周运动时,通过的弧长s跟通过这段弧长所用时间t的比值,叫运动物体线速度大小。
线速度的方向为圆周上某点的切线方向。
(2)线速度的计算公式:(3)线速度的意义:线速度实质上还是物体某一时刻的瞬时速度,虽然是用弧长和时间的比定义了速度大小,但当时间t趋于零时,弧长和为区别角速度而取名为线速度。
4.角速度转过这些角度所用时间t的比值,叫物体做匀速圆周运动的角速度。
(2)角速度计算公式:(3)角速度单位为:弧度/秒(rad/s)。
(4)角速度是矢量,方向为右手螺旋法则的大拇指的指向。
(5)角速度是描述转动快慢的物理量。
在描述转动效果时,它比用线速度描述更具有代表性。
5.向心加速度(1)匀速圆周运动的加速度方向匀速圆周运动的速度大小不变,速度的方向时刻在变,由于速度方向的变化,质点一定具有加速度,该加速度反映速度方向变化的快慢,该加速度的方向沿着半径指向圆心。
设质点沿半径是r的圆周做匀速圆周运动,在某时刻它处于A点,速度是vA,经过很短时间Δt后,运动到B点,速度为vB。
根据矢量合成的三角形法则可知,矢量vA与Δv之和等于vB,所以Δv是质点在A点时的加速度。
如图4-20。
时Δv便垂直于vA。
而vA是圆的切线,故Δv是指向圆心的。
即A点加速度指向圆心,所以匀速圆周运动的加速度又叫向心加速度。
【知识点】高中物理圆周运动及向心力知识点总结一、匀速圆周运动1.定义:物体的运动轨迹是圆的运动叫做圆周运动,物体运动的线速度大小不变的圆周运动即为匀速圆周运动。
2.特点:①轨迹是圆;②线速度、加速度均大小不变,方向不断改变,故属于加速度改变的变速曲线运动,匀速圆周运动的角速度恒定;③匀速圆周运动发生条件是质点受到大小不变、方向始终与速度方向垂直的合外力;④匀速圆周运动的运动状态周而复始地出现,匀速圆周运动具有周期性。
3.描述圆周运动的物理量:(1)线速度v是描述质点沿圆周运动快慢的物理量,是矢量;其方向沿轨迹切线,国际单位制中单位符号是m/s,匀速圆周运动中,v的大小不变,方向却一直在变;(2)角速度ω是描述质点绕圆心转动快慢的物理量,是矢量;国际单位符号是rad/s;(3)周期T是质点沿圆周运动一周所用时间,在国际单位制中单位符号是s;(4)频率f是质点在单位时间内完成一个完整圆周运动的次数,在国际单位制中单位符号是Hz;(5)转速n是质点在单位时间内转过的圈数,单位符号为r/s,以及r/min.4.各运动参量之间的转换关系:模型一:共轴传动模型二:皮带传动模型三:齿轮传动二、向心加速度1.定义:任何做匀速圆周运动的物体的加速度都指向圆心,这个加速度叫向心加速度。
注:并不是任何情况下,向心加速度的方向都是指向圆心。
当物体做变速圆周运动时,向心加速度的一个分加速度指向圆心。
2.方向:在匀速圆周运动中,始终指向圆心,始终与线速度的方向垂直。
向心加速度只改变线速度的方向而非大小。
3.意义:描述圆周运动速度方向方向改变快慢的物理量。
4.公式:5.两个函数图像:三、向心力1.定义:做圆周运动的物体所受到的沿着半径指向圆心的合力,叫做向心力。
2.方向:总是指向圆心。
3.公式:4.注意:①向心力的方向总是指向圆心,它的方向时刻在变化,虽然它的大小不变,但是向心力也是变力。
②在受力分析时,只分析性质力,而不分析效果力,因此在受力分析是,不要加上向心力。
匀速圆周运动特点
圆周运动是自然界和技术界确定不变的实体概念,被认
为是世界上最重要的运动之一,是物体运动的重要类型之一。
它是指物体沿着同心圆圈周围以等速度移动的运动。
圆周运动既有匀速,也有变速。
匀速圆周运动的特点是,物体的速度在整个运动过程中保持稳定不变。
无论绕圈多少次,物体绕圈的时间相同,速度也不变。
因此,匀速圆周运动可以解决很多问题。
比如,可以用
来控制一些机器人运动,如编织机、移动机械臂等,更重要的是,它可以帮助我们控制天体运动,更完善的明确天体的运行轨迹。
此外,匀速圆周运动也可以用来表示物体沿着同心圆运
动时的动能变化。
它在动能的转换、动能的储存及消耗中也发挥着重要的作用。
总的来说,匀速圆周运动是世界上最常用的运动之一,
它拥有多种应用,不仅在技术界,而且在自然界也具有十分重要的意义。
它可以为我们提供更为完善的基础来控制物体的运动,为未来研究更深入的了解带来更多可能性。
匀速圆周运动的特点和计算匀速圆周运动是指物体在圆周路径上以恒定速度运动的现象。
它具有以下特点:1.速度大小恒定:在匀速圆周运动中,物体沿圆周路径的速度大小保持不变。
2.速度方向变化:虽然速度大小不变,但物体在圆周路径上运动时,速度方向不断变化,始终指向圆心。
3.向心加速度:匀速圆周运动中,物体受到一个指向圆心的向心加速度,其大小为a=v²/r,其中v为速度大小,r为圆周半径。
4.向心力:向心加速度是由向心力引起的,其大小为F=m*a,其中m为物体的质量。
5.周期性:匀速圆周运动的物体每隔一定时间会回到起点,这个时间称为周期,用T表示。
6.角速度:匀速圆周运动的物体在单位时间内转过的角度称为角速度,用ω表示。
其大小为ω=2π/T。
匀速圆周运动的计算公式如下:1.线速度v与角速度ω、半径r的关系:v=ω*r。
2.向心加速度a与速度v、半径r的关系:a=v²/r。
3.向心力F与质量m、向心加速度a的关系:F=m*a。
4.周期T与角速度ω的关系:T=2π/ω。
5.角速度ω与频率f的关系:ω=2π*f,其中频率f是单位时间内圆周运动的次数。
以上是匀速圆周运动的特点和计算方法的详细介绍,希望能对您有所帮助。
习题及方法:一辆自行车以6m/s的速度在圆形路径上匀速运动,圆形路径的半径为6m,求自行车的向心加速度和向心力。
根据向心加速度公式a=v²/r,将速度v=6m/s和半径r=6m代入,得到向心加速度a=6²/6=6m/s²。
根据向心力公式F=m a,需要知道自行车的质量m,假设自行车质量为m=10kg,将向心加速度a=6m/s²和质量m=10kg代入,得到向心力F=106=60N。
一个物体在半径为5m的圆形路径上做匀速圆周运动,角速度为ω=4π/s,求物体的线速度和周期。
根据线速度公式v=ωr,将角速度ω=4π/s和半径r=5m代入,得到线速度v=4π5=20πm/s。
专题02圆周运动一、描述圆周运动的物理量和常见的传动装置特点1.匀速圆周运动的特点(1)“变”与“不变”描述匀速圆周运动的四个物理量中,角速度、周期和转速恒定不变,线速度是变化的。
(2)性质匀速圆周运动中的“匀速”不同于匀速直线运动中的“匀速”,这里的“匀速”是“匀速率”的意思,匀速圆周运动是变速运动。
2.匀速圆周运动各物理量间的关系3.传动装置及其特点同轴传动皮带传动齿轮传动装置A、B两点在同轴的一个圆盘上两个轮子用皮带连接,A、B两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A、B两点分别是两个齿轮边缘上的点特点角速度、周期相同线速度大小相同线速度大小相同转动方向相同相同相反规律线速度与半径成正比:v Av B=rR角速度与半径成反比:ωAωB=rR。
周期与半径成正比:T AT B=Rr角速度与半径成反比:ωAωB=r2r1。
周期与半径成正比:T AT B=r1r2【例1】如图所示,秒针绕O点转动,A、B为秒针两端的两个质点,A点比B点离O更近。
在转动时,关于A、B两质点的向心加速度a、线速度v、周期T、角速度ω的说法正确的是()A.A Ba a<B.A BT T<C.A Bv v<D.A Bωω<【答案】AC【详解】A 、B 为秒针两端的两个质点,可知A 、B 的角速度相等,周期相等,则有A B ωω=,A BT T =根据v r ω=,2a r ω=由于A 点比B 点离O 更近,则有A B v v <,A B a a <故选AC 。
【例2】如图是磁带录音机的磁带盒的示意图,A 、B 为缠绕磁带的两个轮子边缘上的点,两轮的半径均为r ,在放音结束时,磁带全部绕到了B 轮上,磁带的外缘半径R =3r ,C 为磁带外缘上的一点,现在进行倒带。
此时下列说法正确的是()A .A 、B 、C 三点的周期之比3∶1∶3B .A 、B 、C 三点的线速度之比3∶1∶3C .A 、B 、C 三点的角速度之比1∶3∶3D .A 、B 、C 三点的角速度之比3∶1∶1【答案】BD【详解】CD .根据磁带传动装置的特点可知,A 、C 两点的线速度大小相等,即: 1:1A C v v =B 、C 两点的角速度相等,即B C ωω=由于3C A r r =,根据v r ω=可得:3:1A C ωω=所以::3:1:1A B C ωωω=故C 错误,D 正确;A .根据周期与角速度的关系2T πω=,可得: : 1:3:3A B C T T T =,A 错误;B .根据v r ω=可知:1:3BC v v =所以: : 3:1:3A B C v v v =,B 正确。
匀速圆周运动的特点
匀速圆周运动是指一个物体在圆形轨迹上以恒定的速度运动的现象。
这种运动具有以下的几个特点:
1. 定常速度:在匀速圆周运动中,物体在圆周上的速度是恒定的,
无论离圆心的位置如何变化,物体的速度始终保持不变。
这是因为物
体在运动过程中受到一个恒定的向心力,使其始终保持匀速。
2. 向心力:匀速圆周运动的物体受到一个向心力的作用,这个力指
向圆心,并且大小与物体的质量和速度成正比。
向心力的作用使物体
沿着圆周运动,同时也改变了物体的运动方向。
3. 加速度:虽然匀速圆周运动的物体速度保持恒定,但它却有一个
不为零的加速度。
这是因为物体的运动方向不断改变,导致存在向心
加速度。
向心加速度的大小与物体的速度和圆周半径有关。
4. 周期性:匀速圆周运动是周期性运动,物体在一定时间内完成整
个圆周的运动。
一个完整的周期包括物体从一个特定点出发,绕圆周
一周返回到同一点的过程。
周期的长度与物体的速度和圆周半径有关。
5. 力做功:由于物体在匀速圆周运动中受到向心力的作用,因此力
会做功。
物体在沿圆周方向移动时,在力的作用下会具有一定的动能。
而在力与位移垂直的方向上,物体没有做功,动能保持不变。
6. 瞬时速度变化:尽管匀速圆周运动的物体速度是恒定的,但它的
瞬时速度却不断变化。
当物体处于圆周上某一点时,由于其速度向量
的方向与半径向量垂直,所以速度瞬时变化的方向始终指向圆心。
总结起来,匀速圆周运动的特点包括定常速度、向心力、加速度、周期性、力做功和瞬时速度的变化。
这种运动在日常生活和科学研究中都具有重要的应用,例如车辆在直道上行驶时的稳定性、行星围绕太阳的运动等。
理解匀速圆周运动的特点对于深入掌握运动学和力学等物理学科知识具有重要的意义。