中考数学复习一元二次方程应用题专项训练
- 格式:pdf
- 大小:231.26 KB
- 文档页数:23
一元二次方程总复习考点1:一元二次方程的概念一元二次方程:只含有一个未知数,未知数的最高次数是 2,且系数不为0,这样的方程叫一元二次方程.一般形式:ax2+bx+c=0(a≠0〕。
注意:判断某方程是否为一元二次方程时,应首先将方程化为一般形式。
考点2:一元二次方程的解法1.直接开平方法:对形如(x+a〕2=b〔b≥0〕的方程两边直接开平方而转化为两个一元一次方程的方法。
x+a= ± b ∴ x1 =-a+ b x2 =-a- b2.配方法:用配方法解一元二次方程:ax2+bx+c=0(k≠0〕的一般步骤是:①化为一般形式;②移项,将常数项移到方程的右边;③化二次项系数为1,即方程两边同除以二次项系数;④配方,即方程两边都加上一次项系数的一半的平方;化原方程为(x+a〕2=b 的形式;⑤如果b≥0就可以用两边开平方来求出方程的解;如果b≤0,那么原方程无解.3.公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是x = - b ± b 2 - 4ac (b2-4ac≥0)。
步骤:①把方程转化为一般形2a式;②确定 a,b,c 的值;③求出 b2-4ac 的值,当 b2-4ac≥0时代入求根公式。
4.因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.理论根据:假设ab=0,那么 a=0 或b=0。
步骤是:①将方程右边化为 0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.因式分解的方法:提公因式、公式法、十字相乘法。
5.一元二次方程的考前须知:⑴在一元二次方程的一般形式中要注意,强调a≠0.因当a=0 时,不含有二次项,即不是一元二次方程.⑵应用求根公式解一元二次方程时应注意:①先化方程为一般形式再确定a,b,c 的值;②假设b2-4ac<0,那么方程无解.⑶ 利用因式分解法解方程时,方程两边绝不能随便约去含有未知数的代数式.如-2(x+4) 2 =3〔x+4〕中,不能随便约去 x+4。
中考数学复习考点知识专题训练05 用一元二次方程解决问题(基础)1.解方程(1)(2x+3)2﹣81=0;(2)y2﹣7y+6=0.2.已知T=(1+2m−1)÷m2+2m+1m−1.(1)化简T;(2)若m是一元二次方程m2+m﹣2=0的解,求T的值.3.某种病毒传播非常快,如果一个人被感染,经过两轮感染后就会有81个人被感染.(1)请你用学过的知识分析,每轮感染中平均一个人会感染几个人?(2)若病毒得不到有效控制,3轮感染后,被感染的人会不会超过700人?4.某种品牌的手机经过7、8月份连续两次降价,每部售价由2500元降到了1600元.若每次下降的百分率相同,请解答:(1)求每次下降的百分率;(2)若9月份继续保持相同的百分率降价,则这种品牌的手机售价为多少元?5.今年我国发生了较为严重的新冠肺炎疫情,口罩供不应求,某商店恰好年前新进了一批口罩,若按每个盈利1元销售,每天可售出200个,如果每个口罩的售价上涨0.5元,则销售量就减少10个,问应将每个口罩涨价多少元时,才能让顾客得到实惠的同时每天利润为480元?6.如图,幼儿园某教室矩形地面的长为8m,宽为5m,现准备在地面正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,求四周未铺地毯的条形区域的宽度是多少米?7.某学校计划利用一片空地建一个花圃,花圃为矩形,其中一面靠墙,这堵墙的长度为12米,另三面用总长28米的篱笆材料围成,且计划建造花圃的面积为80平方米.那么这个花圃的长和宽分别应为多少米?8.今年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%、今年该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等,求该商店今年8、9月份营业额的月增长率.9.某商场销售一批名牌衬衫,当销售价为299元时,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经试销发现,如果每件衬衫每降价1元,商场平均每天可多售出2件,若商场平均每天要盈利1200元,每件衬衫定价应多少元?10.要在一个8cm×12cm的照片外侧的四周镶上宽度相同的银边.并且要使银边的面积和照片的面积相等.那么银边的宽应该是多少?11.新华商场销售某种商品,每件进货价为40元,市场调研表明:当销售价为80元时,平均每天能售出20件;在每件盈利不少于25元的前提下,经过一段时间销售,当销售价每降低1元时,平均每天就能多售出2件.(1)若降价2元,则平均每天销售数量为件;(2)当每件商品定价多少元时,该商场平均每天销售某种商品利润达到1200元?12.已知关于x的方程x2+(m+2)x+(2m﹣1)=0.(1)求证:无论m为何值,方程恒有两个不相等的实数根;(2)若此方程的一个根是﹣1,请求出m的值和方程的另一个根.13.2020年突如其来的新型冠状病毒疫情,给生鲜电商带来了意想不到的流量和机遇,据统计某生鲜电商平台1月份的销售额是1440万元,3月份的销售额是2250万元.(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?(2)市场调查发现,某水果在“盒马鲜生”平台上的售价为20元/千克时,每天能销售200千克,售价每降价2元,每天可多售出100千克,为了推广宣传,商家决定降价促销,同时尽量减少库存,已知该水果的成本价为12元/千克,若使销售该水果每天获利1750元,则售价应降低多少元?14.重庆大学城融创茂“海世界”决定在国庆节期间推出优惠套票.在9月20日预售“亲子两人游”套票600张和“家庭三人行”套票150张,且预售中的“家庭三人行”套票的票价是“亲子两人游”套票票价的2倍.(1)若“海世界”的预售总额不低于31500元,则“亲子两人游”套票的预售价格最少为多少元?(2)套票在出售当天推出“亲子两人游”套票1600张,“家庭三人行”套票400张.由于预售的火爆,“海世界”决定将“亲子两人游”套票的价格在(1)中最低价格的基础上增加157a %,而“家庭三人行”套票在(1)中“家庭三人行”套票票价上增加了a 元,结果“亲子两人游”套票的销售量比计划少2a %.“家庭三人行”套票的销售量与计划保持一致,最终实际销售额与计划销售额相同,求a 的值.15.2020年疫情期间,某区推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?16.某商店销售一种成本为每千克30元的产品,据市场调查分析,若按每千克40元销售,一个月能出售500千克,当销售单价每涨1元,月销售量就减少10千克,针对这种情况,请解答以下问题:(1)设销售单价定为每千克x 元(x ≥40),月销售量为y 千克,求y 与x 之间的函数关系式;(2)该商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少?17.在“精准扶贫”工作中,某单位建议贫困户借助家里长25m的墙AB建造面积为450m2的矩形区域来养鹌鹑,该单位准备修建长为65m的篱笆提供给该贫困户,并提供以下两种方案:(1)如图1,若选取墙AB的一部分作矩形的边,其他三边用篱笆围成,则在墙AB上借用的CF 的长度为多少?(2)如图2,若全部借用AB的长度,并在AB的延长线上拓展BF,构成矩形ADEF,篱笆由BF、EF、DE和AD构成,求BF的长.18.某校九年级二班的一个数学综合实践小组去沃尔玛超市调查某种商品“十•一”节期间的销售情况,下面是调查后小阳与其他两位同学交流的情况:小阳:据调查,该商品的进价为12元/件.小佳:该商品定价为20元时,每天可售出240件.小欣:在定价为20元的基础上,涨价1元,每天少售出20件;降价1元,则每天多售出40件.根据他们的对话,若销售的商品每天能获利1920元时,应该怎样定价更合理?19.2019年底,湖北省武汉市发现一种新型冠状病毒感染引起的急性呼吸道传染病,到2020初,新冠肺炎席卷全国,掀起一场史无前例的防疫“战斗”.(1)在“新冠”初期,有2人感染了“新冠”,经过两轮传染后共有288人感染了“新冠”,则每轮传染中平均一个人传染了几个人?(2)某小区物管为预防业主感染传播,购买A型和B型两种口罩,购买A型口罩花费了3000元,购买B型口罩花费了2000元,且购买A型口罩数量是购买B型口罩数量的3倍,已知购买一个B 型口罩比购买一个A型口罩多花2元.则该物业购买A、B两种口罩的单价各为多少元?20.维康药店购进一批口罩进行销售,进价为每盒(二十只装)40元,如果按照每盒50元的价格进行销售,。
一、一元二次方程 真题与模拟题分类汇编(难题易错题)1.已知两条线段长分别是一元二次方程28120x x -+=的两根,(1)解方程求两条线段的长。
(2)若把较长的线段剪成两段,使其与另一段围成等腰三角形,求等腰三角形的面积。
(3)若把较长的线段剪成两段,使其与另一段围成直角三角形,求直角三角形的面积。
【答案】(1)2和6;(2)3)83【解析】【分析】(1)求解该一元二次方程即可;(2)先确定等腰三角形的边,然后求面积即可;(3)设分为两段分别是x 和6x -,然后用勾股定理求出x ,最后求面积即可.【详解】解:(1)由题意得()()260x x --=,即:2x =或6x =,∴两条线段长为2和6;(2)由题意,可知分两段为分别为3、3,则等腰三角形三边长为2,3,3,∴此等腰三角形面积为122⨯⨯= (3)设分为x 及6x -两段()22226x x +=- ∴83x =, ∴2823x S ∆==, ∴面积为83.【点睛】本题考查了一元二次方程、等腰三角形、直角三角形等知识,考查知识点较多,灵活应用所学知识是解答本题的关键.2.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请求出此时x 的值;若不存在,请说明理由.【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析【解析】【分析】根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况.【详解】解:∵90B ∠=,10AC =,6BC =,∴8AB =.∴BQ x =,82PB x =-;假设存在x 的值,使得四边形APQC 的面积等于216cm , 则()1168821622x x ⨯⨯--=, 整理得:2480x x -+=,∵1632160=-=-<,∴假设不成立,四边形APQC 面积的面积不能等于216cm .【点睛】本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.3.阅读下面的例题,范例:解方程x 2﹣|x|﹣2=0,解:(1)当x≥0时,原方程化为x 2﹣x ﹣2=0,解得:x 1=2,x 2=﹣1(不合题意,舍去). (2)当x <0时,原方程化为x 2+x ﹣2=0,解得:x 1=﹣2,x 2=1(不合题意,舍去). ∴原方程的根是x 1=2,x 2=﹣2请参照例题解方程x 2﹣|x ﹣10|﹣10=0.【答案】x 1=4,x 2=﹣5.【解析】【分析】分为两种情况:当x≥10时,原方程化为x 2﹣x=0,当x <10时,原方程化为x 2+x ﹣20=0,分别求出方程的解即可.【详解】当x≥10时,原方程化为x 2﹣x+10﹣10=0,解得x 1=0(不合题意,舍去),x 2=1(不合题意,舍去);当x<10时,原方程化为x2+x﹣20=0,解得x3=4,x4=﹣5,故原方程的根是x1=4,x2=﹣5.【点睛】本题考查了解一元二次方程——因式分解法,解此题的关键是能正确去掉绝对值符号.4.某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?【答案】(1)2000;(2)2米【解析】【分析】(1)设未知数,根据题目中的的量关系列出方程;(2)可以通过平移,也可以通过面积法,列出方程【详解】解:(1)设该项绿化工程原计划每天完成x米2,根据题意得:4600022000x-﹣46000220001.5x-= 4解得:x=2000,经检验,x=2000是原方程的解;答:该绿化项目原计划每天完成2000平方米;(2)设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56解得:x=2或x=263(不合题意,舍去).答:人行道的宽为2米.5.已知关于x的一元二次方程x2﹣mx﹣2=0…①(1)若x=﹣1是方程①的一个根,求m的值和方程①的另一根;(2)对于任意实数m,判断方程①的根的情况,并说明理由.【答案】(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与0的关系进行判断.(1)把x=-1代入得1+m-2=0,解得m=1∴2--2=0.∴∴另一根是2;(2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根6.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【答案】(1)4元或6元;(2)九折.【解析】【详解】解:(1)设每千克核桃应降价x元.根据题意,得(60﹣x﹣40)(100+x2×20)=2240,化简,得 x2﹣10x+24=0,解得x1=4,x2=6.答:每千克核桃应降价4元或6元.(2)由(1)可知每千克核桃可降价4元或6元.∵要尽可能让利于顾客,∴每千克核桃应降价6元.此时,售价为:60﹣6=54(元),54100%=90% 60.答:该店应按原售价的九折出售.7.解方程:(x2+x)2+(x2+x)=6.【答案】x1=﹣2,x2=1【解析】【分析】设x2+x=y,将原方程变形整理为y2+y﹣6=0,求得y的值,然后再解一元二次方程即可.【详解】解:设x 2+x =y ,则原方程变形为y 2+y ﹣6=0,解得y 1=﹣3,y 2=2.①当y =2时,x 2+x =2,即x 2+x ﹣2=0,解得x 1=﹣2,x 2=1;②当y =﹣3时,x 2+x =﹣3,即x 2+x+3=0,∵△=12﹣4×1×3=1﹣12=﹣11<0,∴此方程无解;∴原方程的解为x 1=﹣2,x 2=1.【点睛】本题考查了换元法和一元二次方程的解法,设出元化简原方程是解答本题的关键.8.阅读材料:若22228160m mn n n -+-+=,求m 、n 的值.解: 22228160m mn n n -+-+=,222(2)(816)0m mn n n n ∴-++-+=22()(4)0m n n ∴-+-=,0,40m n n ∴-=-=,4,4n m ∴==.根据你的观察,探究下面的问题:(1)己知2222210x xy y y ++++=,求x y -的值.(2)已知△ABC 的三边长a 、b 、c 都是正整数,且满足2268250a b a b +--+=,求边c 的最大值.(3) 若己知24,6130a b ab c c -=+-+=,求a b c -+的值.【答案】(1)2(2)6(3)7【解析】【分析】(1)将多项式第三项分项后,结合并利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出x 与y 的值,即可求出x ﹣y 的值;(2)将已知等式25分为9+16,重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出a 与b 的值,根据边长为正整数且三角形三边关系即可求出c 的长;(3)由a ﹣b =4,得到a =b +4,代入已知的等式中重新结合后,利用完全平方公式化简,根据两个非负数之和为0,两非负数分别为0求出b 与c 的值,进而求出a 的值,即可求出a ﹣b +c 的值.【详解】(1)∵x 2+2xy +2y 2+2y +1=0∴(x 2+2xy +y 2)+(y 2+2y +1)=0∴(x +y )2+(y +1)2=0∴x +y =0 y +1=0解得:x=1,y=﹣1∴x﹣y=2;(2)∵a2+b2﹣6a﹣8b+25=0∴(a2﹣6a+9)+(b2﹣8b+16)=0∴(a﹣3)2+(b﹣4)2=0∴a﹣3=0,b﹣4=0解得:a=3,b=4∵三角形两边之和>第三边∴c<a+b,c<3+4,∴c<7.又∵c是正整数,∴△ABC的最大边c的值为4,5,6,∴c 的最大值为6;(3)∵a﹣b=4,即a=b+4,代入得:(b+4)b+c2﹣6c+13=0,整理得:(b2+4b+4)+(c2﹣6c+9)=(b+2)2+(c﹣3)2=0,∴b+2=0,且c﹣3=0,即b=﹣2,c=3,a=2,则a﹣b+c=2﹣(﹣2)+3=7.故答案为7.【点睛】本题考查了因式分解的应用,以及非负数的性质,熟练掌握完全平方公式是解答本题的关键.9.利民商店经销甲、乙两种商品.现有如下信息信息1:甲乙两种商品的进货单价和为11;信息2:甲商品的零售单价比其进货单价多2元,乙商品的零售单价比其进货单价的2倍少4元:信息3:按零售单价购买甲商品3件和乙商品2件共付37元.()1甲、乙两种商品的进货单价各是多少?()2据统计该商店平均每天卖出甲商品500件,经调查发现,甲商品零售单价每降0.1元,这样甲商品每天可多销售100件,为了使每天获取更大的利润,商店决定把甲种商品的零售单价下降a元,在不考虑其他因素的条件下,当a定为多少时,才能使商店每天销售甲种商品获取利润为1500元?【答案】(1)甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件(2)当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元【解析】【分析】()1设甲种商品的进货单价是x元/件,乙种商品的进货单价是y元/件,根据给定的三个信息,可得出关于x,y的二元一次方程组,解之即可得出结论;()2当零售单价下降a元/件时,每天可售出()5001000a+件,根据总利润=单件利润⨯销售数量,即可得出关于a的一元二次方程,解之即可得出结论.【详解】()1设甲种商品的进货单价是x 元/件,乙种商品的进货单价是y 元/件,根据题意得:()()113x 222y 437x y +=⎧++-=⎨⎩, 解得:{56x y ==.答:甲种商品的进货单价是5元/件,乙种商品的进货单价是6元/件. ()2当零售单价下降a 元/件时,每天可售出()5001000a +件,根据题意得:()()250010001500a a -+=,整理得:22310a a -+=,解得:10.5a =,21a =.答:当a 定为0.5或1时,才能使商店每天销售甲种商品获取利润为1500元.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:()1找准等量关系,正确列出二元一次方程组;()2找准等量关系,正确列出一元二次方程.10. ∵1.7×35=59.5,1.7×80=136<151∴这家酒店四月份用水量不超过m 吨(或水费是按y=1.7x 来计算的), 五月份用水量超过m 吨(或水费是按来计算的) 则有151=1.7×80+(80-m )×即m 2-80m+1500=0解得m 1=30,m 2=50.又∵四月份用水量为35吨,m 1=30<35,∴m 1=30舍去.∴m=50【解析】。
河北省沧州市献县2016届中考一轮数学专题复习:一元二次方程及应用测试题1.(来宾)已知实数1x ,2x 满足127x x +=,1212x x =,则以1x ,2x 为根的一元二次方程是( )A .27120x x -+= B .27120x x ++= C .27120x x +-= D .27120x x --= 【答案】A . 试题分析:以1x ,2x 为根的一元二次方程27120x x -+=,故选A .2.(贵港)若关于x 的一元二次方程2(1)220a x x --+=有实数根,则整数a 的最大值为( )A .﹣1B .0C .1D .2 【答案】B .试题分析:∵关于x 的一元二次方程2(1)220a x x --+=有实数根,∴△=2(2)8(1)a ---=1280a -≥且10a -≠,∴32a ≤且1a ≠,∴整数a 的最大值为0.故选B .3.(钦州)用配方法解方程21090x x ++=,配方后可得( )A .2(5)16x +=B .2(5)1x +=C .2(10)91x +=D .2(10)109x += 【答案】A .试题分析:方程21090x x ++=,整理得:2109x x +=-,配方得:2102516x x ++=,即2(5)16x +=,故选A .4.(成都)关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠ 【答案】D .试题分析:∵是一元二次方程,∴0k ≠,∵有两个不想等的实数根,则0∆>,则有224(1)0k ∆=-⨯->,∴1k >-,∴1k >-且0k ≠,故选D .5.(雅安)已知等腰三角形的腰和底的长分别是一元二次方程2430x x -+=的根,则该三角形的周长可以是( )A .5B .7C .5或7D .10 【答案】B .试题分析:解方程2430x x -+=,(x ﹣1)(x ﹣3)=0,解得13x =,21x =;∵当底为3,腰为1时,由于3>1+1,不符合三角形三边关系,不能构成三角形; ∴等腰三角形的底为1,腰为3; ∴三角形的周长为1+3+3=7. 故选B .6.(达州)方程21(2)304m x mx --+=有两个实数根,则m 的取值范围( )A .52m >B .52m ≤且2m ≠ C .3m ≥ D .3m ≤且2m ≠【答案】B .试题分析:根据题意得:220301(34(2)04m m m m ⎧⎪-≠⎪-≥⎨⎪⎪∆=---⨯≥⎩,解得52m ≤且2m ≠.故选B .7.(南充)关于x 的一元二次方程0222=++n mx x 有两个整数根且乘积为正,关于y的一元二次方程0222=++m ny y 同样也有两个整数根且乘积为正.给出四个结论:①这两个方程的根都是负根;②2)1()1(22≥-+-n m ;③1221≤-≤-n m .其中正确结论的个数是( )A .0个B .1个C .2个D .3个 【答案】C .8.(佛山)如图,将一块正方形空地划出部分区域进行绿化,原空地一边减少了2m ,另一边减少了3m ,剩余一块面积为20m2的矩形空地,则原正方形空地的边长是( )A .7mB .8mC .9mD .10m 【答案】A .试题分析:设原正方形的边长为xm ,依题意有:(x ﹣3)(x ﹣2)=20,解得:x=7或x=﹣2(不合题意,舍去),即:原正方形的边长7m .故选A .9.(安顺)若一元二次方程220x x m --=无实数根,则一次函数(1)1y m x m =++-的图象不经过第( )象限. A .四 B .三 C .二 D .一 【答案】D .试题分析:∵一元二次方程220x x m --=无实数根,∴△<0,∴△=4﹣4(﹣m )=4+4m <0,∴m <﹣1,∴m+1<1﹣1,即m+1<0,m ﹣1<﹣1﹣1,即m ﹣1<﹣2,∴一次函数(1)1y m x m =++-的图象不经过第一象限,故选D .10.(山西省)我们解一元二次方程2360x x -=时,可以运用因式分解法,将此方程化为3(2)0x x -=,从而得到两个一元一次方程:30x =或20x -=,进而得道原方程的解为10x =,22x =.这种解法体现的数学思想是( )A .转化思想B .函数思想C .数形结合思想D .公理化思想【答案】A .试题分析:我们解一元二次方程2360x x -=时,可以运用因式分解法,将此方程化为3(2)0x x -=,从而得到两个一元一次方程:30x =或20x -=,进而得道原方程的解为10x =,22x =.这种解法体现的数学思想是转化思想,故选A .11.(枣庄)已知关于x 的一元二次方程20x mx n ++=的两个实数根分别为12x =-,24x =,则m+n 的值是( )A .﹣10B .10C .﹣6D .2 【答案】A .12.(烟台)等腰三角形边长分别为a ,b ,2,且a ,b 是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或10 【答案】B .13.(甘孜州)若矩形ABCD 的两邻边长分别为一元二次方程27120x x -+=的两个实数根,则矩形ABCD 的对角线长为 . 【答案】5.试题分析:方程27120x x -+=,即(3)(4)0x x --=,解得:13x =,24x =,则矩形ABCD 的对角线长是:2234+=5.故答案为:5.14.(达州)新世纪百货大楼“宝乐”牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”儿童节,商场决定采取适当的降价措施.经调査,如果每件童装降价1元,那么平均每天就可多售出2件.要想平均每天销售这种童装盈利1200元,则每件童装应降价多少元?设每件童裝应降价x 元,可列方程为 . 【答案】(40﹣x )(20+2x )=1200.15.(广元)从3,0,-1,-2,-3这五个数中抽取一个敖,作为函数2(5)y m x =-和关于x 的一元二次方程2(1)10m x mx +++=中m 的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是________. 【答案】2-.试题分析:∵所得函数的图象经过第一、三象限,∴250m ->,∴25m <,∴3,0,﹣1,﹣2,﹣3中,3和﹣3均不符合题意,将m=0代入2(1)10m x mx +++=中得,210x +=,△=﹣4<0,无实数根; 将1m =-代入2(1)10m x mx +++=中得,10x -+=,1x =,有实数根,但不是一元二次方程;将2m =-代入2(1)10m x mx +++=中得,2210x x +-=,△=4+4=8>0,有实数根. 故m=2-.故答案为:2-.16.(毕节)一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液10L ,则每次倒出的液体是 L . 【答案】20.试题分析:设每次倒出液体xL ,由题意得:40401040xx x ---⋅=,解得:x=60(舍去)或x=20.故答案为:20.17.(日照)如果m ,n 是两个不相等的实数,且满足23m m -=,23n n -=,那么代数式2222015n mn m -++= . 【答案】2026.考点:根与系数的关系.18.(自贡)利用一面墙(墙的长度不限),另三边用58m长的篱笆围成一个面积为200m2的矩形场地,求矩形的长和宽.【答案】当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.试题分析:设垂直于墙的一边为x米,则邻边长为(58﹣2x),利用矩形的面积公式列出方程并解答.试题解析:设垂直于墙的一边为x米,得:x(58﹣2x)=200,解得:125x=,24x=,∴另一边为8米或50米.答:当矩形长为25米时宽为8米,当矩形长为50米时宽为4米.19.(崇左)为落实国务院房地产调控政策,使“居者有其屋”.某市加快了廉租房的建设力度,市政府共3亿元人民币建设了廉租房12万平方米,6.75亿元人民币建设廉租房,若在这两年内每年的增长率相同.(1)求每年市政府的增长率;(2)若这两年内的建设成本不变,问建设了多少万平方米廉租房?【答案】(1)50%;(2)18.试题分析:(1)设每年市政府的增长率为x.根据6.75亿元人民币建设廉租房,列方程求解;(2)先求出单位面积所需钱数,再用累计÷单位面积所需钱数可得结果.试题解析:(1)设平均增长率为x,根据题意得:23(1) 6.75x+=,解得10.5x=,22.5x=-(不符合题意舍去)答:政府平均增长率为50%;(2)212(10.5)18+=(万平方米)答:建设了18万平方米廉租房.对应练习1.一元二次方程x2=2x的根是( C )A.x=2 B.x=0C.x1=0, x2=2 D.x1=0, x2=-22.方程x2-4=0的根是( C )A.x=2 B.x=-2C.x1=2,x2=-2 D.x=43.方程(x-3)(x+1)=x-3的解是( D )A.x=0 B.x=3C.x=3或x=-1 D.x=3或x=04.用配方法解方程3x2-6x+1=0,则方程可变形为( D )A .(x -3)2=13B .3(x -1)2=13C .(3x -1)2=1D .(x -1)2=235.一元二次方程x (x -2)=0根的情况是( A ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根 D .没有实数根6.已知方程x 2-5x +2=0的两个解分别为x 1、x 2,则x 1+x 2-x 1·x 2的值为( D ) A .-7 B .-3 C .7 D .37.当m 满足m <4.5时,关于x 的方程x 2-4x +m -12=0有两个不相等的实数根.8.方程2x 2+5x -3=0的解是x 1=-3,x 2=12.9.已知关于x 的方程x 2+mx -6=0的一个根为2,则m =1,另一根是-3.10.(四川宜宾)某城市居民每月最低生活保障在是240元,经过连续两年的增加,到提高到345.6元,则该城市两年来最低生活保障的平均年增长率是20%.11.(山东滨州)某商品原售价289元,经过连续两次降价后售价为256元,设平均每次降价的百分率为x, 可列方程为289(1-x )2=256.12.解方程: (x -3)2+4x (x -3)=0. 解:(x -3)2+4x (x -3)=0, (x -3)(x -3+4x )=0, (x -3)(5x -3)=0.于是得x -3=0或5x -3=0,x 1=3,x 2=35.13.一元二次方程x (x -2)=2-x 的根是( D ) A .-1 B .2C .1和2D .-1和214.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p 、q 的值分别是( A )A .-3,2B .3,-2C .2,-3D .2,315.关于x 的方程x 2+2kx +k -1=0的根的情况描述正确的是( B ) A .k 为任何实数,方程都没有实数根B .k 为任何实数,方程都有两个不相等的实数根C .k 为任何实数,方程都有两个相等的实数根D .根据 k 的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种16.已知a 、b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于-1.17.已知一元二次方程x 2-6x -5=0的两根为a 、b ,则1a +1b 的值是-65. 18.如图X2-1-4,邻边不等的矩形花圃ABCD ,它的一边AD 利用已有的围墙,另外三边所围的栅栏的总长度是6 m .若矩形的面积为4 m 2,则AB 的长度是 1或2m(可利用的围墙长度超过6 m).图X2-1-4 C 级 拔尖题19.三角形的每条边的长都是方程x 2-6x +8=0的根,且该三角形不是等边三角形,求三角形的周长.解:解方程x 2-6x +8=0得x =2,x =4, ∴三角形的三条边的长只能是4,4,2, ∴周长是10.20.在国家政策的宏观调控下,某市的商品房成交均价由今年3月份的14 000元/m 2下降到5月份的12 600元/m 2.(1)问4、5两月平均每月降价的百分率约是多少?(2)如果房价继续回落,按此降价的百分率,你预测到7月份该市的商品房成交均价是否会跌破10 000元/m 2?请说明理由.(参考数据:0.9≈0.95)解:(1)设4,5月份平均每月降价的百分率为x ,根据题意得14 000(1-x )2=12 600, 化简得(1-x )2=0.9,解得x 1≈0.05,x 2≈1.95(不合题意,舍去). 因此4,5月份平均每月降低的百分率约为5%.(2)如果按此降价的百分率继续回落,估计7月份的商品房成交均价为12 600(1-x )2=12 600×0.9=11 340>10 000,因此可知,7月份该市的商品房成交均价不会跌破10 000元/m 2. 21.关于x 的一元二次方程x 2-3x -k =0有两个不相等的实数根. (1)求k 的取值范围;(2)请选择一个k 的负整数值,并求出方程的根. 解:(1)方程有两个不相等的实数根,∴(-3)2-4(-k )>0,即4k >-9,解得k >-94.(2)若k 是负整数,k 只能为-1或-2. 如果k =-1,原方程为x 2-3x +1=0, 解得x 1=3+52,x 2=3-52.如果k =-2,原方程为x 2-3x +2=0,解得x 1=1,x 2=2.22.如图X2-1-5,A 、B 、C 、D 为矩形的四个顶点,AB =16 cm ,AD =6 cm.动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向B 移动,一直到点B 为止,点Q以2 cm/s的速度向点D移动.(1)P、Q两点从出发开始多长时间,四边形PBCQ的面积是33 cm2;(2)P、Q两点从出发开始多长时间,点P与点Q间的距离是10 cm.图X2-1-5解:(1)设P、Q两点从出发开始x s时,四边形PBCQ的面积是33 cm2,则AP=3x cm,PB=(16-3x) cm,CQ=2x cm,由梯形的面积公式,得[2x+(16-3x)]×6÷2=33,解得x=5.所以P、Q两点从出发开始5 s时,四边形PBCQ的面积是33 cm2.(2)过点Q作QH⊥AB,则HB=BC=6,HB=QC=2x,所以PH=16-5x,在Rt△PHQ中,PQ2=PH2+HQ2=(16-5x)2+62=102,即(16-5x)2=64,解得x1=1.6,x2=4.8.当x=4.8时,16-5x=-8,不符题意,舍去.所以P、Q两点从出发1.6s时,点P与点Q间的距离是10 cm.。
初三数学一元二次方程常考应用题型附答案解析一、列一元二次方程解决率类问题例1、今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元。
假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()A.2500x2=3500 (B.2500(1+x)2=3500C.2500(1+x%)2=3500D.2500(1+x)+2500(1+x)2=3500【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500,故选B.例2、为落实素质教育要求,促进学生全面发展,某市某中学2009年投资11万元新增一批电脑,计划以后每年以相同的增长率进行投资,2011年投资18.59万元。
则该学校为新增电脑投资的年平均增长率是,从2009年到2011年,该中学三年为新增电脑共投资万元。
【解答】解:设该学校为新增电脑投资的年平均增长率是x11(1+x)2=18.59x=30%(则该学校为新增电脑投资的年平均增长率是30%11×(1+30%)=14.3万元11+14.3+18.59=43.89万元故答案为:30%;43.89练习1、股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停。
已知一只股票某天跌停,之后两天时间又涨回到原价。
若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【解答】解:设平均每天涨x,则90%(1+x)2=1,即(1+x)2=,故选B。
(2、某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.﹣220%D.30%【解答】解:设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2解得:x1=0.2=20%,x2=﹣2.2(舍去),故每年投资的增长率为为20%,故选:A3、随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆。
中考数学总复习《二次函数图像与一元二次方程的综合应用》专项测试卷-附参考答案一、单选题(共12题;共24分)1.已知抛物线y=ax2+bx+c经过点(1,0)和点(0,−3),且对称轴在y轴的左侧,有下列结论:①a>0;②a+b=3;③抛物线经过点(−1,0);④关于x的一元二次方程ax2+bx+c=−1有两个不相等的实数根.其中,正确结论的个数是()A.0B.1C.2D.32.若关于x的一元二次方程(x−2)(x−3)=m有实数根x1,x2,且x1≠x2,有下列结论:①x1=2,x2=3;②m>−14;③二次函数y=(x−x1)(x−x2)+m的图象与x轴的交点坐标分别为(2,0)和(3,0).其中正确的个数有()A.0B.1C.2D.33.如图,抛物线y=-x2+mx的对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0 (t为实数)在1<x<3的范围内有解,则t的取值范围是()A.-5<t≤4B.3<t≤4C.-5<t<3D.t>-54.如图,抛物线y=−x2+mx的对称轴为直线x=2,若关于x的一元二次方程−x2+mx−t=0(t为实数)在1≤x≤3的范围内有解,则t的取值错误的是()A.t=2.5B.t=3C.t=3.5D.t=45.若关于的方程x2+px+q=0没有实数根,则函数y=x2−px+q的图象的顶点一定在()A.x轴的上方B.x轴下方C.x轴上D.y轴上6.已知二次函数y=ax2+bx+c(a≠0)图象上部分点的坐标(x,y)的对应值如表所示:x…0√54…y…0.37﹣10.37…A.0或4B.√5或4﹣√5C.1或5D.无实根7.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx=−m有实数根,则m的最大()A.3B.−3C.−6D.98.若x1,x2(x1<x2)是方程(x﹣a)(x﹣b)=﹣1(a<b)的两根,则实数x1,x2,a,b的大小关系是()A.a<x1<x2<b B.x1<a<x2<b C.x1<a<b<x2D.x1<x2<a<b9.下列关于二次函数y=ax2-2ax+1(a>1)的图象与x轴交点的判断,下确的是()A.没有交点B.只有一个交点,且它位于y轴右侧C.有两个交点,且它们均位于y轴左侧D.有两个交点,且它们均位于y轴右侧10.已知b>0,二次函数y=ax2+bx+a2−1的图象为下列之一,则a的值为()A.1B.-1C.−1−√52D.−1+√5211.已知函数y=ax2+bx+c,当y>0时,−12<x<13.则函数y=cx2﹣bx+a的图象可能是下图中的()A.B.C.D.12.二次函数y=ax2+bx+c的部分图象如图所示,对称轴方程为x=−1,图象与x轴相交于点(1,0),则方程cx2+bx+a=0的根为()A.x1=1,x2=−3B.x1=−1C.x1=1,x2=−13D.x1=−1二、填空题(共6题;共6分)13.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=−1,与x轴的一个交点为(1 , 0),与y轴的交点为(0 , 3),则方程ax2+bx+c=0(a≠0)的解为.14.如图抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②a﹣b+c<0;③b+2a=0;④当y<0时,x的取值范围是﹣1<x<3;⑤当x<0时,y随x增大而增大;⑥方程ax2+bx+c=2有两个不等的实数根,其中结论正确的结论的序号是.15.二次函数y=x2+bx的对称轴为x=1,若关于x的一元二次方程x2+bx−c=0(c为实数),在﹣1≤x≤4范围内有解,则c的取值范围为.16.已知二次函数y=ax2+bx+c的图象如图所示,则方程ax2+bx+c=0的两根之和是.17.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.18.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(−2,4),B(1,1),则方程ax2=bx+c的解是.三、综合题(共6题;共70分)19.某商场销售一批名牌衬衫:平均每天可售出20件,每件盈利40元,为了扩大销售量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现:如果每件衬衫降价1元,那么平均每天就可多售出2件.(1)求出商场盈利与每件衬衫降价之间的函数关系式;(2)若每天盈利达1200元,那么每件衬衫应降价多少元?20.二次函数y=ax2+bx+c(a≠0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c>0的解集;(3)若方程ax2+bx+c=k有两个不相等的实数根,求k的取值范围.21.已知:二次函数y=ax2+bx+ 12(a>0,b<0)的图象与x轴只有一个公共点A.(1)当a=12时,求点A的坐标;(2)求A点的坐标(只含b的代数式来表示);(3)过点A的直线y=x+k与二次函数的图象相交于另一点B,当b≥﹣1时,求点B的横坐标m 的取值范围.22.已知抛物线y=x2-(m+1)x+m(1)求证:抛物线与x轴一定有交点;(2)若抛物线与x轴交于A(x1,0),B(x2,0)两点,x1﹤0﹤x2,且1OA−1OB=−34,求m的值. 23.十一黄金周期间,某商场销售一种成本为每件60元的服装,规定销售期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=-x+120(1)销售单价定为多少元时,该商场获得的利润恰为500元?(2)设该商场获得利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少?24.如图,抛物线y=ax2+bx−4a(a≠0)经过A(−1,0),C(0,4)两点,与x轴交于另一点B,连接AC,BC.(1)求抛物线的解析式;(2)平行于x轴的直线y=−14与抛物线分别交于点D,E,求线段DE的长.参考答案1.【答案】D2.【答案】C3.【答案】B4.【答案】A5.【答案】A6.【答案】B7.【答案】A8.【答案】A9.【答案】D10.【答案】B11.【答案】A12.【答案】C13.【答案】x1=114.【答案】①③⑤⑥15.【答案】−1≤c≤816.【答案】217.【答案】a<518.【答案】x1=−219.【答案】(1)解:设每件降低x元,获得的总利润为y元则y=(40﹣x)(20+2x)=﹣2x2+60x+800(2)解:∵当y=1200元时,即﹣2x2+60x+800=1200∴x1=10,x2=20∵需尽快减少库存∴每件应降低20元时,商场每天盈利1200元。
专题09 一元二次方程及其应用(33题)一、单选题1.(2024·吉林·中考真题)下列方程中,有两个相等实数根的是( )A .()221x −=− B .()220x −= C .()221x −= D .()222x −=【答案】B【分析】本题考查了一元二次方程的根,解一元二次方程,熟练掌握开平方法解方程是解题的关键. 分别对每一个选项运用直接开平方法进行解方程即可判断.【详解】解:A 、()2210x −=−<,故该方程无实数解,故本选项不符合题意; B 、()220x −=,解得:122x x ==,故本选项符合题意; C 、()221x −=,21x −=±,解得123,1x x ==,故本选项不符合题意;D 、()222x −=,2x −,解得1222x x 故选:B .2.(2024·黑龙江绥化·中考真题)小影与小冬一起写作业,在解一道一元二次方程时,小影在化简过程中写错了常数项,因而得到方程的两个根是6和1;小冬在化简过程中写错了一次项的系数,因而得到方程的两个根是2−和5−.则原来的方程是( ) A .2650x x ++= B .27100x x −+= C .2520x x −+= D .26100x x −−=【答案】B【分析】本题考查了一元二次方程根与系数的关系,根据题意得出原方程中127x x +=,1210x x =,逐项分析判断,即可求解.【详解】解:∵小影在化简过程中写错了常数项,得到方程的两个根是6和1; ∴12617x x +=+=,又∵小冬写错了一次项的系数,因而得到方程的两个根是2−和5−. ∴1210x x =A. 2650x x ++=中,126x x +=−,125x x =,故该选项不符合题意;B. 27100x x −+=中,127x x +=,1210x x =,故该选项符合题意;C. 2520x x −+=中,125x x +=,122x x =,故该选项不符合题意;D. 26100x x −−=中,126x x +=,1210x x =−,故该选项不符合题意; 故选:B .3.(2024·河北·中考真题)淇淇在计算正数a 的平方时,误算成a 与2的积,求得的答案比正确答案小1,则=a ( )A .1B 1−C 1+D .11【答案】C【分析】本题考查了一元二次方程的应用,解一元二次方程,熟练掌握知识点是解题的关键. 由题意得方程221a a +=,利用公式法求解即可. 【详解】解:由题意得:221a a +=,解得:1a =1a = 故选:C .4.(2024·黑龙江大兴安岭地·中考真题)关于x 的一元二次方程()22420m x x −++=有两个实数根,则m 的取值范围是( ) A .4m ≤ B .4m ≥ C .4m ≥−且2m ≠ D .4m ≤且2m ≠【答案】D【分析】本题考查了一元二次方程根的判别式.根据一元二次方程20(0)ax bx c a ++=≠的根的判别式24b ac ∆=−的意义得到20m −≠且0∆≥,即244(2)20m −×−×≥,然后解不等式组即可得到m 的取值范围.【详解】解: 关于x 的一元二次方程()22420m x x −++=有实数根, 20m ∴−≠且0∆≥,即244(2)20m −×−×≥, 解得:4m ≤,m ∴的取值范围是4m ≤且2m ≠. 故选:D .5.(2024·黑龙江牡丹江·中考真题)一种药品原价每盒48元,经过两次降价后每盒27元,两次降价的百分率相同,则每次降价的百分率为( ) A .20%B .22%C .25%D .28%【分析】本题考查一元二次方程的实际应用,设每次降价的百分率为x ,根据原价每盒48元,经过两次降价后每盒27元,列出方程进行求解即可.【详解】解:设每次降价的百分率为x ,由题意,得:()248127x −=, 解得:121725%,44x x ===(舍去); 故选C .6.(2024·四川凉山·中考真题)若关于x 的一元二次方程()22240a x x a +++−=的一个根是0x =,则a 的值为( ) A .2 B .2− C .2或2−D .12【答案】A【分析】本题考查一元二次方程的定义和一元二次方程的解,二次项系数不为0.由一元二次方程的定义,可知20a +≠;一根是0,代入()22240a x x a +++−=可得240a −=,即可求答案.【详解】解:()22240a x x a +++−=是关于x 的一元二次方程, 20a ∴+≠,即2a ≠−①由一个根0x =,代入()22240a x x a +++−=, 可得240a −=,解之得2a =±;② 由①②得2a =; 故选A7.(2024·四川眉山·中考真题)眉山市东坡区永丰村是“天府粮仓”示范区,该村的“智慧春耕”让生产更高效,提升了水稻亩产量,水稻亩产量从2021年的670千克增长到了2023年的780千克,该村水稻亩产量年平均增长率为x ,则可列方程为( ) A .()67012780x ×+=B .()26701780x ×+= C .()26701780x ×+=D .()6701780x ×+=【答案】B【分析】本题主要考查一元二次方程的应用,正确理解题意、列出方程是解题的关键. 设该村水稻亩产量年平均增长率为x ,根据题意列出方程即可.【详解】解:根据题意得:()26701780x ×+=.8.(2024·北京·中考真题)若关于x 的一元二次方程240x x c −+=有两个相等的实数根,则实数c 的值为( ) A .16− B .4− C .4 D .16【答案】C【分析】根据方程的根的判别式()22Δ44410b ac c =−=−−××=即可.本题考查了一元二次方程的根的判别式,熟练掌握根的判别式是解题的关键.【详解】∵方程240x x c −+=有两个相等的实数根,1,4,a b c c ==−=, ∴()22Δ44410b ac c =−=−−××=, ∴416c =, 解得4c =. 故选C .9.(2024·上海·中考真题)以下一元二次方程有两个相等实数根的是( ) A .260x x −= B .290x -= C .2660x x −+= D .2690x x −+=【答案】D【分析】本题考查了一元二次方程判别式判断根的情况,解答本题的关键是熟练掌握一元二次方程()200ax bx c a ++=≠,当240b ac ∆=−>时,方程有两个不相等实数根;当240b ac ∆=−=时,方程的两个相等的实数根;当24<0b ac ∆=−时,方程没有实数根.分别计算出各选项中的根的判别式的值,即可判断.【详解】解:A .()2Δ6410360=−−××=> ,该方程有两个不相等实数根,故A 选项不符合题意;B .()2Δ0419360=−××−=> ,该方程有两个不相等实数根,故B 选项不符合题意;C .()2Δ6416120=−−××=> ,该方程有两个不相等实数根,故C 选项不符合题意; D .()2Δ64190=−−××= ,该方程有两个相等实数根,故D 选项不符合题意; 故选:D .10.(2024·四川广安·中考真题)若关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根,则m 的取值范围是( )A .0m <且1m ≠−B .0m ≥C .0m ≤且1m ≠−D .0m <【答案】A【分析】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx ca ++=≠,若240b ac ∆=−>,则方程有两个不相等的实数根,若240b ac ∆=−=,则方程有两个相等的实数根,若24<0b ac ∆=−,则方程没有实数根.由关于x 的一元二次方程2(1)210m x x +−+=两个不相等的实数根,可得0∆>且10m +≠,解此不等式组即可求得答案.【详解】解: 关于x 的一元二次方程2(1)210m x x +−+=有两个不相等的实数根, ∴()()22410m ∆=−−+>, 解得:0m <,10m +≠ , 1m ∴≠−,m ∴的取值范围是:0m <且1m ≠−. 故选:A .11.(2024·四川内江·中考真题)某市2021年底森林覆盖率为64%,为贯彻落实“绿水青山就是金山银山”的发展理念,该市大力发展植树造林活动,2023年底森林覆盖率已达到69%.如果这两年森林覆盖率的年平均增长率为x ,则符合题意得方程是( )A .()0.6410.69x +=B .()20.6410.69x += C .()0.64120.69x +=D .()20.64120.69x +=【答案】B【分析】本题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件.设年平均增长率为x ,根据2023年底森林覆盖率=2021年底森林覆盖率()21x ×+,据此即可列方程求解.【详解】解:根据题意,得()264%169%x += 即()20.6410.69x +=, 故选:B .12.(2024·贵州·中考真题)一元二次方程220x x −=的解是( )A .13x =,21x =B .12x =,20x =C .13x =,22x =−D .12x =−,21x =−【答案】B【分析】本题考查了解一元二次方程,利用因式分解法求解即可. 【详解】解∶ 220x x −=,∴()20x x −=,∴0x =或20x −=, ∴12x =,20x =, 故选∶B .13.(2024·四川乐山·中考真题)若关于x 的一元二次方程220x x p ++=两根为1x 、2x ,且12113x x +=,则p 的值为( )A .23−B .23C .6−D .6【答案】A【分析】本题考查了一元二次方程20(0)ax bx c a ++=≠根与系数的关系:若方程的两实数根为12,x x ,则1212,b x x x x a+=−⋅ca =.根据一元二次方程20(0)ax bx c a ++=≠根与系数的关系得到121222,1x x x x p +=−=−⋅=,然后通分,11x +1221212x x x x x p+−==,从而得到关于p 的方程,解方程即可. 【详解】解:121222,1x x x x p +=−=−⋅= , 121212112x x x x x x p+−∴+==, 而12113x x +=, 23p−∴=, 23p ∴=−,故选:A .14.(2024·云南·中考真题)两年前生产1千克甲种药品的成本为80元,随着生产技术的进步,现在生产1千克甲种药品的成本为60元.设甲种药品成本的年平均下降率为x ,根据题意,下列方程正确的是( )A .()280160x −=B .()280160x −=C .()80160x −=D .()801260x −=【答案】B【分析】本题考查了一元二次方程的应用,根据甲种药品成本的年平均下降率为x ,利用现在生产1千克甲种药品的成本=两年前生产1千克甲种药品的成本年×(1−平均下降率)2,即可得出关于的一元二次方程.【详解】解: 甲种药品成本的年平均下降率为x ,根据题意可得()280160x −=, 故选:B .二、填空题15.(2024·山东·中考真题)若关于x 的方程2420x x m −+=有两个相等的实数根,则m 的值为 . 【答案】14/0.25【分析】本题考查了根的判别式,牢记“当Δ0=时,方程有两个相等的实数根”是解题的关键. 根据方程的系数结合根的判别式,即可得出2242440b ac m ∆=−=−××=,解之即可得出结论. 【详解】解:∵关于x 的方程2420x x m −+=有两个相等的实数根, ∴2242444160b ac m m ∆=−=−××=−=, 解得:14m =. 故答案为:14.16.(2024·广东深圳·中考真题)已知一元二次方程230x x m −+=的一个根为1,则m = . 【答案】2【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解: 关于x 的一元二次方程230x x m −+=的一个根为1,1x ∴=满足一元二次方程230x x m −+=, 130m ∴−+=,解得,2m =. 故答案为:2.17.(2024·江苏连云港·中考真题)关于x 的一元二次方程20x x c −+=有两个相等的实数根,则c 的值为 . 【答案】14/0.25【分析】本题考查了一元二次方程根的个数与根的判别式的关系.根据题意得2Δ14c 0=−=,进行计算即可得.【详解】解:若关于x 的一元二次方程20x x c −+=有两个相等的实数根,2140c ∆=−=,14c ∴=,故答案为:14.18.(2024·四川凉山·中考真题)已知2220330y x x y x −=−+−=,,则x 的值为 . 【答案】3【分析】本题考查了解一元二次方程,熟练掌握解一元二次方程的方法是解题的关键. 将2y x =代入22330x y x −+−=,转化为解一元二次方程,20y x =≥,要进行舍解. 【详解】解:∵20y x −=, ∴2y x =,将2y x =代入22330x y x −+−=得,2330x x x −+−=, 即:2230x x −−=,()()310x x −+=, ∴3x =或=1x −, ∵20y x =≥, ∴=1x −舍, ∴3x =, 故答案为:3.19.(2024·湖南·中考真题)若关于x 的一元二次方程2420x x k −+=有两个相等的实数根,则k 的值为 . 【答案】2【分析】本题考查根据一元二次方程根的情况求参数.一元二次方程20(0)ax bx c a ++=≠有两个不相等的实数根,则240b ac ∆=−>;有两个相等的实数根,则240b ac ∆=−=;没有实数根,则24<0b ac ∆=−.据此即可求解.【详解】解:由题意得:()22444120b ac k ∆=−=−−××=, 解得:2k = 故答案为:220.(2024·河南·中考真题)若关于x 的方程2102x x c −+=有两个相等的实数根,则c 的值为 . 【答案】12/0.5【分析】本题考查一元二次方程根与判别式的关系.掌握一元二次方程()200ax bx ca ++=≠的根的判别式为24b ac ∆=−,且当0∆>时,该方程有两个不相等的实数根;当Δ0=时,该方程有两个相等的实数根;当Δ0<时,该方程没有实数根是解题关键.根据一元二次方程根与其判别式的关系可得:()21Δ1402c =−−×=,再求解即可.【详解】解∶∵方程2102x x c −+=有两个相等的实数根, ∴()21Δ1402c =−−×=,∴12c =, 故答案为:12.21.(2024·重庆·中考真题)随着经济复苏,某公司近两年的总收入逐年递增.该公司2021年缴税40万元,2023年缴税48.4万元,该公司这两年缴税的年平均增长率是 . 【答案】10%【分析】本题主要考查一元二次方程的应用.设平均增长率为x ,然后根据题意可列方程进行求解. 【详解】解:设平均增长率为x ,由题意得:()240148.4x +=,解得:10.110%x ==,2 2.1x =−(不符合题意,舍去); 故答案为:10%.22.(2024·四川南充·中考真题)已知m 是方程2410x x −=+的一个根,则(5)(1)m m +−的值为 . 【答案】4−【分析】本题主要考查了二元一次方程的解,以及已知式子的值求代数式的值,根据m 是方程2410x x −=+的一个根,可得出241m m +=,再化简代数式,整体代入即可求解. 【详解】解:∵m 是方程2410x x −=+的一个根, ∴241m m +=(5)(1)m m +−255m m m −+− 245m m =+−15=−4=−,故答案为:4−.23.(2024·广东广州·中考真题)定义新运算:()()200a b a a b a b a −≤ ⊗= −+> 例如:224(2)40−⊗=−−=,23231⊗=−+=.若314x ⊗=−,则x 的值为 . 【答案】12−或74【分析】本题考查了一元二次方程的应用,一元一次方程的应用,解题的关键是明确新运算的定义.根据新定义运算法则列出方程求解即可.【详解】解:∵()()200a b a a b a b a −≤ ⊗=−+>, 而314x ⊗=−, ∴①当0x ≤时,则有2314x −=−, 解得,12x =−;②当0x >时,314x −+=−, 解得,74x =综上所述,x 的值是12−或74,故答案为:12−或74.24.(2024·四川成都·中考真题)若m ,n 是一元二次方程2520x x −+=的两个实数根,则()22m n +−的值为 . 【答案】7【分析】本题考查了根与系数的关系和完全平方公式和已知式子的值,求代数式的值.先利用已知条件求出2520n n −+=,5b m n a+=−=,从而得到252n n =−,再将原式利用完全平方公式展开,利用252n n =−替换2n 项,整理后得到m n 2++,再将5m n +=代入即可. 【详解】解:∵m ,n 是一元二次方程2520x x −+=的两个实数根, ∴2520n n −+=,5bm n a+=−=, 则252n n =−∴()22m n +− 244m n n =+−+5244m n n =+−−+ 2m n =++ 52=+7=故答案为:725.(2024·山东烟台·中考真题)若一元二次方程22410x x −−=的两根为m ,n ,则2234m m n −+的值为 . 【答案】6【分析】本题考查了根与系数的关系及利用完全平方公式求解,若12,x x 是一元二次方程20(0)ax bx c a ++=≠的两根时,1212,bc x x x x a a+=−=,熟练掌握一元二次方程根与系数的关系是解题关键.根据根与系数的关系得122m n mn +==−,,2241m m −=,再把2234m m n −+变形为22224m m m n −++,然后利用整体代入的方法计算,再利用完全平方公式求解即可. 【详解】解:∵一元二次方程22410x x −−=的两个根为m ,n ,∴122m n mn +==−,,2241m m −=∴2234m m n −+22224m m m n −++= 221m n =++2()21m n mn =+−+2122()12=−×−+6=故答案为:6.26.(2024·四川眉山·中考真题)已知方程220x x +−=的两根分别为1x ,2x ,则1211+x x 的值为 . 【答案】12/0.5【分析】本题考查一元二次方程的根与系数的关系,若一元二次方程()200ax bx ca ++=≠的两根分别为1x ,2x ,则12bx x a +=−,12c x x a=,掌握一元二次方程根与系数的关系是解题的关键.先根据根与系数的关系得到121x x +=−,122x x =−,然后把1211+x x 化简为1212x x x x +然后整体代入即可. 【详解】解: 方程220x x +−=的两根分别为1x ,2x , 121x x ∴+=−,122x x =−,121212111122x x x x x x +−∴+===−. 故答案为:12.27.(2024·四川泸州·中考真题)已知1x ,2x 是一元二次方程2350x x −−=的两个实数根,则()212123x x x x −+的值是 . 【答案】14【分析】本题主要考查了一元二次方程根与系数的关系,完全平方公式的变形求值.对于一元二次方程,若该方程的两个实数根为1x ,2x ,则12b x x a +=−,12cx x a=.先根据根与系数的关系得到123x x +=,125x x =−,再根据完全平方公式的变形()22212112229x x x x x x +=++=,求出()21229x x −=,由此即可得到答案. 【详解】解: 1x ,2x 是一元二次方程2350x x −−=的两个实数根,123x x ∴+=,125x x =−,()22212112229x x x x x x ∴+=++=,∴()2221211221229492029x x x x x x x x −=−+=−=+=, ∴()()212123293514x x x x −+=+×−=.故答案为:14.三、解答题28.(2024·上海·中考真题)解方程组:2234026x xy y x y −−= += ①②.【答案】4x =,1y =或者6x =−,6y =.【分析】本题考查了二元二次方程,求解一元二次方程,解题的关键是利用代入法进行求解.【详解】解:2234026x xy y x y −−= += ①②,由②得:62x y =−代入①中得:()()226236240y y y y −−−−=,()2223624418640y y y yy −+−+−=,2642360y y −+=,()26760y y −+=,()()6610y y −−=解得:1y =或6y =, 当1y =时,6214x =−×=, 当6y =时,6266x =−×=−, ∴方程组的解为4,1x y ==或者6,6x y =−=. 29.(2024·四川凉山·中考真题)阅读下面材料,并解决相关问题:下图是一个三角点阵,从上向下数有无数多行,其中第一行有1个点,第二行有2个点……第n 行有n 个点……容易发现,三角点阵中前4行的点数之和为10.(1)探索:三角点阵中前8行的点数之和为_____,前15行的点数之和为______,那么,前n 行的点数之和为______(2)体验:三角点阵中前n 行的点数之和______(填“能”或“不能”)为500.(3)运用:某广场要摆放若干种造型的盆景,其中一种造型要用420盆同样规格的花,按照第一排2盆,第二排4盆,第三排6盆……第n 排2n 盆的规律摆放而成,则一共能摆放多少排? 【答案】(1)36;120;()112n n +(2)不能(3)一共能摆放20排.【分析】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. (1)根据图形,总结规律,列式计算即可求解;(2)根据前n 行的点数和是500,即可得出关于n 的一元二次方程,解之即可判断;(2)先得到前n 行的点数和是()1n n +,再根据题意得出关于n 的一元二次方程,解之即可得出n 的值. 【详解】(1)解:三角点阵中前8行的点数之和为()112345678188362+++++++=+×=, 前15行的点数之和为()11231415115151202+++++=+×= , 那么,前n 行的点数之和为()()111231122nn nn n ++++=+×=+ ; 故答案为:36;120;()112n n +;(2)解:不能, 理由如下:由题意得()115002n n +=, 得210000n n +−=,()21410004001∆=−×−=,∴此方程无正整数解,所以三角点阵中前n 行的点数和不能是500; 故答案为:不能;(3)解:同理,前n 行的点数之和为()()124622112n n n n n ++++=×+×=+ , 由题意得()1420n n +=, 得24200n n +−=,即()()21200n n +−=, 解得20n =或21n =−(舍去), ∴一共能摆放20排.30.(2024·四川内江·中考真题)已知关于x 的一元二次方程210x px −+=(p 为常数)有两个不相等的实数根1x 和2x .(1)填空:12x x +=________,12x x =________; (2)求1211+x x ,111x x +;(3)已知221221x x p +=+,求p 的值. 【答案】(1)p ,1; (2)1211p x x +=,111x p x +=; (3)3p =.【分析】本题考查了一元二次方程根和系数的关系,根的判别式,掌握一元二次方程根和系数的关系是解题的关键.(1)利用根和系数的关系即可求解;(2)1211+x x 变形为()21212122x x x x x x +−,再把根和系数的关系代入计算即可求解,由一元二次方程根的定义可得21110x px −+=,即得1110x p x −+=,进而可得111x p x +=; (3)把方程变形为()21212221x x x x p +−=+,再把根和系数的关系代入得2221p p −=+,可得1p =−或3p =,再根据根的判别式进行判断即可求解.【详解】(1)解:由根与系数的关系得,12x x p +=,121=x x , 故答案为:p ,1;(2)解:∵12x x p +=,121=x x , ∴12121211x x p x x x x ++==, ∵关于x 的一元二次方程210x px −+=(p 为常数)有两个不相等的实数根1x 和2x , ∴21110x px −+=, ∴1110x p x −+=, ∴111x p x +=; (3)解:由根与系数的关系得,12x x p +=,121=x x ,∵221221x x p +=+,∴()21212221x x x x p +−=+, ∴2221P p −=+, ∴2230P p −−=, 解得1p =−或3p =,∴一元二次方程210x px −+=为210x x ++=或2310x x −+=, 当1p =−时,2141130∆=−××=−<,不合题意,舍去; 当3p =时,()2Δ341150=−−××=>,符合题意; ∴3p =.31.(2024·广东广州·中考真题)关于x 的方程2240x x m −+−=有两个不等的实数根. (1)求m 的取值范围;(2)化简:2113|3|21m m m m m −−−÷⋅−+. 【答案】(1)3m > (2)2−【分析】本题考查的是一元二次方程根的判别式,分式的混合运算,掌握相应的基础知识是解本题的关键;(1)根据一元二次方程根的判别式建立不等式解题即可;(2)根据(1)的结论化简绝对值,再计算分式的乘除混合运算即可. 【详解】(1)解:∵关于x 的方程2240x x m −+−=有两个不等的实数根. ∴()()224140m ∆=−−××−>, 解得:3m >; (2)解:∵3m >, ∴2113|3|21m m m m m −−−÷⋅−+ ()()1123311m m m m m m −+−−⋅⋅−−+ 2=−;32.(2024·四川南充·中考真题)已知1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根. (1)求k 的取值范围.(2)若5k <,且k ,1x ,2x 都是整数,求k 的值. 【答案】(1)1k > (2)2【分析】本题主要考查了根据一元二次方程根的情况求参数范围、解一元二次方程,熟练掌握一元二次方程根的情况与判别式的关系是解题的关键.(1)根据“1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根”,则0∆>,得出关于k 的不等式求解即可;(2)根据5k <,结合(1)所求k 的取值范围,得出整数k 的值有2,3,4,分别计算讨论整数k 的不同取值时,方程22210x kx k k −+−+=的两个实数根1x ,2x 是否符合都是整数,选择符合情况的整数k 的值即可.【详解】(1)解:∵1x ,2x 是关于x 的方程22210x kx k k −+−+=的两个不相等的实数根, ∴0∆>,∴()()2222Δ24114444440k k k k k k k =−−××−+=−+−=−>,解得:1k >;(2)解:∵5k <,由(1)得1k >, ∴15k <<,∴整数k 的值有2,3,4,当2k =时,方程为2430x x −+=,解得:11x =,23x =(都是整数,此情况符合题意); 当3k =时,方程为2670x x −+=,解得:3x =±(不是整数,此情况不符合题意); 当4x =时,方程为28130x x −+=,解得:4x =(不是整数,此情况不符合题意); 综上所述,k 的值为2.33.(2024·四川遂宁·中考真题)已知关于x 的一元二次方程()2210x m x m −++−=. (1)求证:无论m 取何值,方程都有两个不相等的实数根;(2)如果方程的两个实数根为12,x x ,且2212129x x x x +−=,求m 的值. 【答案】(1)证明见解析; (2)11m =或22m =−.【分析】本题主要考查了一元二次方程根的判别式,根与系数的关系,解一元二次方程,掌握一元二次方程根的判别式是解题的关键.(1)根据根的判别式证明0∆>恒成立即可;(2)由题意可得,122x x m +=+,121⋅=−x x m ,进行变形后代入即可求解. 【详解】(1)证明:()()22Δ24118m m m =−+−××−=+ , ∵无论m 取何值,280m +>,恒成立,∴无论m 取何值,方程都有两个不相等的实数根.(2)解:∵12,x x 是方程()2210x m x m −++−=的两个实数根, ∴122x x m +=+,121⋅=−x x m ,∴()()()22221212121232319x x x x x x x x m m +−=+−=+−−=,解得:11m =或22m =−.。
9. 一元二次方程知识过关1. 一元二次方程的概念及一般形式:只含有一个未知数,未知数的高最次数是2的___方程.一元二次方程的一般开式是_______________2. 一元二次方程的解的概念:使一元二次方程左右两边相等的未知数的值是一元二次方程的根.3. 一元二次方程的解法:(1)直接开平方法:c b ax a x =+=22)(、(2)配方法:(3)公式法:aac b b x 2422,1-±-= (4)因式分解法:4.一元二次方程根的判别式:__________叫做一元二次方程02=++c bx ax 的根的判别式,用“∆”表示.(1))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(2))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(3))0(00≠=++⇔>∆a c bx ax 有两个________实数根.(4))0(00≠=++⇔>∆a c bx ax 有两个________实数根.5.列一元二次方程解应用题的一般步骤审题—设_____列出一元二次方程—解一元二次方程—检验—写出答案6. 应用题中常见的数量关系(1) 平均增长率、降低率问题若基数为a ,平均增长率为x ,则一次增长后的值为a (1+x ),两次增长后的值为a (1+x )2(2) 利润问题利润=售价-______;利润率=%100⨯-进价进价售价 打折后的价格=原价⨯打折数×101 (3) 利息问题利息=本金利率期数本息和=本金+利息=本金(1+利率⨯期数)利息税=利息⨯____贷款利息=贷款数额⨯____⨯期数(4) 面积问题、传染病问题、握手问题、面积问题等.考点分类考点1 一元二次方程的相关概念例1 (1)下列方程中是关于x 的一元二次方程是( )A. 0122=+xx B.02=++c bx ax C.1)2)(1(=+-x x D.052322=--y xy x(2) 关于x 的一元二次方程01||)1(2=-++-a x x a 的一个根为0,则实数a 的值为( )A. -1B.0C.1D.-1或1考点2 一元二次方程的解法例2 (1)方程1)2)(1(+=-+x x x 的解是( )A.2B.3C.-1,2D.-1,3(2)解方程:0142=+-x x考点3 一元二次方程的判别式例3 已知关于x 的一元二次方程012)1(2=+--x x a 有两个不相等的实数根,则a 的取值范围是( )A. a <2B.a >2C.a <2且a ≠1D.a <-2考点4 一元二次方程的应用例4 为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建立力度,2018年市政府共投资了2亿人民币建设了廉租房8万平方米,预计到2020年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,求到2020年底共建设了多少万平方米的廉租房.真题演练1.设α、β是方程x2+2019x﹣2=0的两根,则(α2+2022α﹣1)(β2+2022β﹣1)的值为()A.6076B.﹣6074C.6040D.﹣60402.有两个人患了流感,每轮传染中平均一个人传染了x个人,则两轮传染后患流感的人数共有()A.x(x+2)人B.(x+1)2人C.(x+2)2人D.2(x+1)2人3.若m,n是方程2x2﹣4x﹣3=0的两个根,则2m2﹣5m﹣n的值为()A.9B.1C.﹣1D.54.一元二次方程x2﹣6x﹣5=0配方可变形为()A.(x﹣3)2=14B.(x﹣3)2=4C.(x+3)2=14D.(x+3)2=4 5.如果关于x的方程x2﹣x﹣m=0有两个不相等的实数根,则m的取值范围是()A.m≥−14B.m<−14C.m>−14D.m≤−146.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+b+c=0,则b2﹣4ac≥0;②若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2−4ac=(2ax0+b)2其中正确的()A.只有①②B.只有①②④C.①②③④D.只有①②③7.若一个等腰三角形的一边为4,另外两边为x2﹣12x+m=0的两根,则m的值为()A.32B.36C.32或36D.不存在8.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为()A.100×80﹣100x﹣80x=7644B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=3569.某玩具商店出售一种“小猪佩奇”玩具,平均每天可销售50个,每个盈利36元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,若每个玩具降价1元,平均每天可多售出5个,商店要想平均每天销售这种玩具盈利2400元,则每个玩具应降价多少元?设每个玩具应降价x 元,可列方程为 .10.如图,在△ABC 中,AB =3cm ,BC =6cm ,AC =5cm ,蚂蚁甲从点A 出发,以2.5cm /s 的速度沿着三角形的边按A →B →C →A 的方向行走,甲出发1s 后蚂蚁乙从点A 出发,以2cm /s 的速度沿着三角形的边按A →C →B →A 的方向行走,那么甲出发 s 后,甲乙第一次相距2.5cm .10. 由于新冠疫情的影响,口罩需求量急剧上升,但在有关部门大力调控下,口罩价格没有上涨.经调查发现,某社区药店把口罩定价为每包10元时,一天可以卖出30包,每降价1元,可以多卖出5包.如果该药店想一天获得315元口罩销售额,并且尽可能让顾客获得更大的优惠,应该降价多少元?课后作业1.下列一元二次方程中,两实数根之和为2的是( )A .x 2+2x +1=0B .x 2﹣2=0C .﹣x 2+2x ﹣3=0D .12x 2﹣x −32=02.设a ,b 是方程x 2+x ﹣2020=0的两个实数根,则(a ﹣1)(b ﹣1)的值为( )A .﹣2022B .2018C .﹣2018D .20223.关于x的一元二次方程x2﹣4x+1=2k有两个不相等的实数根,则k的取值范围为()A.k>32B.k>1C.k<1D.k>−324.方程x(x﹣1)=x的解是()A.x=0B.x=2C.x1=0,x2=2D.x1=0,x2=1 5.如图,在一个长为60m,宽为40m的矩形场地内修筑两条等宽的道路,剩余部分为绿化用地,如果绿化用地的面积为2204m2,那么道路的宽为m.6.某水果店以相同的进价购进两批车厘子,第一批80千克,每斤16元出售;第二批60千克,每斤18运出售,两批车厘子全部售完,店主共获利960元.(1)求车厘子的进价是每千克多少元?(2)该水果店一相同的进价购进第三批车厘子若干,第一天将车厘子涨价到每千克20元出售,结果仅售出40千克;为了尽快售完第三批车厘子,第二天店主决定在第一天售价的基础上降价促销,若在第一天售价基础上每降价1元,第二天的销售量就在第一天的基础上增加10千克.到第二天晚上关店时车厘子售完,店主销售第三批车厘子获得的利润为850元,求第二天车厘子的售价是每千克多少元?7.已知k为实数,关于x的方程为x2﹣kx=3(k+3).(1)请证明不论k取何值,这个方程总有两个实数根;(2)若方程的两个根分别记为x1,x2,且满足x12+x22=9,求k值.冲击A+已知,在菱形ABCD中,∠BCD=60°,将边CD绕点C顺时针旋转α(0<α<120°),得到线段CE,连接ED、ED或其延长线交∠BCE的角平分线于点F.(1)如图1,若α=20°,直接写出∠E与∠CFE的度数;(2)如图2,若60°<α<120°.求证:EF﹣DF=CF;(3)如图3,若AB=6,点G为AF的中点,连接BG,则DC旋转过程中,BG的最大值为.。
换元法解一元二次方程(1)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0(2)(2x2﹣3x)2+5(2x2﹣3x)+4=0.(3)已知:(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”(4)已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.(5)(x2﹣2x)2+(x2﹣2x)﹣2=0 (6)2(﹣x)2﹣(x ﹣)﹣1=0.(7)(x﹣1)2+5(1﹣x)﹣6=0 (8)(x+3)2﹣5(x+3)﹣6=0.(9)2(x﹣1)2+5(x﹣l)+2=0.(10)(x+2)2﹣3(x+2)+2=0.(11)(2x﹣3)2﹣5(2x﹣3)=﹣6 (12)(2x﹣x2)2﹣2(x2﹣2x)+1=0.(13)(x2﹣1)2﹣5(x2﹣1)+4=0.(14)(x2﹣x)2﹣2(x2﹣x)﹣3=0 (15)已知(a+2b)2﹣2a﹣4b+1=0,求(a+2b)2020的值.(16)(x2﹣x)2﹣5(x2﹣x)+6=0,(17)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.(18)(2x+1)2﹣6(2x+1)+5=0(19)(x2+3x﹣4)2+(2x2﹣7x+6)2=(3x2﹣4x+2)2.(20)已知(x2+y2)2﹣3(x2+y2)﹣40=0,求x2+y2.(21)(x2+x)(x2+x﹣3)﹣3(x2+x)+8=0.(22)(x+2)2+6(x+2)﹣91=O;(23)(3x﹣2)2+(2﹣3x)=20.(24)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0.(25)(x2﹣2)2﹣7(x2﹣2)=0.(26)已知(x2+y2)(x2+y2+2)﹣8=0,求x2+y2的值.(27)已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.(28)(x2﹣1)2﹣5(x2﹣1)+4=0,(29)(x2﹣x)2﹣8(x2﹣x)+12=0.(30)(x2+x)2﹣8(x2+x)+12=0. (31)(x2﹣1)2﹣5(x2﹣1)+4=0, (32)(x2﹣2x)2﹣2(x2﹣2x)﹣3=0(33)(x2﹣1)2﹣5(x2﹣1)+4=0,(34)x(x+3)(x2+3x+2)=24.(35)已知:(x2+y2)2﹣(x2+y2)﹣12=0,求x2+y2的值.换元法解一元二次方程35题参考答案:(1)(x2﹣3x)2﹣2(x2﹣3x)﹣8=0解:设x2﹣3x=y则原方程可化为y2﹣2y﹣8=0解得:y1=﹣2,y2=4当y=﹣2时,x2﹣3x=﹣2,解得x1=2,x2=1当y=4时,x2﹣3x=4,解得x1=4,x2=﹣1∴原方程的根是x1=2,x2=1,x3=4,x4=﹣1,(2)(2x2﹣3x)2+5(2x2﹣3x)+4=0.解:设2x2﹣3x=y,原方程转化为:y2+5y+4=0(1分),解得:y1=﹣4,y2=﹣1(3分)当y1=﹣4时,2x2﹣3x+4=0,无实数根.(4分)当y2=﹣1时,2x2﹣3x+1=0,解得x1=,x2=1.故原方程根为x1=,x2=1(3)(x2+2x﹣1)(x2+2x+2)=4,求x2+2x的值”,解:设x2+2x=y,则原方程可变为:(y﹣1)(y+2)=4整理得y2+y﹣2=4即:y2+y﹣6=0解得y1=﹣3,y2=2∴x2+2x的值为﹣3或2(4)已知:(x2+y2﹣3)(2x2+2y2﹣4)=24,求x2+y2的值.解:设x2+y2=m,则原方程可变为:(m﹣3)(2m﹣4)=24∴2(m﹣3)(m﹣2)=24.∴m2﹣5m+6=12.∴m2﹣5m﹣6=0解得m1=6,m2=﹣1∵x2+y2≥0∴x2+y2的值为6(5)(x2﹣2x)2+(x2﹣2x)﹣2=0解:设y=x2﹣2x原方程可变为:y2+y﹣2=0解方程得y=﹣2或1所以x2﹣2x=﹣2或1.当x2﹣2x=﹣2时,△<0,没实数根,当x2﹣2x=1时,解得x=1±.∴原方程的根是x1=1+,x2=1﹣(6)2(﹣x)2﹣(x ﹣)﹣1=0.解:2(﹣x)2﹣(x ﹣)﹣1=0,变形得:2(x ﹣)2﹣(x ﹣)﹣1=0,设y=x ﹣,则原方程可化为2y2﹣y﹣1=0,…(2分)因式分解得:(2y+1)(y﹣1)=0,解得:y=﹣或y=1,…(5分)当y=﹣时,x ﹣=﹣,解得:x=0;当y=1时,x ﹣=1,解得:x=,∴x1=,x2=0(7)(x﹣1)2+5(1﹣x)﹣6=0解:设x﹣1=y,则原方程可化为:y2﹣5y﹣6=0,∴y1=﹣1,y2=6,∴x﹣1=﹣1,x﹣1=6∴x1=0,x2=7(8)(x+3)2﹣5(x+3)﹣6=0.解:设y=x+3,则原方程可化为y2﹣5y﹣6=0.解得:y1=6,y2=﹣1.当y1=6时,x+3=6,x1=3;当y2=﹣1时,x+3=﹣1,x2=﹣4.∴x1=3,x2=﹣4(8)2(x﹣1)2+5(x﹣l)+2=0.解:设x﹣l=y,则由原方程,得2y2+5y+2=0,即(y+2)(2y+1)=0,∴y+2=0,或2y+1=0,解得,y=﹣2,或y=﹣;①当y=﹣2时,x﹣1=﹣2,解得,x=﹣1;②当y=﹣时,x﹣1=﹣,解得,x=;综上所述,原方程的解是x1=﹣1,x2=(9)(x+2)2﹣3(x+2)+2=0.解:令x+2=t,原方程可化为t2﹣3t+2=0,(t﹣1)(t﹣2)=0,解得t1=1,t2=2,∴x+2=1或x+2=2,∴x1=﹣1,x2=0(10)(2x﹣3)2﹣5(2x﹣3)=﹣6解:(1)∵3x2﹣5x﹣2=0∴(3x+1)(x﹣2)=0即3x+1=0或x﹣2=0解得x1=2;x2=.(11)设t=2x﹣3,则原方程可化为:t2﹣5t+6=0 ∴(t﹣2)(t﹣3)=0∴t=2或3,即2x﹣3=2或3解得x1=;x2=3(12)根据题意,令y=x2﹣2x,原方程可化为:y2﹣2y+1=0,解得y=1,即x2﹣2x=1,可用公式法求解,其中a=1,b=﹣2,c=﹣1,∴△=8>0,∴方程的解为x==,即x1=1﹣,x2=1+(13)(x2﹣1)2﹣5(x2﹣1)+4=0.解:设x2﹣1=t.则由原方程,得t2﹣5t+4=0,即(t﹣1)(t﹣4)=0,解得,t=1或t=4;①当t=1时,x2﹣1=1,∴x2=2,∴x=±;②当t=4时,x2﹣1=4,∴x2=5,∴x=±.综合①②,原方程的解是:x1=,x2=﹣,x3=,x4=﹣(14)(x2﹣x)2﹣2(x2﹣x)﹣3=0解:设x2﹣x=y,所以原方程变化为:y2﹣2y﹣3=0,解得y=﹣1或3,当y=﹣1时,x2﹣x=﹣1,无解;当y=3时,x2﹣x=3,解得,x1=,x2=,∴原方程的解为x1=,x2=(15)已知(a+2b)2﹣2a﹣4b+1=0,求(a+2b)2020的值.解:根据题意,设a+2b=x,代入原方程得:x2﹣2x+1=0,即(x﹣1)2=0∴x=1,即a+2b=1,所以(a+2b)2020=1(16)(x2﹣x)2﹣5(x2﹣x)+6=0解:根据题意x2﹣x=y,把原方程中的x2﹣x换成y,所以原方程变化为:y2﹣5y+6=0,解得y=2或3,当y=2时,x2﹣x=2,解得:x1=2,x2=﹣1;当y=3时,x2﹣x=3,解得,x3=,x4=,∴原方程的解为x1=2,x2=﹣1,x3=,x4=.(17)已知(a2+b2)2﹣(a2+b2)﹣6=0,求a2+b2的值.解:设a2+b2=y据题意得y2﹣y﹣6=0解得y1=3,y2=﹣2∵a2+b2≥0∴a2+b2=3(18)(2x+1)2﹣6(2x+1)+5=0解:设2x+1=a,原方程可化为a2﹣6a+5=0,解得a=1或5,当a=1时,即2x+1=1,解得x=0;当a=5时,即2x+1=5,解得x=2;∴原方程的解为x1=0,x2=2(19).解:设u=x2+3x﹣4,v=2x2﹣7x+6,则u+v=3x2﹣4x+2.则原方程变为u2+v2=(u+v)2,即u2+v2=u2+2uv+v2,∴uv=0,∴u=0或v=0,即x2+3x﹣4=0或2x2﹣7x+6=0.解得(20)解:设x2+y2=t(t≥0),则t2﹣3t﹣40=0,所以(t﹣8)(t+5)=0,解得,t=8或t=﹣5(不合题意,舍去),故x2+y2=8(21)解:设x2+x=y,原方程可变形为:y(y﹣3)﹣3y+8=0,y2﹣6y+8=0,(y﹣4)(y﹣2)=0,解得:y1=4,y2=2,当y1=4时,x2+x=4,解得:x1=,x2=.当y2=2时,x2+x=2,解得:x3=1,x4=﹣2(22)(x+2)2+6(x+2)﹣91=O;设x+2=y,则原方程可变形为:y2+6y﹣91=0,解得:y1=7,y2=﹣13,当y1=7时,x+2=7,x1=5,当y2=﹣13时,x+2=﹣13,x2=﹣15;(23)设3x﹣2=t,则t2﹣t﹣20=0,∴(t+4)(t﹣5)=0,∴t+4=0或t﹣5=0,解得 t=﹣4或t=5.当t=﹣4时,3x﹣2=﹣4,解得 x=﹣;当t=5时,3x﹣2=5,解得 x=,综上所述,原方程的解为:x=﹣或 x=.(24)解:(x2﹣3x)2﹣2(x2﹣3x)﹣8=0,分解因式得:(x2﹣3x﹣4)(x2﹣3x+2)=0,即(x﹣4)(x+1)(x﹣1)(x﹣2)=0,可得x﹣4=0或x+1=0或x﹣1=0或x﹣2=0,解得:x1=4,x2=﹣1,x3=1,x4=2(25)解:根据题意,把y=x2﹣2代入方程(x2﹣2)2﹣7(x2﹣2)=0得:y2﹣7y=0,解得y1=0,y2=7,当y1=0时,即x2﹣2=0,解得:x1=﹣,x2=,当y2=7时,即x2﹣2=7,解得:x3=﹣3,x4=3,∴原方程的解为:x1=﹣,x2=,x3=﹣3,x4=3(26)已知(x2+y2)(x2+y2+2)﹣8=0,求x2+y2的值.解:设x2+y2=t,则原方程变形为t(t+2)﹣8=0,整理得t2+2t﹣8=0,∴(t+4)(t﹣2)=0,∴t1=﹣4,t2=2,当t=﹣4时,则x2+y2=﹣4,无意义舍去,当t=2时,则x2+y2=2.所以x2+y2的值为2(27)已知x,y满足方程x4+y4+2x2y2﹣x2﹣y2﹣12=0,求x2+y2的值.解:∵x4+y4+2x2y2﹣x2﹣y2﹣12=0,∴(x2+y2)2﹣(x2+y2)﹣12=0,即(x2+y2+3)(x2+y2﹣4)=0,∴x2+y2=﹣3,或x2+y2=4,∵x2+y2≥0,∴x2+y2=4 (28)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,设x2﹣1=y原方程可化为y2﹣5y+4=0,解此方程得y1=1,y2=4.当y=1时,x2﹣1=1,∴x=±;当y=4时,x2﹣1=4,∴x=±,∴原方程的解为x1=,x2=﹣,x3=,x4=﹣.(29)解方程:(x2﹣x)2﹣8(x2﹣x)+12=0.设x2﹣x=A,由题意,得A2﹣8A+12=0,解得:A1=6,A2=2.当A=6时,x2﹣x=6,解得:x1=3,x2=﹣2;当A=2时,x2﹣x=2,解得:x3=2,x4=﹣1.∴原方程的解为:x1=6,x2=﹣2,x3=2,x4=﹣1 (30)解方程:(x2+x)2﹣8(x2+x)+12=0.解:设y=x2+x,方程化为y2﹣8y+12=0,即(y﹣2)(y﹣6)=0,解得y=2或y=6,即x2+x=2或x2+x=6,分解因式得:(x+2)(x﹣1)=0或(x﹣2)(x+3)=0,解得:x1=﹣2,x2=1,x3=2,x4=﹣3(31)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解;设x2﹣1=y,即(x2﹣1)2=y2,原方程可化为y2﹣5y+4=0,又化为(y﹣1)(y﹣4)=0解得y1=1,y2=4.当y=1即x2﹣1=1时,x2=2,x=±;x1=,x2=﹣当y=4即x2﹣1=4时,x2=5,x=±;x3=,x4=﹣(32)解方程(x2﹣2x)2﹣2(x2﹣2x)﹣3=0解:设x2﹣2x=y,即(x2﹣2x)2=y2,原方程可化为y2﹣2y﹣3=0,解得y1=3,y2=﹣1,当y1=3时,x2﹣2x=3,解得x1=3,x2=﹣1;当y2=﹣1时,x2﹣2x=﹣1,解得x3=x4=1;∴原方程的解为x1=3,x2=﹣1;x3=x4=1(33)解方程(x2﹣1)2﹣5(x2﹣1)+4=0,解:设x2﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y1=1时,x2﹣1=1,∴;当y2=4时,x2﹣1=4,∴.因此原方程的解为:.(34)设x2+3x=y.∵x(x+3)(x2+3x+2)=24,∴(x2+3x)(x2+3x+2)=24,∴y(y+2)=24,即(y﹣4)(y+6)=0,解得,y=4或y=﹣6;①当y=4时,x2+3x=4,即(x﹣1)(x+4)=0,解得,x1=﹣4,x2=1;②当y=﹣6时,x2+3x=﹣6,即x2+3x+6=0,∵△=9﹣24=﹣15<0,∴该方程无解;综上所述,原方程的根是:x1=﹣4,x2=1 (35)解:(x2+y2)2﹣(x2+y2)﹣12=0,设x2+y2=a,则有a2﹣a﹣12=0,因式分解得:(a﹣4)(a+3)=0,解得:a1=4,a2=﹣3,∵x2+y2>0,即a>0,∴a=﹣3不合题意,舍去,则x2+y2=a=4中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.关于x 的分式方程230x x a+=-解为4x =,则常数a 的值为( ) A .1a = B .2a = C .4a =D .10a =【答案】D【解析】根据分式方程的解的定义把x=4代入原分式方程得到关于a 的一次方程,解得a 的值即可. 【详解】解:把x=4代入方程230x x a+=-,得 23044a+=-, 解得a=1.经检验,a=1是原方程的解 故选D .点睛:此题考查了分式方程的解,分式方程注意分母不能为2.2.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°【答案】C【解析】试题解析:∵sin ∠CAB=32262BC AC ==∴∠CAB=45°. ∵33362B C sin C AB AC '''∠===', ∴∠C′AB′=60°. ∴∠CAC′=60°-45°=15°, 鱼竿转过的角度是15°. 故选C .考点:解直角三角形的应用.3. 如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=( )A .20°B .30°C .40°D .50°【答案】C【解析】由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数. 【详解】∵∠1=50°, ∴∠3=∠1=50°,∴∠2=90°−50°=40°. 故选C. 【点睛】本题主要考查平行线的性质,熟悉掌握性质是关键. 4.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( ) A .32⨯+⨯①② B .3-2⨯⨯①② C .53⨯+⨯①②D .5-3⨯⨯①②【答案】C【解析】利用加减消元法53⨯+⨯①②消去y 即可.【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3, 故选C 【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 5.如图,已知∠1=∠2,要使△ABD ≌△ACD ,需从下列条件中增加一个,错误的选法是( )A .∠ADB =∠ADC B .∠B =∠C C .AB =ACD .DB =DC【答案】D【解析】由全等三角形的判定方法ASA 证出△ABD ≌△ACD ,得出A 正确;由全等三角形的判定方法AAS 证出△ABD ≌△ACD ,得出B 正确;由全等三角形的判定方法SAS 证出△ABD ≌△ACD ,得出C 正确.由全等三角形的判定方法得出D 不正确;【详解】A 正确;理由: 在△ABD 和△ACD 中,∵∠1=∠2,AD=AD ,∠ADB=∠ADC , ∴△ABD ≌△ACD (ASA ); B 正确;理由: 在△ABD 和△ACD 中, ∵∠1=∠2,∠B=∠C ,AD=AD ∴△ABD ≌△ACD (AAS ); C 正确;理由: 在△ABD 和△ACD 中,∵AB=AC ,∠1=∠2,AD=AD , ∴△ABD ≌△ACD (SAS );D 不正确,由这些条件不能判定三角形全等; 故选:D . 【点睛】本题考查了全等三角形的判定方法;三角形全等的判定是中考的热点,熟练掌握全等三角形的判定方法是解决问题的关键.6.某公司第4月份投入1000万元科研经费,计划6月份投入科研经费比4月多500万元.设该公司第5、6个月投放科研经费的月平均增长率为x,则所列方程正确的为( ) A .1000(1+x)2=1000+500B .1000(1+x)2=500C .500(1+x)2=1000D .1000(1+2x)=1000+500 【答案】A【解析】设该公司第5、6个月投放科研经费的月平均增长率为x ,5月份投放科研经费为1000(1+x ),6月份投放科研经费为1000(1+x )(1+x ),即可得答案.【详解】设该公司第5、6个月投放科研经费的月平均增长率为x ,则6月份投放科研经费1000(1+x )2=1000+500, 故选A.【点睛】考查一元二次方程的应用,求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a (1±x)2=b.7.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,BD 的长为43π,则图中阴影部分的面积为()A.4633π-B.8933π-C.33223π-D.8633π-【答案】D【解析】连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAD=∠EBA=30°,∴BE∥AD,∵BD的长为43π,∴6041803Rππ=解得:R=4,∴AB=ADcos30°=43,∴BC=12AB=23,∴AC=3BC=6,∴S△ABC=12×BC×AC=12×23×6=63,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=2604863633603ππ⨯-=-故选:D.【点睛】本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.8.如图,在矩形ABCD中,E是AD上一点,沿CE 折叠△CDE,点D恰好落在AC的中点F处,若CD =3,则△ACE的面积为()A.1 B3C.2 【答案】B【解析】由折叠的性质可得3DE=EF,AC=23由三角形面积公式可求EF的长,即可求△ACE的面积.【详解】解:∵点F是AC的中点,∴AF=CF=12AC,∵将△CDE沿CE折叠到△CFE,∴CD=CF=3,DE=EF,∴AC=23,在Rt△ACD中,AD=22AC CD-=1.∵S△ADC=S△AEC+S△CDE,∴12×AD×CD=12×AC×EF+12×CD×DE∴1×3=23EF+3DE,∴DE=EF=1,∴S△AEC=12×23×1=3.故选B.【点睛】本题考查了翻折变换,勾股定理,熟练运用三角形面积公式求得DE=EF=1是解决本题的关键.9.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为().A.50°B.40°C.30°D.25°【答案】B【解析】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°.故选B.【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键.10.如图,将木条a,b与c钉在一起,∠1=70°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.10°B.20°C.50°D.70°【答案】B【解析】要使木条a与b平行,那么∠1=∠2,从而可求出木条a至少旋转的度数.【详解】解:∵要使木条a与b平行,∴∠1=∠2,∴当∠1需变为50 º,∴木条a至少旋转:70º-50º=20º.故选B.【点睛】本题考查了旋转的性质及平行线的性质:①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.二、填空题(本题包括8个小题)11.已知函数22y x x=--,当时,函数值y随x的增大而增大.【答案】x≤﹣1.【解析】试题分析:∵22y x x=--=2(1)1x-++,a=﹣1<0,抛物线开口向下,对称轴为直线x=﹣1,∴当x≤﹣1时,y随x的增大而增大,故答案为x≤﹣1.考点:二次函数的性质.12.将三角形纸片(ABC ∆)按如图所示的方式折叠,使点B 落在边AC 上,记为点'B ,折痕为EF ,已知3AB AC ==,4BC =,若以点'B ,F ,C 为顶点的三角形与ABC ∆相似,则BF 的长度是______.【答案】127或2 【解析】由折叠性质可知B’F=BF ,△B’FC 与△ABC 相似,有两种情况,分别对两种情况进行讨论,设出B’F=BF=x ,列出比例式方程解方程即可得到结果. 【详解】由折叠性质可知B’F=BF ,设B’F=BF=x ,故CF=4-x当△B’FC ∽△ABC ,有'B F CFAB BC=,得到方程434x x -=,解得x=127,故BF=127; 当△FB’C ∽△ABC ,有'B F FCAB AC=,得到方程433x x -=,解得x=2,故BF=2; 综上BF 的长度可以为127或2.【点睛】本题主要考查相似三角形性质,解题关键在于能够对两个相似三角形进行分类讨论.13.已知关于 x 的函数 y=(m ﹣1)x 2+2x+m 图象与坐标轴只有 2 个交点,则m=_______. 【答案】1 或 0 15± 【解析】分两种情况讨论:当函数为一次函数时,必与坐标轴有两个交点;当函数为二次函数时,将(0,0)代入解析式即可求出m 的值.【详解】解:(1)当 m ﹣1=0 时,m=1,函数为一次函数,解析式为 y=2x+1,与 x 轴 交点坐标为(﹣12,0);与 y 轴交点坐标(0,1).符合题意.(2)当 m ﹣1≠0 时,m≠1,函数为二次函数,与坐标轴有两个交点,则过原点,且与 x 轴有两个不同的交点,于是△=4﹣4(m ﹣1)m >0, 解得,(m ﹣12)2<54,解得 m 1+5或 m 1-5. 将(0,0)代入解析式得,m=0,符合题意. (3)函数为二次函数时,还有一种情况是:与 x 轴只有一个交点,与 Y 轴交于交于另一点, 这时:△=4﹣4(m ﹣1)m=0, 解得:15± . 故答案为1 或 0 15±. 【点睛】此题考查一次函数和二次函数的性质,解题关键是必须分两种情况讨论,不可盲目求解.14.若关于x 的不等式组3122x a x x ->⎧⎨->-⎩无解, 则a 的取值范围是 ________.【答案】2a ≥-【解析】首先解每个不等式,然后根据不等式无解,即两个不等式的解集没有公共解即可求得.【详解】3122x a x x ->⎧⎨->-⎩①②,解①得:x >a+3, 解②得:x <1.根据题意得:a+3≥1, 解得:a ≥-2. 故答案是:a≥-2. 【点睛】本题考查了一元一次不等式组的解,解题的关键是熟练掌握解一元一次不等式组的步骤..15.将23x =代入函数1y x=-中,所得函数值记为1y ,又将11x y =+代入函数1y x=-中,所得的函数值记为2y ,再将21x y =+代入函数中,所得函数值记为3y …,继续下去.1y =________;2y =________;3y =________;2006y =________.【答案】32- 2 13- 2【解析】根据数量关系分别求出y1,y2,y3,y4,…,不难发现,每3次计算为一个循环组依次循环,用2006除以3,根据商和余数的情况确定y2006的值即可. 【详解】y 1=32-, y 2=−1312-+=2,y 3=−112+=13-,y 4=−1113-+=32-,…,∴每3次计算为一个循环组依次循环, ∵2006÷3=668余2,∴y2006为第669循环组的第2次计算,与y2的值相同, ∴y2006=2,故答案为32-;2;13-;2.【点睛】本题考查反比例函数的定义,解题的关键是多运算找规律.16.让我们轻松一下,做一个数字游戏: 第一步:取一个自然数15n =,计算211n +得1a ;第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;依此类推,则2019a =____________【答案】1【解析】根据题意可以分别求得a 1,a 2,a 3,a 4,从而可以发现这组数据的特点,三个一循环,从而可以求得a 2019的值. 【详解】解:由题意可得, a 1=52+1=26, a 2=(2+6)2+1=65, a 3=(6+5)2+1=1, a 4=(1+2+2)2+1=26, …∴2019÷3=673, ∴a 2019= a 3=1, 故答案为:1. 【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a 2019的值.17.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____. 【答案】4.4×1【解析】分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:44000000=4.4×1,故答案为4.4×1.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.18.如图,在每个小正方形边长为1的网格中,ABC△的顶点A,B,C均在格点上,D为AC 边上的一点.线段AC的值为______________;在如图所示的网格中,AM是ABC△的角平分线,在AM上求一点P,使CP DP+的值最小,请用无刻度的直尺,画出AM 和点P,并简要说明AM和点P的位置是如何找到的(不要求证明)___________.【答案】(Ⅰ)5(Ⅱ)如图,取格点E、F,连接AE与BC交于点M,连接DF与AM交于点P.【解析】(Ⅰ)根据勾股定理进行计算即可.(Ⅱ)根据菱形的每一条对角线平分每一组对角,构造边长为1的菱形ABEC,连接AE交BC于M,即可得出AM是ABC的角平分线,再取点F使AF=1,则根据等腰三角形的性质得出点C与F关于AM对称,连接DF交AM于点P,此时CP DP+的值最小.【详解】(Ⅰ)根据勾股定理得AC=22345+=;故答案为:1.(Ⅱ)如图,如图,取格点E、F,连接AE与BC 交于点M,连接DF与AM交于点P,则点P即为所求.说明:构造边长为1的菱形ABEC,连接AE交BC 于M,则AM即为所求的ABC的角平分线,在AB上取点F,使AF=AC=1,则AM垂直平分CF,点C与F关于AM对称,连接DF交AM于点P,则点P即为所求.【点睛】本题考查作图-应用与设计,涉及勾股定理、菱形的判定和性质、几何变换轴对称—最短距离等知识,解题的关键是灵活运用所学知识解决问题,学会利用数形结合的思想解决问题.三、解答题(本题包括8个小题)19.某校对六至九年级学生围绕“每天30分钟的大课间,你最喜欢的体育活动项目是什么?(只写一项)”的问题,对在校学生进行随机抽样调查,从而得到一组数据.如图是根据这组数据绘制的条形统计图,请结合统计图回答下列问题:该校对多少学生进行了抽样调查?本次抽样调查中,最喜欢篮球活动的有多少?占被调查人数的百分比是多少?若该校九年级共有200名学生,如图是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请估计全校六至九年级学生中最喜欢跳绳活动的人数约为多少?【答案】(1)50(2)36%(3)160【解析】(1)根据条形图的意义,将各组人数依次相加即可得到答案;(2)根据条形图可直接得到最喜欢篮球活动的人数,除以(1)中的调查总人数即可得出其所占的百分比;(3)用样本估计总体,先求出九年级占全校总人数的百分比,然后求出全校的总人数;再根据最喜欢跳绳活动的学生所占的百分比,继而可估计出全校学生中最喜欢跳绳活动的人数.【详解】(1)该校对50名学生进行了抽样调查.()2本次调查中,最喜欢篮球活动的有18人,18100%36%50⨯=, ∴最喜欢篮球活动的人数占被调查人数的36%. (3)()130%26%24%20%-++=,20020%1000÷=人, 8100%100016050⨯⨯=人. 答:估计全校学生中最喜欢跳绳活动的人数约为160人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.20.先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 【答案】21x +;2. 【解析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()222121112x x xx x x x ---⋅++-- =()21211x x x x --++ =21x + 2x ≤的非负整数解有:2,1,0,其中当x 取2或1时分母等于0,不符合条件,故x 只能取0∴将x=0代入得:原式=2 【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义.21.有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?【答案】(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.【解析】(1)设1辆大货车和1辆小货车一次可以分别运货x 吨和y 吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.【详解】(1)解:设1辆大货车一次可以运货x 吨,1辆小货车一次可以运货y 吨,依题可得:34182617x y x y +=⎧⎨+=⎩ , 解得:432x y =⎧⎪⎨=⎪⎩.答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货32吨. (2)解:设大货车有m 辆,则小货车10-m 辆,依题可得:4m+32(10-m )≥33m≥0 10-m≥0 解得:365≤m≤10, ∴m=8,9,10;∴当大货车8辆时,则小货车2辆; 当大货车9辆时,则小货车1辆; 当大货车10辆时,则小货车0辆; 设运费为W=130m+100(10-m )=30m+1000, ∵k=30〉0,∴W 随x 的增大而增大, ∴当m=8时,运费最少, ∴W=130×8+100×2=1240(元),答:货运公司应安排大货车8辆时,小货车2辆时最节省费用. 【点睛】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.22.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC=90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC .求证:BG=FG ;若AD=DC=2,求AB的长.【答案】(1)证明见解析;(2)AB=3【解析】(1)证明:∵90ABC ∠=,DE ⊥AC 于点F ,∴∠ABC=∠AFE . ∵AC=AE,∠EAF=∠CAB , ∴△ABC ≌△AFE ∴AB=AF . 连接AG , ∵AG=AG,AB=AF ∴Rt △ABG ≌Rt △AFG ∴BG=FG(2)解:∵AD=DC ,DF ⊥AC∴1122AF AC AE == ∴∠E=30° ∴∠FAD=∠E=30° ∴AB=AF=323.某高中进行“选科走班”教学改革,语文、数学、英语三门为必修学科,另外还需从物理、化学、生物、政治、历史、地理(分别记为A 、B 、C 、D 、E 、F )六门选修学科中任选三门,现对该校某班选科情况进行调查,对调查结果进行了分析统计,并制作了两幅不完整的统计图.请根据以上信息,完成下列问题:该班共有学生人;请将条形统计图补充完整;该班某同学物理成绩特别优异,已经从选修学科中选定物理,还需从余下选修学科中任意选择两门,请用列表或画树状图的方法,求出该同学恰好选中化学、历史两科的概率. 【答案】(1)50人;(2)补图见解析;(3)110. 【解析】分析:(1)根据化学学科人数及其所占百分比可得总人数;(2)根据各学科人数之和等于总人数求得历史的人数即可;(3)列表得出所有等可能结果,从中找到恰好选中化学、历史两科的结果数,再利用概率公式计算可得.详解:(1)该班学生总数为10÷20%=50人;(2)历史学科的人数为50﹣(5+10+15+6+6)=8人,补全图形如下:(3)列表如下: 化学生物 政治 历史 地理 化学 生物、化学政治、化学 历史、化学 地理、化学 生物 化学、生物政治、生物历史、生物 地理、生物 政治 化学、政治 生物、政治历史、政治地理、政治 历史 化学、历史 生物、历史 政治、历史地理、历史地理化学、地理生物、地理政治、地理历史、地理由表可知,共有20种等可能结果,其中该同学恰好选中化学、历史两科的有2种结果, 所以该同学恰好选中化学、历史两科的概率为21=2010. 点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.24.如图,已知在Rt △ABC 中,∠ACB=90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .求证:DF 是BF 和CF 的比例中项;在AB 上取一点G ,如果AE•AC=AG•AD ,求证:EG•CF=ED•DF .【答案】证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD ,再根据∠BFD=∠DFC ,证明△BFD ∽△DFC ,从而得BF :DF=DF :FC ,进行变形即得;(2)由已知证明△AEG ∽△ADC ,得到∠AEG=∠ADC=90°,从而得EG ∥BC ,继而得EG BFED DF= , 由(1)可得BF DF DF CF = ,从而得EG DFED CF= ,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°, ∵CD 是Rt △ABC 的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD , ∵E 是AC 的中点,∴DE=AE=CE ,∴∠A=∠EDA ,∠ACD=∠EDC , ∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD , 又∵∠BFD=∠DFC , ∴△BFD ∽△DFC , ∴BF :DF=DF :FC , ∴DF 2=BF·CF ; (2)∵AE·AC=ED·DF , ∴AE AGAD AC= , 又∵∠A=∠A , ∴△AEG ∽△ADC , ∴∠AEG=∠ADC=90°, ∴EG ∥BC , ∴EG BFED DF= , 由(1)知△DFD ∽△DFC ,∴BF DFDF CF = , ∴EG DFED CF= , ∴EG·CF=ED·DF.25.班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学(,,)A B C 和2位女同学(,)D E ,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.【答案】50 见解析(3)115.2° (4)35【解析】试题分析:(1)用最喜欢篮球的人数除以它所占的百分比可得总共的学生数;(2)用学生的总人数乘以各部分所占的百分比,可得最喜欢足球的人数和其他的人数,即可把条形统计图补充完整;(3)根据圆心角的度数=360 º×它所占的百分比计算;(4)列出树状图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,从而可求出答案.解:(1)由题意可知该班的总人数=15÷30%=50(名)故答案为50;(2)足球项目所占的人数=50×18%=9(名),所以其它项目所占人数=50﹣15﹣9﹣16=10(名)补全条形统计图如图所示:(3)“乒乓球”部分所对应的圆心角度数=360°×=115.2°,故答案为115.2°;(4)画树状图如图.由图可知,共有20种等可能的结果,两名同学恰为一男一女的有12种情况,所以P(恰好选出一男一女)==.点睛:本题考查的是条形统计图和扇形统计图的综合运用,概率的计算.读懂统计图,从不同的统计图中得到必要的信息及掌握概率的计算方法是解决问题的关键.26.如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE为矩形.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)由DE与AB垂直,BF与CD垂直,得到一对直角相等,再由ABCD为平行四边形得到AD=BC,对角相等,利用AAS即可的值;(2)由平行四边形的对边平行得到DC与AB平行,得到∠CDE为直角,利用三个角为直角的四边形为矩形即可的值.【详解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四边形ABCD为平行四边形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,{AED CFBA CAD BC∠=∠∠=∠=,∴△ADE≌△CBF(AAS);(2)∵四边形ABCD为平行四边形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,则四边形BFDE为矩形.【点睛】本题考查1.矩形的判定;2.全等三角形的判定与性质;3.平行四边形的性质.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.一次函数1y kx b =+与2y x a =+的图象如图所示,给出下列结论:①k 0<;②0a >;③当3x <时,12y y <.其中正确的有( )A .0个B .1个C .2个 D .3个【答案】B【解析】仔细观察图象,①k 的正负看函数图象从左向右成何趋势即可;②a ,b 看y 2=x+a ,y 1=kx+b 与y 轴的交点坐标;③看两函数图象的交点横坐标;④以两条直线的交点为分界,哪个函数图象在上面,则哪个函数值大.【详解】①∵y 1=kx+b 的图象从左向右呈下降趋势, ∴k <0正确;②∵y 2=x+a ,与y 轴的交点在负半轴上, ∴a<0,故②错误; ③当x<3时,y 1>y 2错误; 故正确的判断是①. 故选B . 【点睛】本题考查一次函数性质的应用.正确理解一次函数的解析式:y=kx+b (k≠0)y 随x 的变化趋势:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.2.如图,在平面直角坐标系中,矩形OABC 的两边OA ,OC 分别在x 轴和y 轴上,并且OA=5,OC=1.若把矩形OABC 绕着点O 逆时针旋转,使点A 恰好落在BC 边上的A 1处,则点C 的对应点C 1的坐标为( )A .(﹣91255,) B .(﹣12955,) C .(﹣161255,)D .(﹣121655,)【答案】A【解析】直接利用相似三角形的判定与性质得出△ONC 1三边关系,再利用勾股定理得出答案. 【详解】过点C 1作C 1N ⊥x 轴于点N ,过点A 1作A 1M ⊥x 轴于点M ,由题意可得:∠C 1NO=∠A 1MO=90°, ∠1=∠2=∠1, 则△A 1OM ∽△OC 1N , ∵OA=5,OC=1, ∴OA 1=5,A 1M=1, ∴OM=4,∴设NO=1x ,则NC 1=4x ,OC 1=1, 则(1x )2+(4x )2=9,解得:x=±35(负数舍去), 则NO=95,NC 1=125,故点C 的对应点C 1的坐标为:(-95,125).故选A .【点睛】此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A 1OM ∽△OC 1N 是解题关键. 3.如图,已知二次函数y=ax 2+bx+c (a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c >0,③a >b ,④4ac ﹣b 2<0;其中正确的结论有( )A .1个B .2个C .3个 D .4个【答案】C【解析】根据图像可得:a<0,b<0,c=0,即abc=0,则①正确;当x=1时,y<0,即a+b+c<0,则②错误; 根据对称轴可得:-=-,则b=3a ,根据a<0,b<0可得:a>b ;则③正确; 根据函数与x 轴有两个交点可得:-4ac>0,则④正确. 故选C. 【点睛】本题考查二次函数的性质.能通过图象分析a ,b ,c 的正负,以及通过一些特殊点的位置得出a ,b ,c 之间的关系是解题关键.4.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .【答案】B【解析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等, 故选:B . 【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.5.图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是( )A .2mnB .(m+n )2C .(m-n )2D .m 2-n 2。
中考数学模拟题《一元二次方程及其应用》专项测试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一 单选题1.(2023·四川泸州·统考中考真题)关于x 的一元二次方程22210x ax a ++-=的根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关2.(2023·天津·统考中考真题)若12,x x 是方程2670x x --=的两个根,则( ) A .126x x +=B .126x x +=-C .127·6x x = D .12·7x x = 3.(2023·广西·统考中考真题)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示 2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x 依题意可列方程为( ) A .23.2(1) 3.7x -= B .23.2(1) 3.7x += C .23.7(1) 3.2x -=D .23.7(1) 3.2x +=4.(2023·黑龙江·统考中考真题)如图 在长为100m 宽为50m 的矩形空地上修筑四条宽度相等的小路 若余下的部分全部种上花卉 且花圃的面积是23600m ,则小路的宽是( )A .5mB .70mC .5m 或70mD .10m5.(2023·河南·统考中考真题)关于x 的一元二次方程280x mx +-=的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .只有一个实数根D .没有实数根6.(2023·四川眉山·统考中考真题)关于x 的一元二次方程2220x x m -+-=有两个不相等的实数根,则m 的取值范围是( ) A .32m < B .3m > C .3m ≤ D .3m <7.(2023·新疆·统考中考真题)用配方法解一元二次方程2680x x -+= 配方后得到的方程是( ) A .()2628x +=B .()2628x -=C .()231x +=D .()231x -=8.(2023·四川乐山·统考中考真题)若关于x 的一元二次方程280x x m -+=两根为12x x 、 且123x x =,则m 的值为( ) A .4B .8C .12D .169.(2023·山东滨州·统考中考真题)一元二次方程2320x x +-=根的情况为( ) A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .不能判定10.(2023·全国·统考中考真题)一元二次方程2520x x -+=根的判别式的值是( ) A .33B .23C .17D11.(2023·四川·统考中考真题)关于x 的一元二次方程232302x x -+=根的情况 下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法确定12.(2023·山东聊城·统考中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是( ) A .1m ≥-B .1mC .1m ≥-且0m ≠D .1m 且0m ≠13.(2023·山东·统考中考真题)一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为( ) A .32B .3-C .3D .32-14.(2023·内蒙古赤峰·统考中考真题)用配方法解方程2410x x --=时 配方后正确的是( ) A .2(2)3x +=B .2(2)17x +=C .2(2)5x -=D .2(2)17x -=二 填空题15.(2023·湖南常德·统考中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是_________.16.(2023·湖北宜昌·统考中考真题)已知1x 2x 是方程22310x x -+=的两根,则代数式12121x x x x ++的值为_________.17.(2022秋·河南新乡·九年级统考期中)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的取值范围是_____________.18.(2023·四川宜宾·统考中考真题)若关于x 的方程()22140x m x m -+++=两根的倒数和为1,则m 的值为___________.19.(2023·黑龙江绥化·统考中考真题)已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______.20.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位1501个 并按计划逐月增长 预计八月份将提供岗位1815个.设七 八两个月提供就业岗位数量的月平均增长率为x 根据题意 可列方程为___________.21.(2023·四川达州·统考中考真题)已知12,x x 是方程2220x kx +-=的两个实数根 且()()122210x x --=,则k 的值为___________.22.(2023·四川遂宁·统考中考真题)若a b 是一元二次方程2310x x -+=的两个实数根,则代数式a b ab +-的值为_________.23.(2023·四川眉山·统考中考真题)已知方程2340x x --=的根为12,x x ,则()()1222x x +⋅+的值为____________.24.(2023·湖南怀化·统考中考真题)已知关于x 的一元二次方程220x mx +-=的一个根为1-,则m 的值为__________ 另一个根为__________.25.(2023·甘肃武威·统考中考真题)关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,则c =________(写出一个满足条件的值).26.(2023·上海·统考中考真题)已知关于x 的一元二次方程2610ax x ++=没有实数根 那么a 的取值范围是________.27.(2023·湖南·统考中考真题)已知关于x 的方程2200x mx +-=的一个根是4-,则它的另一个根是________.28.(2023·山东枣庄·统考中考真题)若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________.29.(2022春·江苏泰州·九年级校考阶段练习)已知一元二次方程x 2﹣3x +1=0有两个实数根x 1 x 2,则x 1+x 2﹣x 1x 2的值等于_____.30.(2023·四川内江·统考中考真题)已知a b 是方程2340x x +-=的两根,则243a a b ++-=___________. 31.(2023·湖北黄冈·统考中考真题)已知一元二次方程230x x k -+=的两个实数根为12,x x 若1212221x x x x ++=,则实数k =_____________.32.(2023·湖南·统考中考真题)某校截止到2022年底 校园绿化面积为1000平方米.为美化环境 该校计划2024年底绿化面积达到1440平方米.利用方程想想 设这两年绿化面积的年平均增长率为x ,则依题意列方程为__________.33.(2022秋·北京东城·九年级景山学校校考阶段练习)关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______.34.(2023·湖南岳阳·统考中考真题)已知关于x 的一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根 且12122x x x x ++⋅=,则实数m =_________.三 解答题35.(2023秋·辽宁沈阳·九年级统考期末)解方程:2320x x -+=.36.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯 某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元 2022年用于购买图书的费用是7200元 求20202022-年买书资金的平均增长率.37.(2023·湖北·统考中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=.(1)求证:无论m 取何值时 方程都有两个不相等的实数根(2)设该方程的两个实数根为a b 若()()2220a b a b ++= 求m 的值.38.(2023·四川南充·统考中考真题)已知关于x 的一元二次方程22(21)30x m x m m ---+=(1)求证:无论m 为何值 方程总有实数根 (2)若1x 2x 是方程的两个实数根 且212152x x x x +=- 求m 的值.39.(2023·浙江杭州·统考中考真题)设一元二次方程20x bx c ++=.在下面的四组条件中选择其中一组..,b c 的值 使这个方程有两个不相等的实数根 并解这个方程. ①2,1b c == ①3,1b c == ①3,1b c ==- ①2,2b c ==. 注:如果选择多组条件分别作答 按第一个解答计分.40.(2023·湖南郴州·统考中考真题)随旅游旺季的到来 某景区游客人数逐月增加 2月份游客人数为1.6万人 4月份游客人数为2.5万人.(1)求这两个月中该景区游客人数的月平均增长率(2)预计5月份该景区游客人数会继续增长 但增长率不会超过....前两个月的月平均增长率.已知该景区5月1日至5月21日已接待游客2.125万人,则5月份后10天日均接待游客人数最多是多少万人?41.(2023·湖北荆州·统考中考真题)已知关于x 的一元二次方程()22460kx k x k -++-=有两个不相等的实数根.(1)求k 的取值范围(2)当1k =时 用配方法...解方程.参考答案一 单选题1.(2023·四川泸州·统考中考真题)关于x 的一元二次方程22210x ax a ++-=的根的情况是( ) A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .实数根的个数与实数a 的取值有关【答案】C【分析】根据一元二次方程根的判别式求出()()222224144440a a a a ∆=--=-+=> 即可得出答案.【详解】解:①()()222224144440a a a a ∆=--=-+=>①关于x 的一元二次方程22210x ax a ++-=有两个不相等的实数根 故C 正确. 故选:C .【点睛】本题考查了根的判别式 一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:当0∆>时 方程有两个不相等的实数根 当Δ0=时 方程有两个相等的实数根 当Δ0<时 方程无实数根. 2.(2023·天津·统考中考真题)若12,x x 是方程2670x x --=的两个根,则( ) A .126x x += B .126x x +=- C .127·6x x = D .12·7x x = 【答案】A【分析】根据一元二次方程的根与系数的关系即可得. 【详解】解:方程2670x x --=中的1,6,7a b c ==-=- 12,x x 是方程2670x x --=的两个根126b x x a ∴+=-= 12·7cx x a==- 故选:A .【点睛】本题考查了一元二次方程的根与系数的关系 熟练掌握一元二次方程的根与系数的关系是解题关键.3.(2023·广西·统考中考真题)据国家统计局发布的《2022年国民经济和社会发展统计公报》显示 2020年和2022年全国居民人均可支配收入分别为3.2万元和3.7万元.设2020年至2022年全国居民人均可支配收入的年平均增长率为x 依题意可列方程为( )A .23.2(1) 3.7x -=B .23.2(1) 3.7x +=C .23.7(1) 3.2x -=D .23.7(1) 3.2x +=【答案】B【分析】设2020年至2022年全国居民人均可支配收入的年平均增长率为x 根据题意列出一元二次方程即可.【详解】设2020年至2022年全国居民人均可支配收入的年平均增长率为x 根据题意得 23.2(1) 3.7x +=. 故选:B .【点睛】本题考查了一元二次方程的应用 根据题意列出一元二次方程是解题的关键.4.(2023·黑龙江·统考中考真题)如图 在长为100m 宽为50m 的矩形空地上修筑四条宽度相等的小路 若余下的部分全部种上花卉 且花圃的面积是23600m ,则小路的宽是( )A .5mB .70mC .5m 或70mD .10m【答案】A【分析】设小路宽为m x ,则种植花草部分的面积等于长为()1002m x - 宽为()502m x -的矩形的面积 根据花草的种植面积为23600m 即可得出关于x 的一元二次方程 解之取其符合题意的值即可得出结论. 【详解】解:设小路宽为m x ,则种植花草部分的面积等于长为()1002m x - 宽为()502m x -的矩形的面积 依题意得:()()1002502=3600x x -- 解得:15=x 270x =(不合题意 舍去) ①小路宽为5m . 故选:A .【点睛】本题考查了一元二次方程的应用 找准等量关系 正确列出一元二次方程是解题的关键. 5.(2023·河南·统考中考真题)关于x 的一元二次方程280x mx +-=的根的情况是( ) A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根【答案】A【分析】对于20(0)ax bx c a ++=≠ 当0∆>, 方程有两个不相等的实根 当Δ0=, 方程有两个相等的实根Δ0<, 方程没有实根 根据原理作答即可.【详解】解:①280x mx +-=①()2248320m m ∆=-⨯-=+>所以原方程有两个不相等的实数根 故选:A .【点睛】本题考查了一元二次方程根的判别式 熟练掌握一元二次方程根的判别式是解题关键.6.(2023·四川眉山·统考中考真题)关于x 的一元二次方程2220x x m -+-=有两个不相等的实数根,则m 的取值范围是( ) A .32m < B .3m > C .3m ≤ D .3m <【答案】D【分析】利用一元二次方程根的判别式求解即可.【详解】解:①关于x 的一元二次方程2220x x m -+-=有两个不相等的实数根 ①()()22420m ∆=---> ①3m < 故选:D .【点睛】本题主要考查了一元二次方程根的判别式 对于一元二次方程()200ax bx c a ++=≠ 若240b ac ∆=->,则方程有两个不相等的实数根 若240b ac ∆=-=,则方程有两个相等的实数根 若24<0b ac ∆=-,则方程没有实数根.7.(2023·新疆·统考中考真题)用配方法解一元二次方程2680x x -+= 配方后得到的方程是( ) A .()2628x += B .()2628x -=C .()231x +=D .()231x -=【答案】D【分析】方程两边同时加上一次项系数一半的平方即262-⎛⎫⎪⎝⎭计算即可.【详解】①2680x x -+=①22268+6622x x --⎛⎫⎛⎫⎪ ⎪⎝⎭⎝+⎭-=①()22869+3x x -=-- ①()231x -= 故选:D .【点睛】本题考查了配方法 熟练掌握配方法的基本步骤是解题的关键.8.(2023·四川乐山·统考中考真题)若关于x 的一元二次方程280x x m -+=两根为12x x 、 且123x x =,则m 的值为( ) A .4 B .8C .12D .16【答案】C【分析】根据一元二次方程根与系数的关系得出128x x += 然后即可确定两个根 再由根与系数的关系求解即可.【详解】解:①关于x 的一元二次方程280x x m -+=两根为12x x 、 ①128x x += ①123x x = ①212,6x x == ①1212m x x == 故选:C .【点睛】题目主要考查一元二次方程根与系数的关系 熟练掌握此关系是解题关键. 9.(2023·山东滨州·统考中考真题)一元二次方程2320x x +-=根的情况为( ) A .有两个不相等的实数根 B .有两个相等的实数根C .没有实数根D .不能判定【答案】A【分析】根据题意 求得2498170b ac ∆=-=+=> 根据一元二次方程根的判别式的意义 即可求解. 【详解】解:①一元二次方程2320x x +-=中 1,3,2a b c -==- ①2498170b ac ∆=-=+=>①一元二次方程2320x x +-=有两个不相等的实数根 故选:A .【点睛】本题考查了一元二次方程的根的判别式的意义 熟练掌握一元二次方程根的判别式的意义是解题的关键.10.(2023·全国·统考中考真题)一元二次方程2520x x -+=根的判别式的值是( )A .33B .23C .17D 【答案】C【分析】直接利用一元二次方程根的判别式24b ac =-△求出答案. 【详解】解:①1a = =5b - 2c = ①()224541172b ac =-=-⨯⨯-=. 故选:C .【点睛】此题主要考查了一元二次方程的根的判别式 正确记忆公式是解题关键.11.(2023·四川·统考中考真题)关于x 的一元二次方程232302x x -+=根的情况 下列说法中正确的是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根 D .无法确定【答案】C【分析】直接利用一元二次方程根的判别式即可得.【详解】解:232302x x -+= 其中2a = 3b =- 32c = ①()23Δ342302=--⨯⨯=-< ①方程没有实数根. 故选:C .【点睛】本题主要考查了一元二次方程根的判别式 对于一元二次方程()200ax bx c a ++=≠ 若240b ac ∆=->,则方程有两个不相等的实数根 若240b ac ∆=-=,则方程有两个相等的实数根 若24<0b ac ∆=-,则方程没有实数根.12.(2023·山东聊城·统考中考真题)若一元二次方程2210mx x ++=有实数解,则m 的取值范围是( ) A .1m ≥- B .1mC .1m ≥-且0m ≠D .1m 且0m ≠【答案】D【分析】由于关于x 的一元二次方程2210mx x ++=有实数根 根据一元二次方程根与系数的关系可知0∆≥且0m ≠ 据此列不等式求解即可.【详解】解:由题意得 440m -≥ 且0m ≠ 解得 1m 且0m ≠. 故选:D .【点睛】本题考查了一元二次方程()200ax bx c a ++=≠的根的判别式24b ac ∆=-与根的关系 熟练掌握根的判别式与根的关系式解答本题的关键.当0∆>时 一元二次方程有两个不相等的实数根 当Δ0=时 一元二次方程有两个相等的实数根 当Δ0<时 一元二次方程没有实数根. 13.(2023·山东·统考中考真题)一元二次方程2310x x +-=的两根为12x x ,,则1211+x x 的值为( ) A .32B .3-C .3D .32-【答案】C【分析】先求得123x x +=- 121x x ⋅=- 再将1211+x x 变形 代入12x x +与12x x ⋅的值求解即可. 【详解】解:①一元二次方程2310x x +-=的两根为12x x 、 ①123x x +=- 121x x ⋅=- ①1211+x x 1212x x x x +=31=-- 3=.故选:C .【点睛】本题主要考查了一元二次方程根与系数的关系 牢记12b x x a+=- 12cx x a ⋅=是解决本题的关键.14.(2023·内蒙古赤峰·统考中考真题)用配方法解方程2410x x --=时 配方后正确的是( ) A .2(2)3x += B .2(2)17x +=C .2(2)5x -=D .2(2)17x -=【答案】C【分析】根据配方法 先将常数项移到右边 然后两边同时加上4 即可求解. 【详解】解:2410x x --= 移项得 241x x -=两边同时加上4 即2445x x +=- ①2(2)5x -= 故选:C .【点睛】本题考查了配方法解一元二次方程 熟练掌握配方法是解题的关键.二 填空题15.(2023·湖南常德·统考中考真题)若关于x 的一元二次方程220x x k -+=有两个不相等的实数根,则k 的取值范围是_________. 【答案】1k <【分析】若一元二次方程有两个不相等的实数根,则根的判别式24>0b ac ∆=- 建立关于k 的不等式 解不等式即可得出答案.【详解】解:①关于x 的方程220x x k -+=有两个不相等的实数根 ①()224240b ac k ∆=-=--> 解得1k <. 故答案为:1k <.【点睛】此题考查了根的判别式.一元二次方程()200ax bx c a ++=≠的根与24b ac ∆=-有如下关系:(1)0∆>①方程有两个不相等的实数根 (2)Δ0=①方程有两个相等的实数根 (3)Δ0<①方程没有实数根.16.(2023·湖北宜昌·统考中考真题)已知1x 2x 是方程22310x x -+=的两根,则代数式12121x x x x ++的值为_________. 【答案】1【分析】根据1x 2x 是一元二次方程20ax bx c ++=的两个根,则有1212·b x x a c x x a ⎧+=-⎪⎪⎨⎪=⎪⎩求解即可. 【详解】解:由题意得 1212321·2x x x x ⎧+=⎪⎪⎨⎪=⎪⎩原式321112==+.故答案:1.【点睛】本题考查了韦达定理 掌握定理是解题的关键.17.(2022秋·河南新乡·九年级统考期中)关于x 的一元二次方程220x x m --=有两个不相等的实数根,则m 的取值范围是_____________. 【答案】m >-1【分析】根据有两个不相等的实数根得到()()2Δ241m =--⨯⨯->0 解不等式即可. 【详解】解:根据题意 得()()2Δ241m =--⨯⨯->0 解得 m >-1 故答案为m >-1.【点睛】本题考查一元二次方程的判别式 解决问题的关键是掌握判别式和方程根之间的关系:当∆>0时 原方程有两个不相等的实数根 当∆=0时 原方程有两个相等的实数根 当∆<0时 原方程无实数根.18.(2023·四川宜宾·统考中考真题)若关于x 的方程()22140x m x m -+++=两根的倒数和为1,则m 的值为___________. 【答案】2【分析】根据根与系数的关系即可求出答案. 【详解】解:设方程的两个根分别为a b 由题意得:()+2+1a b m = 4ab m =+ ①()2+111+++4m a b a bab m == ①()2+11+4m m = 解得:2m =经检验:2m =是分式方程的解检验:()()()()22Δ2144421424120m m =-+-+=⨯+-⨯+=>⎡⎤⎣⎦ ①2m =符合题意 ①2m =. 故答案为:2.【点睛】本题考查了一元二次方程根与系数的关系 掌握一元二次方程根与系数的关系是解题的关键.19.(2023·黑龙江绥化·统考中考真题)已知一元二次方程256x x x +=+的两根为1x 与2x ,则1211+x x 的值为_______. 【答案】23-【分析】根据一元二次方程根与系数的关系得出121246x x x x +==-, 将分式通分 代入即可求解. 【详解】解:①一元二次方程256x x x +=+ 即2460x x --= 的两根为1x 与2x ①121246x x x x +==-, ①1211+x x 12124263x x x x +===-- 故答案为:23-.【点睛】本题考查了分式的化简求值 一元二次方程根与系数的关系 熟练掌握一元二次方程根与系数的关系是解题的关键.20.(2023·重庆·统考中考真题)某新建工业园区今年六月份提供就业岗位1501个 并按计划逐月增长 预计八月份将提供岗位1815个.设七 八两个月提供就业岗位数量的月平均增长率为x 根据题意 可列方程为___________. 【答案】()2150111815x +=【分析】设七 八两个月提供就业岗位数量的月平均增长率为x 根据题意列出一元二次方程 即可求解. 【详解】解:设七 八两个月提供就业岗位数量的月平均增长率为x 根据题意得()2150111815x +=故答案为:()2150111815x +=.【点睛】本题考查了一元二次方程的应用 增长率问题 根据题意列出方程是解题的关键.21.(2023·四川达州·统考中考真题)已知12,x x 是方程2220x kx +-=的两个实数根 且()()122210x x --=,则k 的值为___________. 【答案】7【分析】根据根与系数的关系求出12x x +与12x x 的值 然后整体代入求值即可. 【详解】①12,x x 是方程2220x kx +-=的两个实数根 ①122b kx x a +=-=- 12212c x x a -===-①()()122210x x --= ①121222410x x x x --+= 12122()60x x x x -+-=12602k ⎛⎫--⨯--= ⎪⎝⎭①解得7k =. 故答案为:7.【点睛】本题考查一元二次方程根与系数的关系 代数式求值.熟记一元二次方程根与系数的关系:12b x x a+=-和12cx x a ⋅=是解题关键.22.(2023·四川遂宁·统考中考真题)若a b 是一元二次方程2310x x -+=的两个实数根,则代数式a b ab +-的值为_________. 【答案】2【分析】根据根与系数的关系得到31a b ab +==, 由此即可得到答案. 【详解】解:①a b 是一元二次方程2310x x -+=的两个实数根 ①31a b ab +==, ①31312a b ab +-=-=-= 故答案为:2.【点睛】本题主要考查了一元二次方程根与系数的关系 对于一元二次方程()200ax bx c a ++=≠ 若12x x ,是该方程的两个实数根,则1212b ca x x x x a+=-=,.23.(2023·四川眉山·统考中考真题)已知方程2340x x --=的根为12,x x ,则()()1222x x +⋅+的值为____________. 【答案】6【分析】解方程 将解得的12,x x 代入()()1222x x +⋅+即可解答. 【详解】解:2340x x --=对左边式子因式分解 可得()()410x x -+= 解得14x = 21x =-将14x = 21x =-代入()()1222x x +⋅+可得原式()()42126=+⨯-+= 故答案为:6.【点睛】本题考查了因式分解法解一元二次方程 熟练掌握计算方法是解题的关键.24.(2023·湖南怀化·统考中考真题)已知关于x 的一元二次方程220x mx +-=的一个根为1-,则m 的值为__________ 另一个根为__________. 【答案】1- 2【分析】将=1x -代入原方程 解得m 根据一元二次方程根与系数的关系 得出122x x ⨯=- 即可求解. 【详解】解:①关于x 的一元二次方程220x mx +-=的一个根为1- ①120m --= 解得:1m =-设原方程的另一个根为2x ,则12·2x x =- ①11x =- ①22x =故答案为:12-,. 【点睛】本题考查了一元二次方程根的定义 一元二次方程根与系数的关系 熟练掌握一元二次方程根与系数的关系是解题的关键.25.(2023·甘肃武威·统考中考真题)关于x 的一元二次方程2240x x c ++=有两个不相等的实数根,则c =________(写出一个满足条件的值). 【答案】2-(答案不唯一 合理即可)【分析】先根据关于x 的一元二次方程2240x x c ++=有两个不相等的实数根得到4160c ∆=-> 解得14c <根据c 的取值范围 选取合适的值即可. 【详解】解:①关于x 的一元二次方程2240x x c ++=有两个不相等的实数根 ①224144160c c ∆=-⨯⨯=-> 解得14c <当2c =-时 满足题意故答案为:2-(答案不唯一 合理即可).【点睛】此题考查了一元二次方程根的判别式 熟练掌握当240b ac ∆=->时 一元二次方程()200ax bx c a ++=≠有两个不相等的实数根是解题的关键.26.(2023·上海·统考中考真题)已知关于x 的一元二次方程2610ax x ++=没有实数根 那么a 的取值范围是________. 【答案】9a >【分析】根据一元二次方程根的判别式可进行求解.【详解】解:①关于x 的一元二次方程2610ax x ++=没有实数根 ①243640b ac a ∆=-=-< 解得:9a > 故答案为:9a >.【点睛】本题主要考查一元二次方程根的判别式 熟练掌握一元二次方程根的判别式是解题的关键. 27.(2023·湖南·统考中考真题)已知关于x 的方程2200x mx +-=的一个根是4-,则它的另一个根是________. 【答案】5【分析】根据一元二次方程根与系数的关系可得1220cx x a⋅==- 根据该方程一个根为4- 即可求出另一个根.【详解】解:根据题意可得:1,,20a b m c ===- ①1220cx x a⋅==- ①该方程一个根为4- 令14x =- ①2420x -=- 解得:25x =. 故答案为:5.【点睛】本题主要考查了一元二次方程根与系数的关系 解题的关键是掌握一元二次方程()200ax bx c a ++=≠有两根为1x 2x ,则12cx x a ⋅= 12b x x a+=-.28.(2023·山东枣庄·统考中考真题)若3x =是关x 的方程26ax bx -=的解,则202362a b -+的值为___________. 【答案】2019【分析】将3x =代入方程 得到32a b -= 利用整体思想代入求值即可. 【详解】解:①3x =是关x 的方程26ax bx -=的解 ①2336a b ⋅-= 即:32a b -=①202362a b -+()202323a b =-- 202322=-⨯ 20234=-2019=故答案为:2019.【点睛】本题考查方程的解 代数式求值.熟练掌握方程的解是使等式成立的未知数的值 是解题的关键. 29.(2022春·江苏泰州·九年级校考阶段练习)已知一元二次方程x 2﹣3x +1=0有两个实数根x 1 x 2,则x 1+x 2﹣x 1x 2的值等于_____. 【答案】2【分析】先根据根与系数的关系得x 1+x 2=3 x 1x 2=1 然后利用整体代入的方法计算. 【详解】解:根据根与系数的关系得: x 1+x 2=3 x 1x 2=1 ①x 1+x 2﹣x 1x 2=3﹣1=2. 故答案为:2.【点睛】本题考查了根与系数的关系:若x 1 x 2是一元二次方程ax 2+bx +c =0(a ≠0)的两根时 x 1+x 2b a=- x 1x 2ca=.熟练掌握根与系数的关系是解决本题的关键. 30.(2023·四川内江·统考中考真题)已知a b 是方程2340x x +-=的两根,则243a a b ++-=___________. 【答案】2-【分析】利用一元二次方程的解的定义和根与系数的关系 可得23,340a b a a +=-+-= 从而得到234+=a a 然后代入 即可求解.【详解】解:①a b 是方程2340x x +-=的两根 ①23,340a b a a +=-+-= ①234+=a a ①243a a b ++- 233a a a b =+++-()433=+--2=-.故答案为:2-.【点睛】本题主要考查了一元二次方程的解的定义和根与系数的关系 熟练掌握一元二次方程的解的定义和根与系数的关系是解题的关键.31.(2023·湖北黄冈·统考中考真题)已知一元二次方程230x x k -+=的两个实数根为12,x x 若1212221x x x x ++=,则实数k =_____________.【答案】5-【分析】根据一元二次方程的根与系数的关系 得出12123,x x x x k +== 代入已知等式 即可求解. 【详解】解:①一元二次方程230x x k -+=的两个实数根为12,x x ①12123,x x x x k +== ①1212221x x x x ++= ①61k += 解得:5k =- 故答案为:5-.【点睛】本题考查了一元二次方程的根与系数的关系 熟练掌握一元二次方程根与系数的关系是解题的关键.32.(2023·湖南·统考中考真题)某校截止到2022年底 校园绿化面积为1000平方米.为美化环境 该校计划2024年底绿化面积达到1440平方米.利用方程想想 设这两年绿化面积的年平均增长率为x ,则依题意列方程为__________. 【答案】()2100011440x +=【分析】设这两年绿化面积的年平均增长率为x 依题意列出一元二次方程即可求解. 【详解】解:设这两年绿化面积的年平均增长率为x ,则依题意列方程为()2100011440x += 故答案为:()2100011440x +=.【点睛】本题考查了一元二次方程的应用 根据题意列出一元二次方程是解题的关键.33.(2022秋·北京东城·九年级景山学校校考阶段练习)关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根,则k 的取值范围是______. 【答案】k <1.【分析】由方程有两个不等实数根可得出关于k 的一元一次不等式 解不等式即可得出结论.【详解】①关于x 的一元二次方程x 2+2x+k=0有两个不相等的实数根 ①①=2241k 0-⨯⨯> 解得:k 1< 故答案为:k 1<.【点睛】本题考查了根的判别式以及解一元一次不等式 解题的关键是得出关于k 的一元一次不等式.熟知“在一元二次方程()2ax bx c 0a 0++=≠中 若方程有两个不相等的实数根,则①=2b 4ac 0->”是解答本题的关键.34.(2023·湖南岳阳·统考中考真题)已知关于x 的一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根 且12122x x x x ++⋅=,则实数m =_________. 【答案】3【分析】利用一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根求出m 的取值范围 由根与系数关系得到212122,2x x m x x m m +=-=-+ 代入12122x x x x ++⋅= 解得m 的值 根据求得的m 的取值范围确定m 的值即可.【详解】解:①关于x 的一元二次方程22220x mx m m ++-+=有两个不相等.....的实数根 ①()()22242480m m m m ∆=--+=->解得m>2①212122,2x x m x x m m +=-=-+ 12122x x x x ++⋅=①2222m m m -+-+=解得123,0m m ==(不合题意 舍去) ①3m = 故答案为:3.【点睛】此题考查一元二次方程根的判别式和一元二次方程根与系数关系 熟练掌握根的判别式和根与系数关系的内容是解题的关键.三 解答题35.(2023秋·辽宁沈阳·九年级统考期末)解方程:2320x x -+=.【答案】11x = 22x =【分析】首先将方程进行因式分解 然后根据因式分解的结果求出方程的解.【详解】解:2320x x -+=(1)(2)0x x --=①10x -=或20x -=①11x = 22x =.【点睛】本题考查了解一元二次方程 解题的关键是掌握因式分解法求解方程.36.(2023·辽宁大连·统考中考真题)为了让学生养成热爱图书的习惯 某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元 2022年用于购买图书的费用是7200元 求20202022-年买书资金的平均增长率.【答案】20%【分析】设20202022-年买书资金的平均增长率为x 根据2022年买书资金=2020年买书资金()21x ⨯+建立方程 解方程即可得.【详解】解:设20202022-年买书资金的平均增长率为x由题意得:()2500017200x +=解得0.220%x ==或 2.20x =-<(不符合题意 舍去)答:20202022-年买书资金的平均增长率为20%.【点睛】本题考查了一元二次方程的应用 找准等量关系 正确建立方程是解题关键.37.(2023·湖北·统考中考真题)已知关于x 的一元二次方程()22210x m x m m -+++=. (1)求证:无论m 取何值时 方程都有两个不相等的实数根(2)设该方程的两个实数根为a b 若()()2220a b a b ++= 求m 的值.【答案】(1)见解析 (2)m 的值为1或2-【分析】(1)根据一元二次方程根的判别式可进行求解(2)根据一元二次方程根与系数的关系可进行求解.【详解】(1)证明:①()()22Δ21410m m m ⎡⎤=-+-⨯+=>⎣⎦ ①无论m 取何值 方程都有两个不相等的实数根.(2)解:①()22210x m x m m -+++=的两个实数根为,a b。
中考数学复习一元二次方程应用题专项训练我市某地区大力发展乡村旅游,计划分两期用当地的闲置土地种植花木和修建鱼塘。
(1)第一期预计种植花木和修建鱼塘共 60 亩,种植花木的土地面积不低于修建鱼塘的土地面积的5 倍,那么种植花木的土地面积最少为多少亩?(2)第一期计划完成后,共投入了150 万元,种植花木的土地面积刚好是计划的最小值,并且种植花木和修建鱼塘每亩所花费的平均费用之比为2:5。
按计划,第二期在第一期的基础上扩大规模,投入资金在第一期的基础上增加4a%。
经测算,第二期种植花木和修建鱼塘每亩所花的平均费用将在第一期的基础上分别增加2a%,3a%,种植花木和修建鱼塘的土地面积将在第一期的基础上分别增加百分之a%,2a%,求a 的值。
2017 年,全球最大的生产电动车的车企特斯拉落户上海,电动车是未来汽车的发展方向。
市政府投入专项资金,计划在全市分期建设充电桩。
市政府计划:2017 年,建设A、B 型充电桩共计50 个,且A 型充电桩的个数不低于B 型充电桩个数的4 倍。
(1)按计划,2017 年至少要修建多少个A 型充电桩?(2)到2017 年年底,按原计划刚好完成了任务,共花费资金78 万元,且修建的A 型充电桩恰好是原计划的最小值。
据核算,2017 年,修建每个A型、B 型充电桩的平均费用之比为1:2,为加大充电桩建设力度,政府加大投入,2018 年,在2017 年花费资金的基础上增加投入10a%,全部用于A 型、B 型充电桩建设。
经测算:从今年开始,修建每个A 型、B 型充电桩的平均费用在2017 年的基础上分别增加了a%、5a%,新建A 型、B 型充电桩的个数将会在2017 年的基础上分别增加5a%、8a%,求a 的值。
随着重庆市成为旅游网红城市,重庆特产也成为游客十分喜爱的产品.洪崖洞一特产商店准备购进品牌麻花和驰名火锅底料共5000 袋,其中购进2 袋品牌麻花和3 袋火锅底料共需65 元,购进3 袋品牌麻花和4 袋火锅底料共需90 元.(1)商店准备将品牌麻花加价40% ,火锅底料加价20% 后出售.当所有物品销售完后,若利润不低于18000 元,则商店至少应购进品牌麻花多少袋?(2)根据销售需要临时调整销售方案,决定将品牌麻花的售价在进价基础上上涨(a + 5)% ,火锅底料的售价在进价基础上上涨a% ,在(1)中品牌麻花购买量取得最小值的情况下,将火锅底料的5a购买量提高% ,而品牌麻花的购买量保持不变.则全部售出后,最终可获利21750 元.请求出a 的6值.楼后面的空地修建39 个停车位缓解教师停车难为题。
计划由A、B 两个工程队负责车位基建工程。
已知A 队每天可以完成3 个车位的基建任务,B 队每天可以完成6 个车位的基建任务。
2(1)由于工期考虑,要求B 队工作天数至少是A 对工作天数的13工作多少天?倍,当工程完工时,A 队至多(2)A、B 两队完成一个车位的基建费用比是2 : 3 ,在(1)问A队最多工作天数条件下,完成39 个车位的基建费是54000 元。
在实际修建过程中,学校决定增大投入,多修车位,在基建费54000元的基础上增加25% 。
A 队工作效率不变,工作天数比(1)问中A 队最多天数多5a% ;B 队工作效率下降a% ,工作天数比(1)问中B 队最少天数多⎛ 1 a + 30⎫ %,求a 的值。
2⎪⎝⎭徽,山东等地均有栽培。
突尼斯软籽石榴粒大籽甜,软籽可食,非常适合儿童,老年人使用,更有助于消食化积,因此受到人们的喜欢。
从 8 月份开始,软籽和硬籽两种石榴开始上市,根据市场调查,软籽石榴售价为20 元/千克,硬子石榴售价为15 元/千克。
(1)重庆某水果店抓住商机,开始销售这两种石榴。
若第一周软籽石榴的销量比硬籽石榴的销量 多100 千克,要使该水果店第一周销售这两种石榴的总销售额不低于9000 元,则第一周至少销售软 籽石榴多少千克?(2)若该水果店第一周按(1)中软籽和硬籽的最低销量销售这两种石榴,并决定第二周继续销1售这两种石榴。
第二周软籽石榴售价降低a % ,销量比第一周增加2a % ,硬籽石榴的售价保持不2变,销量比第一周增加了a % ,结果两种石榴第二周的总销售额比第一周增加了6a % ,求a 的值。
5表作名录之后,中国传统文化再次进入人们的视野,与其相关的创意产品颇为畅销。
某文具经营商计划用12 元/盒的进价购进一款“二十四节气”创意书签用以销售。
(1)据调查,当该种书签售价为14 元/盒时,月销量为1780 盒,每盒售价每增长1元,月销量就相应减少30 盒,若使该书签的月销量不低于1600 盒,每盒价售价应不高于多少元?(2)在实际销售时,由于生产原材料价格上涨,每盒书签的进价提高了25%,而每盒书签的售价1比(1)中最高售价减少了m% ,月销量比(1)中最低月销量1600 盒增加了m% ,于是该月销售5利润达到了8000 元,求m 的值。
发箍和荧光棒在演唱会现场出售,其中闪光发箍的购买价格为6 元/个,荧光棒的购买价格8 元/个.(1)小王计划购进闪光发箍和荧光棒共120 个,且将闪光发箍加价40%、荧光棒加价20%后出售,当所有物品售完后,若利润不低于256 元,则小王至少应购买闪光发箍多少个?(2)小王调整了方案,决定将闪光发箍的售价在进价基础上上涨(a+10)% ,荧光棒的售价在进价基础上上涨a% ,在(1)中闪光发箍购买量取得最小值的情况下,将闪光发箍的购买量提高4a% ,而荧光棒的购买量保持不变,则全部售出后,最终可获利246.4 元. 请求出a 的值。
32018 年,由于各种因素的影响,各地大米及食用油价格持续走高,引起了政府的高度关注。
2018 年五一节期间,某超市的大米价格达到了10 元每千克,且每千克食用油比大米还贵6 元。
(1)李大妈想用不超过272 元的费用购进大米、食用油共20 千克,则最多购进食用油多少千克?(2)2018 年五一节期间,该超市共卖出100 千克食用油和20 千克大米,经市场调查,预计2018年端午节期间,该超市食用油的价格比五一节期间还要上涨2a%,但销售量会减少a%,大米的销售价格和五一节期间持平,销售量会增加a%,同时,食用油和大米的总销售额将比五一节期间增长41a% ,求a 的值。
45在目前万物互联网的时代,人工智能正掀起一场影响深刻的技术革命。
谷歌、苹果、BAT、华为……巨头们纷纷布局人工智能。
有人猜测,互联网+过后,我们可能会迎来机器人+。
教育从幼儿抓起,近年来,我国国内幼儿园教育机器人发展趋势迅猛,市场上出现了满足各类要求的幼教机器人产品。
双11 当天,某品牌幼教机器人专卖店抓住机遇,对最畅销的A 款幼教机器人进行促销,一台A 款幼教机器人的成本价为850 元,标价为1300 元。
(1)一台A 款幼教机器人的价格最多降多少元,才能使利润不低于30%?(2)该专卖店以前每周共售出A 款幼教机器人100 个,双11 狂购夜中每台A 款幼教机器人在标价的基础上降价2m 元,结果这天晚上卖出的A款幼教机器人的数量比原来一周卖出的A款幼教机5器人的数量增加了m% ,同时这天晚上的利润比原来一周的利润增加了m%,求m 的值。
2凤梨,原产于美洲热带地区,在我国福建、海南、台湾等地均有栽培。
凤梨营养丰富,味甘、微酸,性微寒,有清热解暑、生津止渴,又有美容、保健功效,因此受到人们的喜爱。
重庆某水果超市四月下旬购进海南凤梨和台湾凤梨共 280 千克,其中海南凤梨进价为每千克8 元,以每千克20 元的价格出售;台湾凤梨进价为每千克15 元,以每千克40 元的价格出售。
(1)若该超市四月底销售完全部的凤梨,总利润不低于4400 元,则台湾凤梨至少购进多少千克?(2)五月初,该水果超市再次购进一批海南凤梨和台湾凤梨,由于气候回暖,水果不易长久保存,该超市决定结合气候及销售情况调整销售方案。
在进价均不发生变化的情况下,让台湾凤梨售价每1千克下降5 元。
海南凤梨每千克上涨 a 元;同时,台湾凤梨在(1)中利润最低时销售量的基础上5增加2a%,海南凤梨在(1)中利润最低时销售量的基础上减少2a%,结果两种凤梨全部销售完毕,所获总利润比四月底的总利润少400 元,求a 的值。
洪崖洞一特产商店准备购进品牌麻花和驰名火锅底料共5000 袋,其中购进2 袋品牌麻花和3 袋火锅底料,共需65 元,购进3 袋品牌麻花和4 袋火锅底料,共需90 元。
(1)商店准备将品牌麻花加价 40%,火锅底料加价20%后出售。
当所有物品销售完后,若利润不低于18000 元,则商店至少应购进品牌麻花多少袋?(2)根据销售需要商店临时调整销售方案,决定将品牌麻花的售价在进价基础上上涨(a + 5)% ,火锅底料的售价在进价基础上上涨a%,在(1)中品牌麻花购买量取得最小的情况下,将火锅底料5a 购进的,将火锅底料的购买量提高获利21750 元,请求出a 的值。
% ,而品牌麻花的购买量保持不变,则全部售出后,最终可6已知销售10 件A款秋衣和20 件B款秋衣的总销售额为4800 元,眉间B款秋衣比每件A款秋衣的销售单价多60 元,该商家在九月份A、B 两款秋衣都没了200 件。
(1)求A、B 两款秋衣的销售单价分别为多少元?(2)十月份,A 款秋衣的销售单价在九月份的基础上上涨了0.5a%,B 款秋衣的销售单价在九月5份的基础上上涨了a%,两款秋衣的销售量都比九月份少售额比九月份的总销售额少3000 元,求a 的值。
a% ,该商家发现两款秋衣十月份的总销6某网店销售A、B 两款扫地机器人,A 款成本每台1000 元,B 款4成本每台1200 元,B 款售价是A 款的倍,今年十月份A 款机器人比B 款机器人多卖10 台,且两3款机器人十月份的销售额都为6 万元。
(1)请问A、B 两款扫地机器人每台的售价分别是多少元?(2)今年“双十一”,该网店为了促销,A 款机器人的售价降低了m%,结果A款机器人的销量在十月份销量的基础上增加了3m%,B 款机器人的售价打九折,结果B 款机器人的销量在十月份销量的基础上增加了2m%,最终该网店当天销售A、B 两款扫地机器人的总利润为38000 元。
求m 的值。
可直接吞食而深受大家喜爱。
但突尼斯软籽石榴一直因技术问题产量不多,今年终于突破研究大量上市。
某超市准备大量进货,已知去年同期普通石榴进价3元/斤,突尼斯软籽石榴进价10 元/斤,去年九月共进货900 斤。
(1)若去年9 月两种石榴进货总价不超过6200 元,则突尼斯软籽石榴最多能购进多少斤?(2)若超市今年9月上半月共购进1000 斤的石榴,其中普通石榴进价与去年相同,突尼斯软籽石榴进价降了4 元。